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Abstract

Clustering is the process of grouping a set of objects into
classes of similar objects. Because of unknownness of the
hidden patterns in the data sets, the definition of similarity
is very subtle. Until recently, similarity measures are typi-
cally based on distances, e.g Euclidean distance and cosine
distance. In this paper, we propose a flexible yet power-
ful clustering model, namely OP-Cluster (Order Preserv-
ing Cluster). Under this new model, two objects are sim-
ilar on a subset of dimensions if the values of these two
objects induce the same relative order of those dimensions.
Such a cluster might arise when the expression levels of (co-
regulated) genes can rise or fall synchronously in response
to a sequence of environment stimuli. Hence, discovery of
OP-Cluster is essential in revealing significant gene regu-
latory networks. A deterministic algorithm is designed and
implemented to discover all the significant OP-Clusters. A
set of extensive experiments has been done on several real
biological data sets to demonstrate its effectiveness and ef-
ficiency in detecting co-regulated patterns.

1 Introduction

As a fundamental tool to analyze large databases, clus-
tering has been studied extensively in many areas including
statistics, machine learning and pattern recognition. Most
clustering models, including those proposed for subspace
clustering, define similarities among objects via some dis-
tance functions. Some well-known distance functions in-
clude Euclidean distance, Manhattan distance, and cosine
distance. However, distance functions are not always ad-
equate in capturing correlations among objects. In fact,
strong correlations may still exist among a set of objects
even if they are far apart from each other in distance.

In light of this observation, theδ-pCluster model [17]
was introduced to discover clusters by pattern similarity
(rather than distance) from raw data sets. A major limita-
tion of theδ-pCluster model is that it only considers either
strict shifting patterns or strict scaling patterns1, which is

1The scaling patterns can be transformed into shifting patterns by ap-
plying a logarithmic function on the raw data.

insufficient in many cases.
In this paper, we propose a flexible clustering model, or-

der preserving cluster (OP-Cluster), which is able to capture
the general tendency of objects across a subset of dimen-
sions in a high dimensional space.

Figure 1 a) shows a set of 3 objects with 10 attributes.
In this raw data, no obvious pattern is visible. However, if
we pick the set of attributes{b, c, e, g, l} as in Figure 1 b)
for these 3 objects, we can observe the following fact:The
ranks for each of these attributes are the same for all the
three objects. If we rearrange the columns in the ascending
order of their ranks:< g, c, l, e, b >, in Figure 1 c), the
consistency ofescalationalong the ordered list of attributes
can be seen much clearer.
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a) Raw Data b) An OP-cluster
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c) Rearranged by Rank

Figure 1. An Example of OP-cluster

1.1 Applications

• DNA microarray analysis. Microarray is one of the lat-
est breakthroughs in experimental molecular biology.
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Investigators show that more often than not, if several
genes contribute to a disease, it is possible to identify
a subset of conditions, under which these genes show
a coherent tendency. Since a gene’s expression level
may vary substantially due to its sensitivity to system-
atic settings, the direction of movement (up or down)
in response to condition change is often considered
more credible than its actual value. Discovering clus-
ters of genes sharing coherent tendency is essential in
revealing the significant connections in gene regula-
tory networks[9].

• E-commerce. In recommendation systems and target
marketing, the tendency of people’s affinities plays a
more important role than the absolute value. Reveal-
ing sets of customers/clients with similar behavior can
help the companies to predict customers’ interest and
make proper recommendation for future marketing.

1.2 Challenges and Our Contributions

To discover the general tendency in a cluster, the ma-
jor challenge is the huge number of potential rankings. If
we haven attributes, there areN ! different permutations of
(subsets of) attributes. Each permutation corresponds to one
unique ordering for this set of attributes, which is embedded
in a subset of objects. Moreover, it is possible that similar
ranking only occur in a subset of theN attributes. So totally,
the number of potential candidates for OP-Clusters with at
leastnc attributes is ∑

nc≤i≤N

N !
(N − i)!

(1)

Data sets in DNA array analysis or collaborative filtering
can have hundreds of attributes. This results in a huge num-
ber of candidates of various lengths. To tackle this problem,
we introduce OPC-Tree to guide the enumeration of poten-
tial candidates. The following are our contributions.

