
Efficient Mining of Frequent Subgraphs in the
Presence of Isomorphism

Jun Huan, Wei Wang, Jan Prins
Department of Computer Science

University of North Carolina, Chapel Hill
{huan, weiwang, prins}@cs.unc.edu

Abstract

Frequent subgraph mining is an active research topic in
the data mining community. A graph is a general model
to represent data and has been used in many domains like
cheminformatics and bioinformatics. Mining patterns from
graph databases is challenging since graph related opera-
tions, such as subgraph testing, generally have higher time
complexity than the corresponding operations on itemsets,
sequences, and trees, which have been studied extensively.
In this paper, we propose a novel frequent subgraph mining
algorithm: FFSM, which employs a vertical search scheme
within an algebraic graph framework we have developed
to reduce the number of redundant candidates proposed.
Our empirical study on synthetic and real datasets demon-
strates that FFSM achieves a substantial performance gain
over the current start-of-the-art subgraph mining algorithm
gSpan.

1. Introduction

Mining frequent patterns of semi-structured data such as
trees and graphs has attracted much research interest be-
cause of its wide-range application areas such as bioinfor-
matics and cheminformatics [1, 4], web log mining [10],
video indexing [6], and efficient database indexing [2].
Given a set S of labeled graphs (referred to as a graph
database), the supportof an arbitrary graph g is the frac-
tion of all graphs in S of which g is a subgraph [9, 8, 3].
Graph g is frequentif the support of g meets a certain sup-
port threshold (minSupport). The problem of frequent sub-
graph miningis to find all (connected) frequent subgraphs
from a graph database.

At the core of any frequent subgraph mining algorithm
are two computationally challenging problems 1) subgraph
isomorphism: determining whether a given graph is a sub-
graph of another graph and 2) an efficient scheme to enu-
merate all frequent subgraphs. Generally the number of
possible isomorphisms/subgraphs increases with the graph
size, the graph complexity, and the number of graphs in

graph databases. To develop a solution that scales to com-
plex graphs and large databases, it is imperative to focus on
efficient frequent pattern enumeration and isomorphism test
algorithms. This is the basic motivation for this work.

Several efficient subgraph mining algorithms have been
proposed and a recent review is presented in [3]. The algo-
rithms most closely related to our current effort are [9, 1].

In [9], a novel canonical form of graphs called DFS code
and a novel data structure called DFS code treeare pro-
posed. Involving a simple single-edge growth scheme and
Ullman’s subgraph matching algorithm, the preorder traver-
sal of the DFS code tree enumerates all frequent connected
subgraphs of a graph database.

In [1], a depth first scheme is proposed following the
idea of the Eclat association mining algorithm [11]. Candi-
date graphs are proposed guided by information from sib-
ling nodes.

Contributions We developed FFSM (Fast Frequent
Subgraph Mining) targeting efficient subgraph testing and
a better candidate subgraph enumeration scheme. The key
features of our method are: (i) a novel graph canonical form
and two efficient candidate proposing operations: FFSM-
Join and FFSM-Extension, (ii) an algebraic graph frame-
work (suboptimal CAM tree) to guarantee that all frequent
subgraphs are enumerated unambiguously and (iii) com-
pletely avoiding subgraph isomorphism testing by maintain-
ing an embedding set for each frequent subgraph.

Our experimental study shows that FFSM is competitive
with gSpan on all inputs and outperforms gSpan by a fac-
tor of seven on a commonly studied chemical compound
benchmark.

2. Mining Frequent Subgraphs

2.1. Canonical Adjacency Matrix

In FFSM, every graph is represented by an adjacency
matrix M . Slightly different from the adjacency matrix
used for an unlabeled graph, every diagonal entry of M is
filled with the label of the corresponding node and every



M1

byy0

ybyx

yybx

0xxa

M2

byyx

yby0

yybx

x0xa

(a) (b) (c) (d) (e) (f)

byy0

ybyx

yybx

0xxa

b0y0

0byx

yybx

0xxa

byx

ybx

xxa

b0x

0bx

xxa

bx

xa

a

Graph P

a b

b

b

x

y

y

x

y

p1

p3

p2

p4

Figure 1. Top: A labeled graph P and two adja-
cency matrices for P . After applying the total ordering,
we have code(M1) = “axbxyb0yyb” ≥ code(M2) =
“axb0ybxyyb”. For an adjacency matrix M , each off-
diagonal none-zero entry in the lower triangular part is re-
ferred to as an edge entry. All edge entries are ordered
according to their relative positions in the code. For M1,
m2,1, m4,3, and m4,2 are the first, last, second-to-last edge
entries of M1, respectively. m4,4 is denoted as the last node
of M1. Bottom: examples of submatrices. Matrix (a) is the
submatrix of matrix (b), which itself is the submatrix of (c)
and so forth.

off-diagonal entry is filled with the label of the correspond-
ing edge, or zero if there is no edge.

