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Abstract

Subspace clustering is one of the best approaches
for discovering meaningful clusters in high dimensional
space. One cluster in high dimensional space may
be transcribed into multiple distinct maximal clusters
by projecting onto different subspaces. A direct con-
sequence of clustering independently in each subspace
is an overwhelmingly large set of overlapping clusters
which may be significantly similar. To reveal the true
underlying clusters, we propose a similarity measure-
ment of the overlapping clusters. We adopt the model
of Gaussian tailed hyper-rectangles to capture the dis-
tribution of any subspace cluster. A set of experiments
on a synthetic dataset demonstrates the effectiveness
of our approach. Application to real gene expression
data also reveals impressive meta-clusters expected by
biologists.
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1 Introduction

Clustering has become one of the most popular and
effective data mining techniques to reveal characteris-
tics of large amounts of data. Because of the curse
of the dimensionality, there have been many studies
[2, 1, 3, 4] on designing new models and efficient algo-
rithms for capturing subspace clusters.

Recent methods result in subspace clusters that are
either disjoint subspace clusters or overlapping subspace
clusters. In the model of disjoint clusters, each object
may belong to at most a single cluster, regardless of
the subspace in which the cluster is present. These
disjoint clusters are succinct. In contrast, the model
of overlapping clusters allows an object to naturally be
included in multiple clusters, which offer indisputable
advantages in real-world applications. For example, a
gene may have multiple functions, each of which may
be manifested in a specific metabolic pathway. It is
biologically relevant to discover that one gene may ap-
pear in multiple gene clusters. However, the flexibil-
ity offered by this model poses substantial challenges

in the design of the cluster model and mining algo-
rithm. Due to efficiency concerns, existing models of-
ten discretize the data space and assume that all clus-
ters are hyper-rectangles consisting of adjacent grids in
their subspaces. Density and entropy measures based
on data distribution within a subspace are applied to
determine the existence of a subspace cluster. Since
this decision is made independently for each subspace,
clusters in different subspaces may overlap. In fact,
the degree of cluster overlap may be very high, even
if we only keep the set of maximal subspace clusters1.
The number of subspace clusters can be large, which
may degrade the significance of each cluster and hin-
der the posterior analysis. In this paper, we propose
a new similarity measure for subspace clusters to ac-
commodate the difference in subspaces, based on solid
statistical theory. The application of our model to gene
expression data revealed biologically relevant clusters
with significantly reduced number of clusters.

Section 2 addresses related work in subspace clus-
tering and cluster merging. Section 3 defines the model
proposed in the paper. A greedy algorithm is presented
in Section 4. The experiment is reported in Section 5.
Section 6 concludes the paper and discusses some fu-
ture work.

2 Related Work

Our work is related to grid and density-based sub-
space clustering, as well as cluster similarity analy-
sis and cluster merging. Density- and grid-based ap-
proaches view clusters as regions of the data space
in which objects are dense and are separated by re-
gions of low object density. CLIQUE[2], MAFIA[4] and
ENCLUS[3] are three such algorithms. The resolution
of the grid ultimately determines the computation ef-
ficiency. These algorithms detect independent clusters
in the highest dimensional subspaces, which may lead
to a large number of clusters.

Previous work on cluster similarity assessment solely
handles clusters in the full space. Classical hierarchical

1The formal definition of maximal subspace cluster is in Sec-
tion 3. Intuitively, a maximum subspace cluster is a subspace
cluster that cannot include more objects or dimensions without
violating the clustering criteria.
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clustering algorithms use the distance between clus-
ters to measure similarity among clusters. In fuzzy
clustering[5], the similarity of a pair of clusters is de-
fined as the maximum percentage of data points of each
cluster falling in the intersection of the two clusters.
However, extra caution has to be used when merging
clusters from different subspaces.

3 Model

Let A = {A1, A2, ..., Ad} be a set of ordered, numer-
ical dimensions (attributes) with bounded domains V
= A1×A2× ...×Ad a d-dimensional vector space. We
refer to each individual Ai (i = 1, . . . , d) as a dimension
(or attribute) of V. The inner product of any subset of
A forms a subspace of V, which is denoted as S. We
assume that each dimension Ai has been normalized to
range [0, 1). Let the database O be a set of data points
(or objects) in S. Each data point x is a d-dimensional
unit vector.