• We propose a new clustering model, namely OP-
Cluster, to capture general tendencies exhibited by the
objects. The OP-Cluster model is a generalization of
existing subspace clustering models. It has a wide vari-
ety of applications, including DNA array analysis and
collaborative filtering, where tendency along a set of
attributes carries significant meaning.

• We design a compact tree structure OPC-Tree to
mine OP-Cluster effectively. Compared with one of
fastest sequential pattern mining algorithms, prefixS-
pan(modified to serve our purpose), the OPC-Tree
based algorithm delivers a shorter response time in
most cases, especially when the data is pattern-rich.

• We apply the model of OP-Cluster to two real data sets
and discover interesting patterns that tend to be over-
looked by previous models.

1.3 Paper Layout

The remainder of the paper is organized as follows. Sec-
tion 2 discusses some related work. Section 3 defines the
model of OP-Cluster. Section 4 presents the algorithm to
mine OP-Cluster in detail. An extensive performance study
is reported in Section 5. Section 6 concludes the paper.

2 Related Work

2.1 Subspace Clustering

Clustering in high dimensional space is often problem-
atic as theoretical results [8] questioned the meaning of
closest matching in high dimensional spaces. Recent re-
search work [18, 19, 3, 4, 6, 9, 12] has focused on discov-
ering clusters embedded in the subspaces of a high dimen-
sional data set. This problem is known as subspace cluster-
ing. Based on the measure of similarity, there are two cat-
egories of clustering model. The first category is distance
based. In this category, one of the well known subspace
clustering algorithms is CLIQUE [6]. CLIQUE is a density
and grid based clustering method. The PROCLUS [3] and
the ORCLUS [4] algorithms find projected clusters based
on representative cluster centers in a set of cluster dimen-
sions. Another interesting approach, Fascicles [12], finds
subsets of data that share similar values in a subset of di-
mensions.

The second category is pattern-based. The first algorithm
proposed in this category is the bicluster model [10] by
Cheng et al. The algorithm tries to measure the coherence
of the genes and the conditions in a sub-matrix of a DNA
array. Recently,δ-pCluster is introduced by Wang et al [17]
to cluster objects exhibiting shifting or scaling patterns in a
data set in a very efficient way. In many applications, only
allowing shifting or scaling patterns is too restrictive. To
include more generic pattern in a cluster, the threshold has
to be relaxed. This, in turn, can result in unavoidable noise
inside a cluster.

The concept of OPSM(order preserving submatrix) was
first introduced in [7] to represent a subset of genes identi-
cally ordered among a subset of the conditions in microar-
ray analysis. The OPSM problem is proven to be NP-hard.
A model-based statistical algorithm was also given in [7]
to discover OPSMs. There are some drawbacks in this pi-
oneering work. First, only one cluster can be found at a
time. And the quality of the resulted cluster is very sen-
sitive to some given parameters and the initial selection of
partial models. Secondly, OPSM algorithm favors clusters
with a large row support, which as a result, can obstruct the
discovery of the small but significant ones.

In our work, we generalize the OPSM model by allowing
grouping. Based on the new model, we propose a determin-
istic subspace clustering algorithm, namely OPC-Tree, to
capture all the general tendencies exhibited by a subset of
objects along a subset of dimensions in one run.



2.2 Sequential Pattern Mining

Since it was first introduced in [5], sequential pattern
mining has been studied extensively. Conventional se-
quential pattern mining finds frequent subsequences in the
database based on exact match. There are two classes of
algorithms. On one hand, the breadth-first search meth-
ods (e.g., GSP [15] and SPADE [21]) are based on the
Apriori principle [5] and conduct level-by-level candidate-
generation-and-tests. On the other hand, the depth-first
search methods (e.g., PrefixSpan [14] and SPAM [1]) grow
long patterns from short ones by constructing projected
databases.

In our paper, we are facing a similar but more compli-
cated problem than sequential pattern mining. Rows in ma-
trix will be treated as a sequence to find sequential patterns.
However, in order to finally determine OP-Cluster, the ID
associated with each sequence has to be kept during the
mining process. A depth-first traversal of the tree is carried
out to generate frequent subsequences by recursively con-
catenating legible suffixes with the existing frequent pre-
fixes.

3 Model

In this section, we define the OP-Cluster model for min-
ing objects that exhibit tendency on a set of attributes.