Given an n × n adjacency matrix M of a graph G
with n nodes, we define the code of M , denoted by
code(M), as the sequence of lower triangular entries
of M (including entries on the diagonal) in the order:
m1,1m2,1m2,2...mn,1mn,2...mn,n−1mn,n where mi,j rep-
resents the entry at the ith row and jth column in M .

We use standard lexicographic order on sequences to de-
fine a total order of two arbitrary codes p and q. Given
a graph G, its canonical formis the maximal code among
all its possible codes. The adjacency matrix M which pro-
duces the canonical form is denoted as G’s canonical ad-
jacency matrix(CAM). For example, the adjacency matrix
M1 shown in Figure 1 is the CAM of the graph P in the
same figure, and code(M1) is the canonical form of the
graph.

Notice that we use maximal code rather than the minimal
code used by [5, 4] in the above canonical form definition.
This definition provides important properties for subgraph
mining, as explained below.

Theorem 2.1 Given a connected graphG and one of its
subgraphsH , let G’s CAM beA andH ’s CAM beB, then
we havecode(A) ≥ code(B).

We define the maximal proper submatrix(submatrix in
short) of an adjacency matrix M as the matrix obtained by
removing the last edge entry e of M (also removing the
symmetric entry of e in M and the resulting unconnected
node, if applicable). For submatrices we have the following
two corollaries:

Corollary 2.2 Given a CAMM of a connected graphG

andM ’s submatrixN , N represents a connected subgraph
of G.

Corollary 2.3 Given a connected graphG with CAM M ,
M ’s submatrixN , and a graphH whichN represents,N
is the CAM ofH .

Several examples of submatrices are given at the bottom
of Figure 1. The formal proof of the theorem and corol-
laries are presented in [3] and omitted here due to space
limitations.

If we let an empty matrix be the submatrix of any matrix
with size 1, we can organize the CAMs of all connected
subgraphs of a graph G into a rooted tree as follows: (i)
The root of the tree is an empty matrix; (ii) Each node in
the tree is a distinct connected subgraph of G, represented
by its CAM; (iii) For a given none-root node (with CAM
M ), its parent is the graph represented by M ’s submatrix.

The tree obtained in this fashion is denoted as the CAM
treeof the graph G.

2.2 Exploring the CAM Tree: Join, Extension
and Suboptimal CAMs

The current methods for enumerating all the subgraphs
might be classified into two categories: one is the join op-
eration adopted by FSG and AGM [4, 5] and another one is
the extension operation proposed by [1, 9]. The major con-
cerns for the join operation are that a single join might pro-
duce multiple candidates and that a candidate might be re-
dundantly proposed by many join operations [5]. The con-
cern for the extension operation is to restrict the nodes that
a newly introduced edge may attach to.

We list some of the key design challenges to achieve ef-
ficient subgraph enumeration:

(i) Can we design a join operation such that every
distinct CAM is generated only once?

(ii) Can we improve the join operation such that only
a few (say at most two) CAMs are generated from
a single join operation?

(iii) Can we design an extension operation such that
every edge might be attached to only one node in
a graph represented by its CAM?

In order to tackle these challenges, we augment the CAM
tree with a set of suboptimal canonical adjacency matrices,
and introduce two new operations: FFSM-Join and FFSM-
Extension.

Given two adjacency matrices M and N , we define a bi-
nary operation join which produces a set of matrices as the
result of superimposing M and N . We define a unary oper-
ation extensionon a matrix M to produce a set of matrices,
each of which has one additional node v and one additional
edge entry connecting v and the last node in M . Examples
of the join and extension operations are given in Figure 2



byx

ybx

xxa

b0x

0bx

xxa

by0

ybx

0xa

b0y0

0b0x

y0bx

0xxa

b0yy

0byy

yyby

yyya

b0y0

0byx

yybx

0xxa

b0y0

0b0x

y0bx

0xxa

byx

ybx

xxa

Join Case 1

by0y

ybyy

0yby

yyya

byyy

ybyy

yyby

yyya

Join Case 2

Join Case 3a

Join Case 3b

+

+

+

dx0x

xcxx

xxbx

xxxa

dxxx

xcxx

xxbx

xxxa

d0xx

xcxx

xxbx

xxxa

+

a b

d c

x

x

x

x
x x

by0

ybx

0xa

by00

yby0

0ybx

00xa

Extension Case 3b

Figure 2. Examples of the join/extension operation

(further details are given in [3] ). At the bottom of Figure
2 we show a case in which a graph might be redundantly
proposed by FSG

(
6
2

)
= 15 times (Joining any two distinct

five-edge subgraphs G1 and G2 of the graph G will restore
G by the join operation proposed by FSG). As shown in
the graph, FFSM-Join completely removes the redundancy
after “sorting” the subgraphs by their canonical forms.