We adopt the space discretization of CLIQUE[2] by
superimposing a grid of non-overlapping rectangular
units (cells) onto S, given the size of the interval, λ,
and the density threshold ξ. A cluster in a subspace is
a maximum set of connected dense units. To discrimi-
nate from the cluster model we will propose later in the
paper, we call it a base cluster. A base cluster is de-
noted as a tuple C =< O,S,R >, where O(C) denotes
the set of data points, S(C) denotes its subspace, and
R(C) denotes the minimum bounding rectangle con-
taining the cluster. A cluster within a k-dimensional
subspace is called a k-dimensional subspace cluster. A
cluster C is maximum if there does not exist another
cluster C ′ such that O(C) ⊆ O(C ′), and S(C) ⊆ S(C ′).
Given a subspace S, let CL(S) be the set of base clus-
ters generated by function CL in subspace S.

3.1 Scenarios of Overlapping among Base
Clusters

In our study, we classify the cluster overlap as in-
clusive overlap or non-inclusive overlap.

Lemma 3.1 Given a maximal base cluster C in k-
dimensional space S, ∀ (k − 1)-dimensional subspace
S ′, S ′ ⊂ S, there exists C ′ ∈ CL(S ′) such that O(C) ⊆
O(C ′).

Lemma 3.1 can be proven by the Apriori property
of dense units in [2]. Given cluster C, the set of dense
and connected units composing C are also dense and
connected when they are projected onto any its (k−1)-
dimensional subspace. Therefore, those dense and con-
nected (k−1)-dimensional dense units may be equal to
or part of a cluster C ′. Lemma 3.1 describes the nested
inclusion relationship occurring between clusters illus-
trated in Figure 1(a).

Corollary 3.1 Given a k-dimensional space S, let
{S ′1, S ′2, . . . ,S ′k}, S ′i ⊂ S, all be k − 1-dimensional
subspaces of S. Given a cluster C, C ∈ CL(S), there
exists C ′i ∈ CL(S ′i) such that O(C) ⊆ ∩0<i≤kO(C ′i).

Beside inclusive overlap, base clusters residing in
non-inclusive subspaces, where S ′ ⊆ S and S ⊆ S ′,
may have non-inclusive overlap, where neither cluster
is a subset of the other, as illustrated in Figure 1(b).
Those overlapping clusters might be different views of
one underlying cluster when they are projected onto
corresponding subspaces.
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(a)Inclusive overlap (b) Non-inclusive overlap
Figure 1. Two typical cases of cluster relation-
ships.

In this study, all the base clusters are represented by
minimum hyper-rectangular kernels defined by a pair
of vectors

−→
Rl and

−→
Rh, which are the lower and up-

per boundaries. The union of a set of base clusters is
referred to as a meta-cluster. They are described by
the hyper-rectangular kernels with softened Gaussian
boundaries.

3.2 Adhesion Strength between Overlapping
Clusters

Given two clusters, the adhesion strength is a mea-
sure of how tightly one cluster attaches to the other.
Intuitively, two clusters have strong adhesion strength
if both clusters have a large percentage of data points
closely located. In addition, exclusive data points in
the exclusive subspaces should not form statistically
significant outliers.

Definition 3.1 Given two clusters C = O(C)× S(C)
and C ′ = O(C ′) × S(C ′), defined by two hyper-
rectangular kernels R and R′, the adhesion score of
C to C ′ is defined as

H(C, C′) = |S(C)|

√ ∏
i∈S(C)

h(C, C′, i) (1)

where the adhesion score along each dimension i is
defined as

h(C, C′, i) =
|
−→
Ri ∧

−→
R′

i|
|
−→
Ri|

Q(
−→
Ri ∧

−→
R′

i, C)

Q(
−→
Ri, C)