3.1 Notations

D A set of objects
A A set of attributes of the objects inD

(O, T ) A sub-matrix of the data set,
whereO ⊆ D, T ⊆ A

x, y, ... Objects inD
a, b, ... Attributes inA
dxa Value of objectx on attributea
δ User-specified grouping threshold
δp User-specified shifting threshold

nc, nr User-specified minimum # of columns and
minimum # of rows of a model

3.2 Definitions and Problem Statement

Let D be a set of objects, where each object is associ-
ated with a set of attributesA. We are interested in subsets
of objects that exhibit a coherent tendency on a subset of
attributes ofA.

Definition 3.1 Leto be an object in the database,〈do1, do2,
..., don〉 be the attribute values in a non-decreasing order,
n be the number of attributes andδ be the user specified
threshold. We say thato is similar on attributesi, i + 1, ...,
i + j, (0 < i ≤ n, 0 < j ≤ n), if

(do(i+j) − doi) < G(δ, doi) (2)

where G(δ, doi) is a grouping function that defines the
equivalent class. We call the set of attributes〈i, i+1, ..., i+

j〉 a group for objecto. Attributedoi is called apivot point
of this group.

The intuition behind this definition is that, if the dif-
ference between the values of two attributes is not signif-
icant, we regard them to be “equivalent” and do not or-
der them. For example, in gene expression data, each
tissue(condition) might belong to a class of tissues corre-
sponding to a stage or time point in the progression of a
disease, or a type of genetic abnormality. Hence, within the
same class, no restrict order would be placed on the expres-
sion levels.

There are multiple ways to define the grouping function
G(δ, doi). One way is to define it as the average difference
between every pair of attributes whose values are closest.

G(δ, doi) = G(δ) = δ ×
∑

0<i<n

(do(i+1) − doi) (3)

This definition is independent ofdoi and is usually used
when each attribute has a finite domain and its value is
evenly distributed within its domain. The previous exam-
ple on movie rating belongs to this case. When the value
of each attribute may follow a skew distribution as the gene
expression data, Equation 4 is a better choice. For the sake
of simplicity in explanation, we use Equation 4 in the re-
mainder of this paper, unless otherwise specified.

G(δ, doi) = δ × doi (4)

For example, a viewer rates five movies(A,B,C, D,
E) as (1, 4, 4.5, 8, 10). Ifδ = 0.2, 4 and 4.5 will be
grouped together and the corresponding attributesB andC
will be considered equivalent. The rating is divided into
four groups{{A}, {B,C}, {D}, {E}}.

Definition 3.2 Let o be an object in the database, and
(go1) (go2)...(gok) be a sequence of similar groups ofo
by Equation 2 and in non-descending order of their val-
ues. o shows an ’UP pattern ’ on an ordered list of at-
tributes a1, a2, ..., aj if a1, a2, ..., aj is a subsequence of
(go1)(go2)...(gok).

In the above example,(1, 4, 4.5, 8, 10) is the rating for
movies(A,B, C, D, E). After we apply the similar group,
we are able to transform the original rating to the sequence
A(BC)DE. The subsequenceABDE, AE, and(BC)E,
for example, show ’UP’ patterns.

Definition 3.3 LetO be a subset of objects in the database,
O ⊆ D. Let T be a subset of attributesA. (O, T ) forms
an OP-Cluster(Order Preserving Cluster) if there exists
a permutation of attributes inT , on which every object in
O shows the “UP” pattern.

Suppose that we have two movie ratingso1 ando2 for
movies(A,B,C, D,E). The ratings are (1, 4, 4.5, 8, 10)
and (2, 5, 7, 4.5, 9), respectively. According to Defini-
tion 3.3, the corresponding sequence of groups foro1 is
A(BC)DE, and foro2 is A(DB)CE. SinceABCE is a



common subsequence of them, we say thato1 ando2 form
an OP-Cluster on the attribute set ofABCE.

Essentially, OP-Cluster captures the consistent tendency
exhibited by a subset of objects in a subspace. Compared
with δ-pCluster, which is restricted to either shifting or
scaling pattern, OP-Cluster is more flexible. It includesδ-
pCluster as a special case. The following lemmas address
the relationship between these two models.