Given a graph G, a suboptimal canonical adjacency ma-
trix (simply, suboptimal CAM)of G is an adjacency matrix
M of G such that its submatrix N is the CAM of the graph
N represents. By definition, every CAM is a suboptimal
CAM (by Corollary 2.3) and we denote a proper subopti-
mal CAMas a suboptimal CAM that itself is not a CAM.

Clearly, all suboptimal CAMs of a graph G could be or-
ganized as a tree in a similar way to the construction of the
CAM tree. One such example for the graph in Figure 1 is
shown in Figure 3. The suboptimal CAM tree is “complete”
in the sense that all nodes could be enumerated by either a
join operation or an extension operation. This is formally
stated in the following theorem.

Theorem 2.4 For a graphG, let Ck−1(Ck) be the set of
the suboptimal CAMs of all(k-1)-edge (k-edge) subgraphs
of G (k ≥ 2). Every member ofCk can be enumerated
unambiguously either by joining two members ofCk−1 or
by extending a member inCk−1.

2.3. Embeddings of a Frequent Subgraph

Given a graph G = (V, E, Σ, l) where Σ is a set of avail-
able labels and l : V ∪E → Σ is a function assign labels to
vertices and edges [3], a node list L = u1, u2, . . . , un ⊂ V
is compatiblewith an n × n adjacency matrix M iff: (i)∀
i, (mi,i = l(ui)) and (ii)∀ i, j(i �= j), (mi,j �= 0 ⇒
(mi,j = l(ui, uj)), where 0 < i, j ≤ n.

byx

ybx

xxa

b0y0

0b0x

y0bx

0xxa

c.3b c.3b

c.3ac.3a c.3bc.3b

c.2

ee

ee

c.2 c.3ac.3a

c.3a

b0x

0bx

xxa

by0

ybx

0xa

b0y

0by

yyb

by0

yby

0yb

byy

yby

yyb

by00

yb0x

00bx

0xxa

b0y0

0byx

yybx

0xxa

by00

ybyx

0ybx

0xxa

byy0

yb0x

y0bx

0xxa

b0y0

0by0

yybx

00xa

by00

yby0

0ybx

00xa

byy0

yby0

yybx

00xa

byy0

ybyx

yybx

0xxa

bx

xa

a

by

yb

b

Figure 3. the Suboptimal CAM Tree for graph P in Fig-
ure 1. Matrices with solid boundary are CAMs and those
with dash boundary are proper suboptimal CAMs. The la-
bel on top of each adjacency matrix M indicates the oper-
ation by which M might be proposed. A join operation is
specified by a label c. and then the type of the operation
(e.g. c.3a stands for join case3a). e specifies an extension
operation.

Given a suboptimal CAM M with size n, a graph G in a
graph database GD, and a node list L of G compatible with
M , an embeddingoM of M is a two-element tuple oM =
(gi, L) where gi is the graph G′s transaction id. The set of
all possible embeddings of a suboptimal CAM is defined as
its embedding set.

Given two suboptimal CAMs P and Q, and a suboptimal
CAM A ∈ join(P, Q), the relation between A’s embedding
set and those of P and Q can easily be established. For ex-
ample, for join case 1, we have OA = OP ∩OQ, where OA,
OP , and OQ are the embedding sets of suboptimal CAM
A, P , and Q, respectively. For other join types/extensions,
similar relations can be obtained with details given in [3].

FFSM

1: S ← { the CAMs of the frequent nodes }
2: P ← { the CAMs of the frequent edges }
3: FFSM-Explore(P, S);

FFSM-Explore (P, S)

1: for X ∈ P do
2: if (X.isCAM) then
3: S ← S ∪ {X}, C ← Φ
4: for Y ∈ P do
5: C ← C∪ FFSM-Join(X, Y )
6: end for
7: C ← C∪ FFSM-Extension(X)



8: remove CAM(s) from C that is either infrequent
or not suboptimial

9: FFSM-Explore(C, S)
10: end if
11: end for

3. Experimental Study

We performed our experimental study using a single pro-
cessor of a 2GHz Pentium Xeon with 512KB L2 cache and
2GB main memory, running RedHat Linux 7.3. The FFSM
algorithm is implemented using the C++ programming lan-
guage and compiled using g++ with O3 optimization. For
gSpan, we used an executable kindly provided by Xifeng
Yan and Jiawei Han for performance comparison purpose.

