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Abstract insufficient in many cases.
In this paper, we propose a flexible clustering model, or-

Clustering is the process of grouping a set of objects into der preserving cluster (OP-Cluster), which is able to capture
classes of similar objects. Because of unknownness of théhe general tendency of objects across a subset of dimen-
hidden patterns in the data sets, the definition of similarity sions in a high dimensional space.
is very subtle. Until recently, similarity measures are typi- Figure 1 a) shows a set of 3 objects with 10 attributes.
cally based on distances, e.g Euclidean distance and cosindgn this raw data, no obvious pattern is visible. However, if
distance. In this paper, we propose a flexible yet power- we pick the set of attribute§h, ¢, e, g, 1} as in Figure 1 b)
ful clustering model, namely OP-Cluster (Order Preserv- for these 3 objects, we can observe the following fatte
ing Cluster). Under this new model, two objects are sim- ranks for each of these attributes are the same for all the
ilar on a subset of dimensions if the values of these two three objectslf we rearrange the columns in the ascending
objects induce the same relative order of those dimensionsorder of their ranks:< g,c,l,e,b >, in Figure 1 c), the
Such a cluster might arise when the expression levels of (co-consistency oéscalatioralong the ordered list of attributes
regulated) genes can rise or fall synchronously in responsecan be seen much clearer.
to a sequence of environment stimuli. Hence, discovery of
OP-Cluster is essential in revealing significant gene regu- N
latory networks. A deterministic algorithm is designed and 0
implemented to discover all the significant OP-Clusters. A
set of extensive experiments has been done on several real§ s
biological data sets to demonstrate its effectiveness and ef-
ficiency in detecting co-regulated patterns. 2
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1 Introduction a) Raw Data b) An OP-cluster

As a fundamental tool to analyze large databases, clus-
tering has been studied extensively in many areas including | -0
statistics, machine learning and pattern recognition. Most 3
clustering models, including those proposed for subspace g
clustering, define similarities among objects via some dis- g e
tance functions. Some well-known distance functions in- o T
clude Euclidean distance, Manhattan distance, and cosine
distance. However, distance functions are not always ad-
equate in capturing correlations among objects. In fact,
strong correlations may still exist among a set of objects c) Rearranged by Rank
even if they are far apart from each other in distance.

In light of this observation, thé-pCluster model [17]
was introduced to discover clusters by pattern similarity
(rather than distance) from raw data sets. A major limita-
tion of thed-pCluster model is that it only considers either 1.1  Applications
strict shifting patterns or strict scaling pattetnsvhich is
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Figure 1. An Example of OP-cluster

1The scaling patterns can be transformed into shifting patterns by ap- ® DNA microarray analysisMicroarray is one of the lat-
plying a logarithmic function on the raw data. est breakthroughs in experimental molecular biology.



Investigators show that more often than not, if several 1.3 Paper Layout

genes contribute to a disease, it is possible to identify

a subset of conditions, under which these genes show . _ _

a coherent tendency. Since a gene’s expression leve| Theremainder of the paper is organized as follows. Sec-
may vary substantially due to its sensitivity to system- tion 2 discusses some relajed work. Section 3 deﬂ_nes the
atic settings, the direction of movement (up or down) Model of OP-Cluster. Section 4 presents the algorithm to
in response to condition change is often considered Mine OP-Cluster in detail. An extensive performance study
more credible than its actual value. Discovering clus- 'S réported in Section 5. Section 6 concludes the paper.
ters of genes sharing coherent tendency is essential in

revealing the significant connections in gene regula-
tory networks[9]. 2 Related Work

e E-commerce In recommendation systems and target
marketing, the tendency of people’s affinities plays a
more important role than the absolute value. Reveal-
ing sets of customers/clients with similar behavior can  Clustering in high dimensional space is often problem-
help the companies to predict customers’ interest andatic as theoretical results [8] questioned the meaning of
make proper recommendation for future marketing.  closest matching in high dimensional spaces. Recent re-