Lemma 3.1 Let (Op, T p) be aδ-pCluster, andδp is maxi-
mum skew factor allowed by thisδ-pCluster.(Op, T p) can
be identified as an OP-Cluster if the absolute difference be-
tween any two attributesa, b, a, b ⊆ T p of any objecto,
o ∈ Op is at leastδ

p

2 .

Please refer to [13] for the detailed proof.
When the condition in Lemma 3.1 cannot be met in

real data sets, the grouping thresholdδ in OP-Cluster can
be set higher to accommodate anyδ-pCluster with a maxi-
mum skew factorδp and to include it as a special case of an
OP-Cluster. For example, for anyδ-pCluster with thresh-
old δp, we can set the grouping threshold to beδp. By this
means, the order between two attributes with the difference
less thanδp will be put in alphabetical order. If another ob-
ject has the same set of attributes grouped together, these
two objects and the two attributes will form an OP-Cluster.
This will be summarized in Lemma 3.2.

Lemma 3.2 Let (Op, T p) be aδ-pCluster, andδp is maxi-
mum skew factor allowed by thisδ-pCluster.(Op, T p) can
be identified as an OP-Cluster, if the grouping threshold
δ ≥ δp .

Please refer to [13] for the detailed proof.
In the following sections, since the input data is a matrix,

we refer to objects as rows and attributes as columns.

Problem Statement Given a grouping thresholdδ, a min-
imal number of columnsnc, and a minimal number of rows
nr, the goal is to find all (maximum) submatrices(O, T )
such that(O, T ) is an OP-Cluster according to Defini-
tion 3.3, and|O| ≥ nr, |T | ≥ nc.

4 Algorithm

In this section, we present the algorithm to generate OP-
Clusters. It consists of two steps: (1) preprocess each row
in the matrix into a sequence of groups by Defintion 3.1; (2)
mine the sets of rows containing frequent subsequences in
the sequences generated in step(1).

In this paper, we propose a novel compact structure
OPC-Tree to organize the sequences and to guide the pat-
tern generation. Compared with prefixSpan, OPC-Tree can
group sequences sharing the same prefixes together to elim-
inate multiple projections in the future. Meanwhile, single
path subtree can be identified to avoid any usefulless pro-
jections at all.

4.1 Preprocessing

To preprocess the data, first, we sort all the entry values
in non-decreasing order for each row. Secondly, each sorted
row will be organized into a sequence of groups based on
their similarity. The resulted sequences of column labels
will be taken as the input to the second step— mining OP-
Cluster. This process is illustrated in the following example.
In the raw data present in Table 1, if the grouping threshold
δ is set to be 0.1, for the row1, the sorted order of attributes
for row 1 is [228 : d, 284 : b, 4108 : c, 4392 : a]. a and
c can be grouped together since4392 − 4108 < 4108 ×
0.1. By processing the rest of rows in the same way, the
sequences are generated as shown in the last column of row
1. Attributes in each “()”are in the same group. Without
loss of generality, they are put in the alphabetical order.

rID a b c d seq
1 4392 284 4108 228 db(ac)
2 401 281 120 298 c(bd)a
3 401 292 109 238 cdba
4 280 318 37 215 cdab
5 2857 285 2576 226 dbca
6 48 290 224 228 a(cd)b

Table 1. Example Data Set

4.2 OPC-Tree

In the above subsection, each row in the matrix has been
converted into a sequence of column labels. The goal in
the next step is to discover all the frequent subsequences
hidden in the generated sequences. This problem seems to
be a sequential pattern mining problem. However, it is dif-
ferent from a conventional sequential pattern mining prob-
lem in the following two aspects. First, the identities of the
rows associated with each frequent subsequence have to be
recorded in order to determine the rows involved in an OP-
Cluster. Conventional sequential mining algorithms only
keep the number of appearance of frequent subsequences
but not their identities. To discover the set of rows associ-
ated with them, one possible approach is to scan database
to collect the related rows during postprocessing. How-
ever, this method is very time consuming and is not scal-
able to the size of the database. Secondly, our data sets are
special in the sense that the number of appearance of each
item(column) is the same since each item appears once and
exactly once in each sequence. As a result, no pruning can
actually happen in the first round of operation by using ei-
ther apriori-based or projection-based algorithm. Based on
the above observation, we develop the following algorithm.