(2)
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where function Q(
−→
R,C) returns the number of points

in C that falls in region
−→
R , and

−→
Ri ∧

−→
R′i is

(i). 0,
if (i ∈ S(C)∩S(C′))

and (max(
−→
Rl

i,
−→
R′l

i) > min(
−→
Rh

i ,
−−→
R′h

i )),
(Figure 2(b)(1));

(ii). [min(
−→
Rh

i ,
−−→
R′h

i ), max(
−→
Rl

i,
−→
R′l

i)],
if (i ∈ S(C)∩S(C′))

and (min(
−→
Rh

i ,
−−→
R′h

i ) > max(
−→
Rl

i,
−→
R′l

i)),
(Figure 2(b)(2.1&2.2));

(iii). [minx∈O(C′) xi, maxx∈O(C′) xi] ∧
−→
Ri

if (i ∈ S(C)) and (i /∈ S(C′)).
(3)

The adhesion strength is asymmetric and can be used
to construct a similarity measure between two clusters.

Similarity(C,C ′) = min{H(C,C ′),H(C ′, C)}.
In Equation 2, the adhesion strength from one clus-

ter to the other in each dimension depends on the ratio
between the intersection area and the cluster bound-
ary, as well as the percentage of data points falling in
the intersection region. In each dimension, the adhe-
sion strength h of two clusters is captured in terms
of both data points and physical space. Two clusters
can adhere to each other only if they have a common
kernel(Figure 2(b) 2.1&2.2), which is the intersection
of their hyper-rectangular kernels. Furthermore, both
of the clusters should have a large percentage of data
points falling within the kernel. This is determined by
function Q. If two clusters do not have a boundary
intersection in any dimension of their subspaces, the
adhesion strength is 0 (Figure 2 (b) 1). In the exclu-
sive dimensions, when only the cluster who owns the
dimension has a kernel boundary, we approximate the
other kernel boundary using the maximum and mini-
mum of the common points in that dimension (Case
(iii) in Definition 3.1). The overall adhesion strength
across all unified dimensions is the geometric average
of the adhesion strength in each dimension. The asym-
metric property of adhesion strength enables its use
in describing the scenario when one cluster is much
smaller than the other but is strongly coupled to it. If
the similarity between a pair of clusters is high, we may
merge them into a new meta-cluster. If C and C ′ are
the two meta-clusters of high similarity, the new meta-
cluster C ′′ will be in the subspace S(C) ∪ S(C ′) and
include objects O(C)∪O(C ′). To determine the hyper-
rectangular kernel of the new meta-cluster, a Gaussian
tailed rectangular kernel is fit onto the cluster based
on the model proposed in [8].

3.2.1 Rectangular Kernel Determination

Let C1 and C2 be the two clusters with kernels
[
−→
Rl1 ,

−−→
Rh1 ] and [

−→
Rl2 ,

−−→
Rh2 ]. They are to be merged to
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Figure 2. Illustration of Definition 3.1.

generate a meta-cluster C.

LL(x) = (−|O1 ∪O2| ln(
√

2πσi +
−−→
Rh3

i −
−→
Rl3

i ))

+
∑

x∈O1∪O2
− 1

2
(

xi−closest(xi,
−−→
R

l3
i ,
−−→
R

h3
i )

σi
)

(4)

The optimal values of
−→
Rl3

i and
−−→
Rh3

i should be the ones
that maximize LL(x) in Equation 4. The golden ratio
optimizer [7] can be used to locate the optimal val-

ues of
−→
Rl3

i and
−−→
Rh3

i , starting with the initial values

[
−→
Rl3

i ,
−−→
Rh3

i ] = [
−→
Rl1

i ,
−−→
Rh1

i ]∧ [
−→
Rl2

i ,
−→
Rl2

i ], as defined in Defini-
tion 3.1. The intersection area for measuring adhesion
strength is set as the initial kernel to meet its density
requirement. Once we determine the initial kernel of
the meta-cluster, we may apply the MLE of the Gaus-
sian tailed hyper-rectangular distribution to compute
its optimal kernel.