search work [18, 19, 3, 4, 6, 9, 12] has focused on discov-
1.2 Challenges and Our Contributions e.ring clusters embgdded in th_e subspaces of a high dimen-
sional data set. This problem is known as subspace cluster-
, , ing. Based on the measure of similarity, there are two cat-
_To discover the general tendency in a cluster, the ma-ggories of clustering model. The first category is distance
jor challenge'ls the huge numbe'r of potential ranklngs. If based. In this category, one of the well known subspace
we haven attrlbL_Jtes, there ard’! dlffere_nt permutations of clustering algorithms is CLIQUE [6]. CLIQUE is a density
(sqbsets of) e_attrlbutes_. Each permutation C(_)rre_sponds to ongng grid based clustering method. The PROCLUS [3] and
unique ordering for this set of attributes, which is embedded the ORCLUS [4] algorithms find projected clusters based
in a subset of objects. Moreover, it is possible that similar o, representative cluster centers in a set of cluster dimen-
ranking only occur in a subset of théattributes. Sototally,  gions. Another interesting approach, Fascicles [12], finds
the number of potential candidates for OP-Clusters with at \,psets of data that share similar values in a subset of di-
leastnc attributes is

2.1 Subspace Clustering

mensions.
NI The second category is pattern-based. The first algorithm
Z m Q) proposed in this category is the bicluster model [10] by

Cheng et al. The algorithm tries to measure the coherence
of the genes and the conditions in a sub-matrix of a DNA
Data sets in DNA array analysis or collaborative filtering array. Recently-pCluster is introduced by Wang et al [17]
can have hundreds of attributes. This results in a huge num+o cluster objects exhibiting shifting or scaling patterns in a
ber of candidates of various lengths. To tackle this problem, data set in a very efficient way. In many applications, only
we introduce OPC-Tree to guide the enumeration of poten-allowing shifting or scaling patterns is too restrictive. To
tial candidates. The following are our contributions. include more generic pattern in a cluster, the threshold has
to be relaxed. This, in turn, can result in unavoidable noise
e We propose a new clustering model, namely OP- inside a cluster.
Cluster, to capture general tendencies exhibited by the The concept of OPSM(order preserving submatrix) was
objects. The OP-Cluster model is a generalization of first introduced in [7] to represent a subset of genes identi-
existing subspace clustering models. It has a wide vari- cally ordered among a subset of the conditions in microar-
ety of applications, including DNA array analysis and ray analysis. The OPSM problem is proven to be NP-hard.
collaborative filtering, where tendency along a set of A model-based statistical algorithm was also given in [7]
attributes carries significant meaning. to discover OPSMs. There are some drawbacks in this pi-
oneering work. First, only one cluster can be found at a
e We design a compact tree structure OPC-Tree totime. And the quality of the resulted cluster is very sen-
mine OP-Cluster effectively. Compared with one of sitive to some given parameters and the initial selection of
fastest sequential pattern mining algorithms, prefixS- partial models. Secondly, OPSM algorithm favors clusters
pan(modified to serve our purpose), the OPC-Tree with a large row support, which as a result, can obstruct the
based algorithm delivers a shorter response time indiscovery of the small but significant ones.
most cases, especially when the data is pattern-rich. In our work, we generalize the OPSM model by allowing
grouping. Based on the new model, we propose a determin-
e We apply the model of OP-Cluster to two real data sets jstic subspace clustering algorithm, namely OPC-Tree, to
and discover interesting patterns that tend to be over-capture all the general tendencies exhibited by a subset of
looked by previous models. objects along a subset of dimensions in one run.

ncli<N



2.2 Sequential Pattern Mining j) agroup for objecto. Attributed,,; is called apivot point
of this group.

Since it was first introduced in [5], sequential pattern
mining has been studied extensively. Conventional se- The intuition behind this definition is that, if the dif-
quential pattern mining finds frequent subsequences in theference between the values of two attributes is not signif-
database based on exact match. There are two classes #§ant, we regard them to be “equivalent” and do not or-
algorithms. On one hand, the breadth-first search meth-der them. For example, in gene expression data, each
ods (e.g., GSP [15] and SPADE [21]) are based on thetlssue(cond|t|on) might b_eIong toa class of tissues corre-
Apriori principle [5] and conduct level-by-level candidate- sponding to a stage or time point in the progression of a
generation-and-tests. On the other hand, the depth-firsdisease, or a type of genetic abnormality. Hence, within the
search methods (e.g., PrefixSpan [14] and SPAM [1]) grow same class, no restrict order would be placed on the expres-
long patterns from short ones by constructing projected Sion levels.
databases. There are multiple ways to define the grouping function