Our algorithm uses a compact tree structure to store
the crucial information used in mining OP-Clusters. The
discovery of frequent subsequences and the association of
rows with frequent subsequences occur simultaneously. Se-
quences sharing the same prefixes will be gathered and
recorded in the same location. Hence, further operations



along the shared prefixes will be performed only once for
all the rows sharing them. Pruning techniques can also be
applied easily in the OPC-Tree structure.

Before we define the OPC-Tree formally, we first give
the following example.

Example 4.1 For the sequences in Table 1, withnc =
3, nr = 3, the OPC-Tree algorithm makes a pre-order
depth-first traversal of the tree and works in the following
steps.

Step 1: Create root -1(NULL) and insert all the se-
quences into the tree.This is shown in Figure 2 (A). No-
tice that all rows sharing the same prefix fall on the same
prefix of the tree. The sequence ID is stored in the leaves.
This is theinitial OPC-Tree on which a recursive procedure
depicted in Step 2-5 is performed to fully develop the tree.

Step 2: For each child of the root, insert suffixes in its
subtree to the root’s child that has a matching label.In
Figure 2 (B),c is a child of the root−1. In this subtree,
the suffix subtree starting atd (for the sequences3, 4) is in-
serted into the root−1’s child d. If the same subtree exists
in the destination node, the sequence IDs associated with
the suffixes are combined with existing IDs in the destina-
tion node. Otherwise a new subtree will be created in the
destination node. In the case where a suffix is too short to
satisfycurrent depth+ length of the suffix> nc, the suffix
will not be inserted. For example,ba in sequence3 is also a
suffix, it is not to be inserted because thedepth 0 + length
of ba < nc.

Step3: Prune current root’s children.If the number of
rows that fall in a subtree is smaller thannr, the subtree will
be deleted because no further development can generate a
cluster with more thannr rows. For example, the subtree
leading from−1b in Figure 2 (B) is deleted in Figure 2 (C)
since there are only two sequences falling in this subtree.

Step4: Repeat Step2-Step5 on the root’s first child and
its subtree recursively. For example,c is the first child of
root−1. Therefore, the same procedure in Step2 is applied
to c first. The suffixes ofc’s subtreed, such asba andab are
inserted intoc’s subtreeb anda respectively. Since there
are less than three sequences falling onc’s subtreesa and
b, the branches−1ca− and−1cb− are deleted. Following
the same procedure, we developc’s only subtree−1cd−,
which is shown in Figure 2(D).

Step5: Follow the sibling link from the first child and
repeat Step2-Step5 on each sibling node recursively.For
example, after finishing−1c−’s subtree development, the
next subtree to develop is−1c−’s sibling−1d−.

Definition 4.1 OPC-tree (Order Preserving Clustering
tree). An OPC-Tree is a tree structure defined below.
1. It consists of one root labeled as ”-1”, a set of subtrees
as the children of the root;
2. Each node in the subtrees consists of four entries: en-
try value, a link to its first children node, a link to its next
sibling node, and a list of all the rows that share the same
path leading from root to this node but do not have longer
common subsequences passing this node. In another word,

Figure 2. OPC-Tree for Table 1. The label in the
oval shape represents the column name. The number fol-
lowing ’:’ represents the row ID. The node with double oval
means the active node in the depth first traversal. ’!No’
means that the subtree must be pruned. ’Yes’ means that
subtree is an OP-Cluster. A). Initiate the tree with all the
rows B). Active node -1, Insert the suffix of -1’s subtrees to
node -1. C). Active node -1c-, Insert and Prune the subtree
(nr < 3). D). Active node -1cd-. Identify the first OP-
Cluster E). Finish growing the -1’s first subtree-1c, the next
subtree is -1d.



the sequence IDs are only recorded at the nodes that mark
the end of a commom subsequence.

Algorithm growTree(T,nc,nr,depth)
Input: T : the root of the initiated tree,nc andnr
Output: OP-Cluster existed inT
(∗ Grow patterns based on originalT ∗)
1. if T = nil
2. return ;
3. Tchild←T ’s first child;
4. for any sub-treesubT of T
5. do insertSubTree(subT , T );
6. pruneTreeNode(T );
7. growTree(Tchild, nc, nr, depth + 1);
8. growTree(T ’s next sibling,nc, nr, depth);
9. return .