4 A Greedy Algorithm

This algorithm evaluates every pair of clusters at
each iteration, and picks the pair having the best ad-
hesion score and merges it. After that, the adhesion
score of those pairs having one of the clusters being
merged is updated with the new meta-cluster and re-
ordered. If there still exists a pair of clusters having an
adhesion score above the threshold, the merging con-
tinues. This algorithm is simple and straightforward.
The time complexity is O(N3logN), where N is the
total number of clusters.

Algorithm MergeGreedy(C, δ)
Input: C: A set of unique dense subspace clusters; δ: sim-

ilarity threshold
Output: C’: A set of unique subspace clusters

1. Compute the similarity score of |C|∗(|C|−1)
2

cluster pairs
2. Sort the list of cluster pairs in decreasing order of the

score
3. while Head of the list having a similarity score> δ
4. do Merge Ci, Cj with highest score.
5. Remove cluster pairs containing Ci or Cj

6. Recompute the similarity score.
7. Insert them into the list of cluster pairs in de-

creasing order of the score.
8. return.

3



5 Performance Evaluation

We compare the meta-clusters with the base clusters
generated by CLIQUE in terms of the cluster quality
using both synthetic data sets and real gene expression
data. All implementations are in C++ and tested on
a machine with an 800MHz Pentium III processor and
2GB of main memory.

5.1 Effect of Meta-Clustering

The synthetic high dimensional data set is gener-
ated by embedding clusters in the subspaces. The
clusters are points following a Gaussian tailed hyper-
rectangular distribution. For each cluster, the num-
ber of data points and the hyper-rectangular kernel
are first determined by selecting the dimensionality of
the subspace, and the upper and lower bounds of the
hyper-rectangular kernel. Let p be the percentage of
data points we want to put in the kernel. We have
σ = (1−p)(Rh−Rl)√

2π
. A random generator is used to

distribute data points into the kernel, ±σ outside the
kernel and ±2σ outside the kernel for each dimension,
accordingly.

In this group of experiments, we embedded 5 6-
dimensional meta-clusters in the data set with 1500
20-dimensional data points. The experiment varies the
adhesion score from 0.4 to 1 in steps of 0.1. The num-
ber of clusters in each dimension is presented in Fig-
ure 3. The clusters generated when the adhesion score
is 1 are actually the base clusters, which corresponds
to the top curve in the figure. The general trend is that
fewer meta-clusters are generated with a lower adhesion
score because more clusters may be valid for merging.
The big gap between the curves of adhesion scores 0.6
and 0.7 suggests that 0.6 to 0.7 may be a good point
to have a reasonable number of meta-clusters matching
well with the underlying real clusters.
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Figure 3. Number of clusters in different sub-
spaces with varying adhesion score.

5.2 Meta-Clustering on real data

Two types of cell lines derived from basal epithe-
lium and luminal epithelium respectively were treated
under the chemotherapeutics. The expression levels of
genes of both cell lines are recorded during the treat-
ment at 12, 24, and 36 hours. Multiple samples are

generated at each time point. After certain filtering
of noise, we selected 1034 genes and 26 columns for
analysis. Each type of cell line has 13 columns in the
gene expression matrix. On the advice of biologists, we
normalized the expression levels using logarithms and
then transformed them into [-1, 1]. We divided each
dimension into 5 intervals with length 0.4. The density
threshold is 0.01. The whole clustering process took
less than two minutes, and given an adhesion thresh-
old of 0.6, it generated 28086 base clusters, from which
4130 meta clusters were generated. That is only 14%
of the number of base clusters. This number is reason-
able considering the very low density threshold and the
number of subspaces.

6 Conclusion

In this paper, we provide a framework to organize
the overlapping subspace clusters generated in grid
and density-based algorithms. We show that signifi-
cant overlap among clusters is very common in sub-
space clustering and can result in redundancy in iden-
tifying real clusters embedded in a data space. Ad-
hesion strength is defined to measure the similarity
between two clusters with a Gaussian tailed hyper-
rectangular shape. Experiments on both synthetic and
real datasets highlight the effectiveness of the adhesion
strength in measuring the similarity of subspace clus-
ters. Our ongoing work includes developing simple and
efficient algorithms for meta-clustering.
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