In our paper, we are facing a similar but more compli- G(d,d.i). One way is to define it as the average difference
cated problem than sequential pattern mining. Rows in ma-between every pair of attributes whose values are closest.
trix will be treated as a sequence to find sequential patterns.
However, in order to finally determine OP-Cluster, the ID G(0,doi) =G(8) =6 x Z (do(i+1) — doi)  (3)
associated with each sequence has to be kept during the 0<i<n
mining process. A depth-first traversal of the tree is carried
out to generate frequent subsequences by recursively con- This definition is independent af,; and is usually used
catenating legible suffixes with the existing frequent pre- when each attribute has a finite domain and its value is

fixes. evenly distributed within its domain. The previous exam-
ple on movie rating belongs to this case. When the value
3  Model of each attribute may follow a skew distribution as the gene

expression data, Equation 4 is a better choice. For the sake
of simplicity in explanation, we use Equation 4 in the re-

In this section, we define the OP-Cluster model for min- mainder of this paper, unless otherwise specified.

ing objects that exhibit tendency on a set of attributes.

H gé,dm- :(SXdOZ‘ 4
3.1 Notations (9, doi) (4)

For example, a viewer rates five movied, B, C, D,

D Asetofobjects . E) as (1, 4, 45, 8, 10). I6 = 0.2, 4 and 4.5 will be
A Asetof attributes of the objects grouped together and the corresponding attribitesdC
(O,7) A sub-matrix of the data set, will be considered equivalent. The rating is divided into
whereO C D, T C A four groups{{A}, {B,C},{D}, {E}}.
z,y,... ObjectsinD
a,b,... AttributesinA Definition 3.2 Let o be an object in the database, and
dya Value of object: on attributea (901) (go2)---(gor) be a sequence of similar groups of
) User-specified grouping threshold by Equation 2 and in non-descending order of their val-
oP User-specified shifting threshold ues. o shows an UP pattern ' on an ordered list of at-
ne,nr  User-specified minimum # of columns and  tributes ay, as, ..., a; if a1,a9,...,a; is a subsequence of
minimum # of rows of a model (901)(g02)---(gok)-

In the above exampld|l,4,4.5,8,10) is the rating for
movies(A, B, C, D, E). After we apply the similar group,
we are able to transform the original rating to the sequence

Let D be a set of objects, where each object is associ-
ated with a set of attributed. We are interested in subsets %(rzfeznegeLgiv?/ugf?e%ﬁtgﬁfDE AE, and(BC)E,

of objects that exhibit a coherent tendency on a subset of
attibutes otA. Definition 3.3 LetO be a subset of objects in the database,
Definition 3.1 Leto be an object in the databasgl, , d, O C D. LetT be a subset of attributed. (O, 7) forms

-, don) bE the att?ibute valdes ina non—decresgs}ﬁg é’rder, an OP-Cluster(Order Preserving Cluster) if there exists

n be the number of attributes aridbe the user specified 2 permutat|or‘1‘ of :alttrlbutes i, on which every object in
threshold. We say thatis similar on attributesi, i + 1, ..., O shows the “UP” pattern.

i+7,(0<i<n,0<j<n),if

3.2 Definitions and Problem Statement

Suppose that we have two movie ratingsand oy for
(dogits) — doi) < G(6,do;) ) movies(A, B,C, D, E). The ratings are (1, 4, 4.5, 8, 10)
and (2, 5, 7, 4.5, 9), respectively. According to Defini-
where G(4,d,;) is a grouping function that defines the tion 3.3, the corresponding sequence of groupsofois
equivalent class. We call the set of attributes + 1, ..., i+ A(BC)DE, and foroy is A(DB)CE. SinceABCE is a



common subsequence of them, we say thadndo, form 4.1 Preprocessing
an OP-Cluster on the attribute set4BCE.