Chemical Compound Datasets We used a set of bench-
mark chemical compound datasets to evaluate the perfor-
mance of the FFSM algorithm. The first two we used are
from the DTP AIDS Antiviral Screen dataset from National
Cancer Institute. In this dataset, chemicals are classified
into three classes: confirmed active (CA), confirmed mod-
erately active (CM) and confirmed inactive (CI) accord-
ing to experimentally determined activities against AIDS
virus. There are total 423, 1083, and 42115 chemicals in
the three classes, respectively. For our own purposes, we
formed two datasets consisting of all CA compounds and
of all CM compounds and refer to them as DTP CA/DTP
CM thereafter. The DTP datasets can be downloaded from
http://dtp.nci.nih.gov/docs/aids/aidsdata.html.

The third dataset we used is the Predicative Toxicology
Evaluation Challenge (PTE) [7], which can be downloaded
from http:://web.comlab.ox.ac.uk/oucl/research/areas/
machlearn/PTE/. We follow exactly the same procedure
described in [1, 9] for building graphs from all the above
datasets.

Figure 4 shows the performance comparison between
FFSM and gSpan, using various support thresholds for the
DTP CM dataset. From the curve, we find that FFSM al-
ways outperforms gSpan by a factor up to seven. We ob-
serve a similar trend using DTP CA and PTE dataset and
find a speedup of two fold and three fold, respectively [3].

Synthetic Datasets We also tested FFSM and gSpan on
various synthetic graph datasets and found FFSM is always
competitive with gSpan. Details are provided in [3].

4 Conclusions

We presented a new algorithm FFSM for the frequent
subgraph mining problem. Comparing to existing algo-
rithms, FFSM achieves substantial performance gain by
efficiently handling the underlying subgraph isomorphism
problem, which is a time-consuming step and by introduc-
ing two efficient subgraph enumeration operations, together
with an algebraic graph framework developed for reduce
the number of redundant candidates proposed. Performance

2 3 4 5 6 7 8 9 10 11

10
1

10
2

10
3

10
4

R
un

 ti
m

e 
(s

)

Support/MI Threshold (%)
2 3 4 5 6 7 8 9 10 11

10
3

10
4

10
5

10
6

T
ot

al
 id

en
tif

ie
d 

su
bg

ra
ph

s

Support Threshold (%)

gSpan
FFSM

Figure 4. Left: FFSM and gSpan performance com-
parison under different support values for DTP CM dataset.
Right: Total frequent pattern identified by the algorithms.

evaluation using various real datasets demonstrated a wide
margin performance gain of FFSM over gSpan. The ef-
ficiency of FFSM is further confirmed using the synthetic
datasets.

Acknowledgement We thank Mr. Michihiro Kuramochi
and Dr. George Karypis in University of Minnesota for pro-
viding the synthetic data generator. We thank Mr. Xifeng
Yan and Dr. Jiawei Han in University of Illinois at Urbana
Champaign for providing the gSpan executable.

References

[1] C. Borgelt and M. R. Berhold. Mining molecular fragments:
Finding relevant substructures of molecules. In ICDM’02.

[2] R. Goldman and J. Widom. Dataguides: Enabling query
formulation and optimization in semistructured databases.
In VLDB’97.

[3] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent
subgraph in the presence of isomorphism. UNC computer
science technique report TR03-021, 2003.

[4] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based al-
gorithm for mining frequent substructures from graph data.
In PKDD’00.

[5] M. Kuramochi and G. Karypis. Frequent subgraph discov-
ery. In ICDM’01.

[6] K. Shearer, H. Bunks, and S. Venkatesh. Video indexing and
similarity retrieval by largest common subgraph detection
using decision trees. Pattern Recognition, 34(5):1075–91,
2001.

[7] A. Srinivasan, R. D. King, S. H. Muggleton, and M. Stern-
berg. The predictive toxicology evaluation challenge. In
Proc. of the 15th International Joint Conferrence on Artifi-
cial Intelligence (IJCAI), pages 1–6, 1997.

[8] N. Vanetik, E. Gudes, and E. Shimony. Computing frequent
graph patterns from semi-structured data. ICDM’02, 2002.

[9] X. Yan and J. Han. gspan: Graph-based substructure pattern
mining. In ICDM’02.

[10] M. J. Zaki. Efficiently mining frequent trees in a forest. In
SIGKDD’02.

[11] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules. In
SIGKDD’97.