Analysis of OPC-Tree construction Only one scan of
the entire data matrix is needed during the construction of
the OPC-Tree. Each row is converted into a sequence of
column labels. The sequences are then inserted into the
OPC-Tree. With OPC-Tree structure, sequences that have
the same prefix naturally fall onto the same path from root
to the node corresponding to the end of prefix. To save
memory, the row IDs associated with each path are only
recorded at the node marking the end of the longest com-
mon prefix shared by these rows. To find the OP-Cluster
using the OPC-Tree, the common subsequences are devel-
oped by adding suffixes of each sub-tree as the tree’s chil-
dren, via a pre-order traversal of the OPC-Tree.

Lemma 4.1 Given a matrix M, a grouping threshold, the
initial OPC-Tree contains all the information of matrix M.

Rationale: Based on the OPC-Tree construction pro-
cess, each row in the matrix is mapped onto one path in
the OPC-Tree. The row IDs and the order of the columns
are completely stored in the initial OPC-Tree.

4.2.1 Mining OP-Cluster Using OPC-Tree

Lemma 4.2 The developed OPC-Tree on a set of sequences
contains all subsequences hidden in the initial OPC-Tree.

Rationale: Given any sequenceS = x1x2x3x4 . . . xn,
we want to show that all of the subsequences of S can be
found in a path starting from root. Through the initiation of
OPC-Tree, we know thatS will exist in the OPC-Tree. Then
given any subsequenceSS = xixj . . . xs, (1 ≤ i, s ≤ n),
we can obtainSS by the following steps. First, at node
xi, insert suffixxixi+1 . . . xn. Now in the subtree ofxi,
nodexj can be found because it should be along the path
xixi+1 . . . xn that is inserted in the first step. Similarly,
we insert the suffixxj . . . xn. As a result, we get the path
xixjxj+1 . . . xn. By repeating the same procedure until we
insert the suffix starting withxs, we get the pathxixj . . . xs.
Because all the suffixes are inserted in the OPC-Tree, the
OPC-Tree contains all the subsequences presented in the
original OPC-Tree.

Rows in an OP-Cluster share the same rank of a set of
columns, which corresponds to the same path in the OPC-
Tree. We can conclude that the OPC-Tree contains all the
clusters. This leads to the following lemma.

Lemma 4.3 The developed OPC-Tree on a set of sequences
contains all potential OP-Clusters. The columns in these
clusters are on the paths leading from the root to any tree
node with depth no less thannc and row support count in
its subtree no less thannr .

4.2.2 Pruning OPC-Tree

Without any pruning, the whole OPC-Tree fits well into
memory when we have a small to medium sized matrix (15
columns by 3000 rows). However, for large matrices, some
pruning strategies have to be employed to minimize the size
of the OPC-Tree. There are two pruning techniques used in
our implementation. One strategy is to prune the suffixes to
be inserted that are shorter thannc; the other is to prune the
subtrees where the row support count is belownr.

Lemma 4.4 For a nodeN in the OPC-Tree with depthd,
and for a suffixS with lengthl in its sub-tree, ifd + l < nc
(the minimum columns required for a cluster), this suffixS
will not be useful in forming any OP-Cluster cluster.

Rationale: The length of the pathL we can get by com-
bining the path from root toN andS is d + l. Based on
Lemma 4.3,L will not form any cluster. Therefore, suffix
S need not to be inserted. In our implementation, we check
depth of the node at which the end of the suffix is inserted.
If the depth is smaller thannc, the row IDs recorded in this
node will be deleted.

The major cost of OPC-Tree development is suffix con-
catenation. To minimize the storage cost of the suffixes, the
single-path subtree can be collapsed into one node. The de-
tailed data structure and algorithm can be found in technical
report [13]

5 Experiments

We experimented our OP-Cluster algorithm, OPC-Tree
by collapsing nodes on two real data sets. The program was
implemented in C and executed on a Linux machine with a
700 MHz CPU and 2G main memory. We also implemented
an optimized version of prefixSpan algorithm for compari-
son. The following tests are organized into three categories.
First, we show promising patterns found in real data sets,
which failed to be discovered by other models. Secondly,
we study the sensitivity of OP-Cluster to various parame-
ters. At last, we evaluate the performance of OPC-Tree and
compare it with the optimized prefixSpan algorithm.