Essentially, OP-Cluster captures the consistent tendency To preprocess the data, first, we sort all the entry values
exhibited by a subset of objects in a subspace. Comparegn non-decreasing order for each row. Secondly, each sorted
with 6-pCluster, which is restricted to either shifting or row will be organized into a sequence of groups based on
scaling pattern, OP-Cluster is more flexible. It includes  theijr similarity. The resulted sequences of column labels
pCluster as a special case. The following lemmas addressji| be taken as the input to the second step— mining OP-

the relationship between these two models. Cluster. This process is illustrated in the following example.
In the raw data present in Table 1, if the grouping threshold
Lemma 3.1 Let (OP, 7P) be aj-pCluster, and? is maxi- 0 is set to be 0.1, for the row, the sorted order of attributes

mum skew factor allowed by thispCluster.(OP, 77) can for row 1 is [228 : d,284 : b,4108 : ¢,4392 : a]. a and
be identified as an OP-Cluster if the absolute difference be-c¢ can be grouped together singg92 — 4108 < 4108 x

tween any two attributes, b, a,b € 7P of any objecto, 0.1. By processing the rest of rows in the same way, the
o€ OPisat Ieast%. sequences are generated as shown in the last column of row
1. Attributes in each “()"are in the same group. Without

Please refer to [13] for the detailed proof. loss of generality, they are put in the alphabetical order.
When the condition in Lemma 3.1 cannot be met in

real data sets, the grouping threshéléh OP-Cluster can b | a b c d seq

be set higher to accommodate ahpCluster with a maxi- 1 ]4392] 284 | 4108 | 228 | db(ac)

mum skew factod? and to include it as a special case of an 2 | 401 | 281 | 120 | 298| c¢(bd)a

OP-Cluster. For example, for adypCluster with thresh- 3 | 401 [ 292 | 109 | 238 | cdba

old 67, we can set the grouping threshold tod¥e By this g' 2%%% gég 22% g%g %Zz

means, the order between two attributes with the difference - 25 1290 224 [ 228 a(cd)l

less thard? will be put in alphabetical order. If another ob-
ject has the same set of attributes grouped together, these
two objects and the two attributes will form an OP-Cluster. Table 1. Example Data Set
This will be summarized in Lemma 3.2.

Lemma 3.2 Let (OP, TP) be ad-pCluster, and? is maxi-
mum skew factor allowed by thispCluster.(OP, T?) can
be identified as an OP-Cluster, if the grouping threshold

4.2 OPC-Tree

5> 6P . In the above subsection, each row in the matrix has been
converted into a sequence of column labels. The goal in
Please refer to [13] for the detailed proof. the next step is to discover all the frequent subsequences

hidden in the generated sequences. This problem seems to
be a sequential pattern mining problem. However, it is dif-
ferent from a conventional sequential pattern mining prob-
lem in the following two aspects. First, the identities of the

In the following sections, since the input data is a matrix,
we refer to objects as rows and attributes as columns.

Problem Statement Given a grouping threshol a min- rows associated with each frequent subsequence have to be
imal number of columnac, and a minimal number of rows  recorded in order to determine the rows involved in an OP-
nr, the goal is to find all (maximum) submatricé®, 7)) Cluster. Conventional sequential mining algorithms only
such that(O,T) is an OP-Cluster according to Defini- keep the number of appearance of frequent subsequences
tion 3.3, andO| > nr, |T| > nc. but not their identities. To discover the set of rows associ-

ated with them, one possible approach is to scan database
to collect the related rows during postprocessing. How-
ever, this method is very time consuming and is not scal-
able to the size of the database. Secondly, our data sets are
In this section, we present the algorithm to generate OP-special in the sense that the number of appearance of each
Clusters. It consists of two steps: (1) preprocess each rowitem(column) is the same since each item appears once and
in the matrix into a sequence of groups by Defintion 3.1; (2) exactly once in each sequence. As a result, no pruning can
mine the sets of rows containing frequent subsequences iractually happen in the first round of operation by using ei-
the sequences generated in step(1). ther apriori-based or projection-based algorithm. Based on
In this paper, we propose a novel compact structure the above observation, we develop the following algorithm.
OPC-Tree to organize the sequences and to guide the pat- Our algorithm uses a compact tree structure to store
tern generation. Compared with prefixSpan, OPC-Tree canthe crucial information used in mining OP-Clusters. The
group sequences sharing the same prefixes together to elimdiscovery of frequent subsequences and the association of
inate multiple projections in the future. Meanwhile, single rows with frequent subsequences occur simultaneously. Se-
path subtree can be identified to avoid any usefulless pro-quences sharing the same prefixes will be gathered and
jections at all. recorded in the same location. Hence, further operations

4 Algorithm



along the shared prefixes will be performed only once for
all the rows sharing them. Pruning techniques can also be
applied easily in the OPC-Tree structure.

Before we define the OPC-Tree formally, we first give
the following example.

Example 4.1 For the sequences in Table 1, witlt =
3,nr = 3, the OPC-Tree algorithm makes a pre-order
depth-first traversal of the tree and works in the following
steps.

Step 1 Create root -1(NULL) and insert all the se-
guences into the treeThis is shown in Figure 2 (A). No-
tice that all rows sharing the same prefix fall on the same
prefix of the tree. The sequence ID is stored in the leaves.
This is theinitial OPC-Tree on which a recursive procedure
depicted in Step 2-5 is performed to fully develop the tree.

Step 2 For each child of the root, insert suffixes in its
subtree to the root’s child that has a matching labeh
Figure 2 (B),c is a child of the root-1. In this subtree,
the suffix subtree starting dt(for the sequences 4) is in-
serted into the root-1's child d. If the same subtree exists
in the destination node, the sequence IDs associated with
the suffixes are combined with existing IDs in the destina-
tion node. Otherwise a new subtree will be created in the
destination node. In the case where a suffix is too short to
satisfycurrent deptht+ length of the suffix- nc, the suffix
will not be inserted. For examplég in sequencs is also a
suffix, it is not to be inserted because tepth 0 + length
of ba < nec.

Step3 Prune current root’s childrenlf the number of
rows that fall in a subtree is smaller than, the subtree will
be deleted because no further development can generate a
cluster with more thamr rows. For example, the subtree
leading from—1b in Figure 2 (B) is deleted in Figure 2 (C)
since there are only two sequences falling in this subtree.

Step4 Repeat Step2-Step5 on the root’s first child and
its subtree recursivelyFor examplec is the first child of
root —1. Therefore, the same procedure in Step2 is applied
to cfirst. The suffixes of’s subtreel, such a®a andab are
inserted intoc's subtreeb and a respectively. Since there
are less than three sequences fallingcsnsubtrees: and
b, the branches-1ca— and—1cb— are deleted. Following
the same procedure, we develdp only subtree—1cd—,
which is shown in Figure 2(D).

Step5 Follow the sibling link from the first child and
repeat Step2-Step5 on each sibling node recursivEly:
example, after finishing-1c—'s subtree development, the

next subtree to develop islc—'s sibling —1d—. Figure 2. OPC-Tree for Table 1. The label in the
ova_I shape represents the column name. _The number fol-

Definition 4.1 OPC-tree (Order Preserving Clustering lowing "’ represents the row ID. The node with double oval

tree). An OPC-Tree is a tree structure defined below. means the active node in the depth first traversal. ''No’

; w_qn means that the subtree must be pruned. 'Yes' means that
;;S Ithgocnhs"lztrzrc])l:)(f)?ﬁer?ooc;[t!abeled as "-1", a set of subtrees subtree is an OP-Cluster. A). Initiate the tree with all the
2. Each node in the subtrees consists of four entries: en- rovés Bi' '?:Ct'\f node -(11, Iniert |the sufflxdo;-l's suhbtrees o

. . . . . . . : node -1. . Active node -1c-, Insert an rune the subtree
try value, a link to its first children node, a link to its next (nr < 3). )D). Active node -1cd-. Identify the first OP-
sibling node, and a list of all the rows that share the same  Cluster E). Finish growing the -1's first subtree-1c, the next
path leading from root to this node but do not have longer  subtree is -1d.

common subsequences passing this node. In another word,



the sequence IDs are only recorded at the nodes that mark Rows in an OP-Cluster share the same rank of a set of

the end of a commom subsequence. columns, which corresponds to the same path in the OPC-
Tree. We can conclude that the OPC-Tree contains all the

Algorithm growTredT,nc,nr,depth) clusters. This leads to the following lemma.