5.1 Data Sets

The following two real data sets are used in our experi-
ments.
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Figure 3. Cluster Analysis: Two examples of
OP-Clusters in yeast data

Gene Expression Data

Gene expression data are generated by DNA chips and other
microarray techniques. The yeast microarray contains ex-
pression levels of 2,884 genes under 17 conditions [16]. The
data set is presented as a matrix. Each row corresponds to
a gene and each column represents a condition under which
the gene is developed. Each entry represents the relative
abundance of the mRNA of a gene under a specific con-
dition. The entry value, derived by scaling and logarithm
from the original relative abundance, is in the range of 0 and
600. Biologists are interested in finding a subset of genes
showing strikingly similar up-regulation or down-regulation
under a subset of conditions [10].

Drug Activity Data

Drug activity data is also a matrix with 10000 rows and 30
columns. Each row corresponds to a chemical compound
and each column represents a descriptor/feature of the com-
pound. The value of each entry varies from 0 to 1000.

5.2 Results from Real Data

We apply the OP-Cluster algorithm to the two data sets.
With parameterδ = 0.1, Some interesting clusters are re-
ported in both of the data sets. As showed in Figure 3, the
two patterns generated from yeast dataset [10] present the
coherent tendency along the columns. In Figure 3(a), Fig-
ure 3 (b) shows another interesting cluster which presents
with a descending tendency itself. In both of the figures,
we can observe that each of the four example OP-Clusters
contains the curves with sharp slopes and the curves with
potentially long distances to the rest.

5.3 Scalability

We evaluate the performance of the OP-Cluster algo-
rithm with the drug activity data which has a larger size.
Figure 5 shows the performance data. As we know, the
columns and the rows of the matrix carry the same signifi-
cance in the OP-Cluster model, which is symmetrically de-
fined in Formula 2. Although the algorithm is not entirely
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symmetric in the sense that it chooses to project column-
pairs first, the curves in Figure 5 demonstrate similar trends.

Data sets used in Figure 5 are taken from the drug activ-
ity data. For experiments in Figure 5(a), the total number of
columns is fixed at 30. The mining program is invoked with
δ = 0.2, nc = 9, andnr = 0.01N , whereN is the total
number of rows. For the experiemnts in Figure 5(b), the to-
tal number of rows is fixed as 1000. The mining algorithm
is invoked withδ = 0.2, nc = 0.66C, andnr = 30, where
C is the total number of columns. The response time of the
OPC-Tree is mostly determined by the size of the tree. As
the number of rows and number of columns increase, the
size of developed OPC-Tree will get deeper and broader.
Hence, the response time will unavoidably become longer.

Figure 6 presents the performance comparison between
the prefixSpan algorithm and the OPC-Tree algorithm. The
parameter setting for this set of experiment is the following:
nc = 9, nr = 0.01N , δ = 0.2. The number of columns is
20. We can observe that the OPC-Tree algorithm can con-
stantly outperform the prefixSpan algorithm and the advan-
tage becomes more substantial with larger data set.

Next, we study the impact of the parameters (δ, nc, and
nr) towards the response time. The results are shown in Fig-
ure 7. The data set used in this experiment is the yeast data.
Whennc andnr are fixed, the response time gets shorter
as the group thresholdδ relaxes. The reason is that as more
columns are grouped together, the number of rows sharing
the same path in the OPC-Tree is increasing. Hence, the
OPC-Tree is shorter, which results in less overall response
time. Asnc or nr decreases, the response time prolonged.
This is showed in Figure 7. According to the pruning tech-
niques discussed in Lemma 4.4, fewer number of subse-
quences can be eliminated whennc is smaller. As a result,
a larger tree is constructed, which consumes more time. A
similar effect can be observed with respect tonr from Fig-
ure 7(b).

6 Conclusions

In many applications including collaborative filtering
and DNA array analysis, although the distance (e.g., mea-
sured by Euclidean distance or cosine distance) among the
objects may not be close, they can still manifest consistent
patterns on a subset of dimensions. In this paper, we pro-
posed a new model called OP-Cluster to capture the consis-
tent tendency exhibited by a subset of objects in a subset of
dimensions in high dimensional space. We proposed a com-
pact tree structure, namely OPC-Tree, and devised a depth-
first algorithm that can efficiently and effectively discover
all the closed OP-Clusters with a user-specified threshold.
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