Input: T': the root of the initiated treeyc andnr

Output: OP-Cluster existed ifi’ Lemma 4.3 The developed OPC-Tree on a set of sequences

(* Grow patterns based on origiri&lsx) contains all potential OP-Clusters. The columns in these

1. if T =nil clusters are on the paths leading from the root to any tree

2. return; node with depth no less thatt and row support count in

3. Tepig <Ts first child; its subtree no less tham- .

4. for any sub-tregubT of T’

2: pruﬂgﬁzgﬁg%f%@w ) 4.2.2 Pruning OPC-Tree

7. growTreelehiia, ne, nr, depth +1); Without any pruning, the whole OPC-Tree fits well into

8. growTree("s next sibling,nc, nr, depth); memory when we have a small to medium sized matrix (15

9. return. columns by 3000 rows). However, for large matrices, some

pruning strategies have to be employed to minimize the size
Analysis of OPC-Tree construction Only one scan of  of the OPC-Tree. There are two pruning techniques used in
the entire data matrix is needed during the construction ofour implementation. One strategy is to prune the suffixes to
the OPC-Tree. Each row is converted into a sequence ofte inserted that are shorter thas the other is to prune the
column labels. The sequences are then inserted into theubtrees where the row support count is betow
OPC-Tree. With OPC-Tree structure, sequences that have ) ,
the same prefix naturally fall onto the same path from root Lémma 4.4 For a nodeNN in the OPC-Tree with deptt,
to the node corresponding to the end of prefix. To save @nd for a suffixS with lengthl in its sub-tree, it/ 4 I < nc.
memory, the row IDs associated with each path are only (the minimum col_umns requwed for a cluster), this suffix
recorded at the node marking the end of the longest com-Will not be useful in forming any OP-Cluster cluster.
mon prefix shared by these rows. To find the OP-Cluster
using the OPC-Tree, the common subsequences are deve
oped by adding suffixes of each sub-tree as the tree’s chil-
dren, via a pre-order traversal of the OPC-Tree.

Eationale: The length of the pattl. we can get by com-
ining the path from root tav and S is d + [. Based on
Lemma 4.3,L will not form any cluster. Therefore, suffix

S need not to be inserted. In our implementation, we check
depth of the node at which the end of the suffix is inserted.
If the depth is smaller thanc, the row IDs recorded in this
node will be deleted.

The major cost of OPC-Tree development is suffix con-
catenation. To minimize the storage cost of the suffixes, the
single-path subtree can be collapsed into one node. The de-
tailed data structure and algorithm can be found in technical
report [13]

Lemma 4.1 Given a matrix M, a grouping threshold, the
initial OPC-Tree contains all the information of matrix M.

Rationale: Based on the OPC-Tree construction pro-
cess, each row in the matrix is mapped onto one path in
the OPC-Tree. The row IDs and the order of the columns
are completely stored in the initial OPC-Tree.

4.2.1 Mining OP-Cluster Using OPC-Tree .
g g 5 Experiments

Lemma 4.2 The developed OPC-Tree on a set of sequences

contains all subsequences hidden in the initial OPC-Tree. We experimented our OP-Cluster algorithm, OPC-Tree

by collapsing nodes on two real data sets. The program was
implemented in C and executed on a Linux machine with a
00 MHz CPU and 2G main memory. We also implemented
an optimized version of prefixSpan algorithm for compari-
son. The following tests are organized into three categories.
First, we show promising patterns found in real data sets,
which failed to be discovered by other models. Secondly,
we study the sensitivity of OP-Cluster to various parame-
ters. At last, we evaluate the performance of OPC-Tree and
compare it with the optimized prefixSpan algorithm.

Rationale: Given any sequencé = z1z2r3%y4 ... Ty,
we want to show that all of the subsequences of S can b
found in a path starting from root. Through the initiation of
OPC-Tree, we know that will existin the OPC-Tree. Then
given any subsequenc®S = z;x; ...z, (1 < i,5s < n),
we can obtainSS by the following steps. First, at node
x;, insert suffixxz;z;y1...z,. Now in the subtree of;,
nodex; can be found because it should be along the path
ZTiTiy1 ... 2, that is inserted in the first step. Similarly,
we insert the suffix:; ...z,. As a result, we get the path
T;TiTiq1 - .. Tpn. By repeating the same procedure until we
insert the suffix starting withr,, we get the pathy;z; . . . . 5.1 Data Sets
Because all the suffixes are inserted in the OPC-Tree, the
OPC-Tree contains all the subsequences presented in the The following two real data sets are used in our experi-
original OPC-Tree. ments.
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Gene expression data are generated by DNA chips and other 5
microarray techniques. The yeast microarray contains ex-

pression levels of 2,884 genes under 17 conditions [16]. The §& .,
data set is presented as a matrix. Each row corresponds to g .
a gene and each column represents a condition under which .,
the gene is developed. Each entry represents the relative
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600. Biologists are interested in finding a subset of genes

showing strikingly similar up-regulation or down-regulation Figure 5. Performance Study: Response time
under a subset of conditions [10]. V.S. number of columns and number of rows

Drug Activity Data
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Drug activity data is also a matrix with 10000 rows and 30
columns. Each row corresponds to a chemical compound
and each column represents a descriptor/feature of the com-
pound. The value of each entry varies from 0 to 1000.
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5.2 Results from Real Data

Number of Rows

We apply the OP-Cluster algorithm to the two data sets.  pigure 6. Performance comparison of prefixS-
With parametep = 0.1, Some interesting clusters are re- pan and UPC-tree
ported in both of the data sets. As showed in Figure 3, the
two patterns generated from yeast dataset [10] present the
coherent tendency along the columns. In Figure 3(a), Fig-
ure 3 (b) shows another interesting cluster which presents —ae —uw
with a descending tendency itself. In both of the figures, o0 o s
we can observe that each of the four example OP-Clusters
contains the curves with sharp slopes and the curves with
potentially long distances to the rest.
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We evaluate the performance of the OP-Cluster algo-  gimijarity threshold andie  similarity threshold andr

rithm with the drug activity data which has a larger size.
Figure 5 shows the performance data. As we know, the
columns and the rows of the matrix carry the same signifi-
cance in the OP-Cluster model, which is symmetrically de-
fined in Formula 2. Although the algorithm is not entirely

Figure 7. Performance Study: Response time
V.S. similarity threshold , nc and nr



symmetric in the sense that it chooses to project column-[3] C.C. Aggarwal, C. Procopiuc, J. Wolf, P. S. Yu, and J. S. Park.
pairs first, the curves in Figure 5 demonstrate similar trends. ~ Fast algorithms for projected clustering. $tGMOD, 1999.

~ Datasets used .in Figure 5are taken from the drug activ- 4] C. C. Aggarwal and P. S. Yu. Finding generalized projected
ity data. For experiments in Figure 5(a), the total number of * ~ clusters in high dimensional spacesSIGMOD, pages 70-81,
columns is fixed at 30. The mining program is invoked with ~ 2000.

0 = 0.2, nc = 9, andnr = 0.01N, whereN is the total . - .

number of rows. For the experiemnts in Figure 5(b), the to- [5] ébé‘gé‘:’lﬁal,v?gfféggr'kant' Mining sequential patterns. In
tal number of rows is fixed as 1000. The mining algorithm ' ’

is invoked withd = 0.2, nc = 0.66C, andnr = 30, where  [6] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Au-
C'is the total number of columns. The response time of the ~ thomatic Sﬂ%%@%%ic:“rsﬁgwgglhégg dimensional data for data
OPC-Tree is mostly determined by the size of the tree. As gapp ' '

the number of rows and number of columns increase, the[7] A. Ben-Dor, B. Chor, R.Karp, and Z.Yakhini. Discovering Lo-
size of developed OPC-Tree will get deeper and broader. cal Structure in Gene Expression Data: The Order-Preserving
Hence, the response time will unavoidably become longer. ~ Submatrix Problem. IRECOMB2002.

Figure 6 presents the performance comparison betweeng] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When
the prefixSpan algorithm and the OPC-Tree algorithm. The " is nearest neighbors meaningful. Rroc. of the Int. Conf.
parameter setting for this set of experiment is the following: ~ Database Theoriepages 217-235, 1999.
nc=9,nr = 0.01N, é = 0.2. The number of columns is

! ! ; ] C.H.Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace
20. We can observe that the OPC-Tree algorithm can con-" " ¢jystering for mining numerical data. 8iGKDD, pages 84-93,
stantly outperform the prefixSpan algorithm and the advan-  1999.

tage becomes more substantial with larger data set. , . .

Next, we study the impact of the parametersic, and 1), ¥, Cheng and 6. church Bicustering of expression data In
nr) towards the response time. The results are shown in Fig-  Molecular Biology 2000.
ure 7. The data set used in this experiment is the yeast data. _ ]
Whenne andnr are fixed, the response time gets shorter [11] Mt.hEstfer, g'.- Kriegel, J. ;Sarsder,_ alnd X. XU-??%”?'tg'bsed a'lt_h
as the group threshotilrelaxes. The reason is that as more ﬂg{ée.TnS{GES%YEQE%SC ;2566553'{] fég%épa 1al databases wi
columns are grouped together, the number of rows sharing
the same path in the OPC-Tree is increasing. Hence, thd12] H.V.Jagadish, J.Madar, and R. Ng. Semantic compression
OPC-Tree is shorter, which results in less overall response anggpttern extraction with fasicicles. WL.DB, pages 186-196,
time. Asnc or nr decreases, the response time prolonged. '
This is showed in Figure 7. According to the pruning tech- [13] J.Liu and W.Wang. Flexible clustering by tendency in high
niques discussed in Lemma 4.4, fewer number of subse- dimensional spaces. Technical Report TR03-009, Computer

quences can be eliminated whenis smaller. As a result, Science Department, UNC-CH, 2003.

a larger tree is constructed, which consumes more time. A[14] J. pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen U. Dayal,
similar effect can be observed with respectiofrom Fig- and M.-C. Hsu. PrefixSpan mining sequential patterns e.ciently
ure 7(b). by prefix projected pattern growth. ICDE 2001, pages 215-

226, Apr. 2001.

nclusion [15] R.Srikant and R.Agrawal. Mining sequential patterns: Gen-
6 Conclusions eralizations and performance improvements. Hi» BT"96,
pages 3-17, Mar. 1996.

In many applications including collaborative filtering .
and DNA array analysis, although the distance (e.qg., mea-[leéhso" L%azo'Gej Cgurchﬂug\?]::s't r'r\w/iléro Cﬁggbe!‘et_ th
sured by Euclidean distance or cosine distance) among the http://arep.med.harvard.edu/biclustering/yeast. nat2d0o0.
objects may not be close, they can still manifest consistent[17] H. Wana. W. Wana. J. Yana. and P. Yu. Clustering by pattern
patterns on a subset of dimensions. In this paper, we pro- simiilarity ?n Iar'ge da%é éets, i%'IGMOIj pb. 394-405?28/0p2.
posed a new model called OP-Cluster to capture the consis-
tent tendency exhibited by a subset of objects in a subset 0f18] J. Yang, W. Wang, H. Wang, and P. S. Viclusters: Cap-
dimensions in high dimensional space. We proposed a com- turing subspace correlation in a large data setCIDE, pages
pact tree structure, namely OPC-Tree, and devised a depth- °17-528,2002.
first algorithm that can efficiently and effectively discover [19] J. vang, W. Wang, P. Yu, and J. Han. Mining long sequen-

all the closed OP-Clusters with a user-specified threshold. ~ tial patterns in a noisy environment. 8iIGMODpp.406-417,
2002.
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