
February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

An Improved Biclustering Method for Analyzing Gene Expression
Profiles

Jiong Yang

EECS Department, Case Western Reserve University
Cleveland, Ohio 44166, USA

jiong@eecs.cwru.edu

Haixun Wang

IBM T. J. Watson Research Centers 19 Skyline Drive
Hawthorne New York 10532, USA

haixun@us.ibm.com

Wei Wang

CS Department, UNC-Chapel Hill
Chapel Hill, North Carolina 27599, USA

weiwang@cs.unc.edu

Philip S. Yu

IBM T. J. Watson Research Centers 19 Skyline Drive
Hawthorne New York 10532, USA

psyu@us.ibm.com

Microarrays are one of the latest breakthroughs in experimental molecular biology, which
provide a powerful tool by which the expression patterns of thousands of genes can be
monitored simultaneously and are already producing huge amount of valuable data. The
concept of bicluster was introduced by Cheng and Church (2000) to capture the coher-
ence of a subset of genes and a subset of conditions. A set of heuristic algorithms were
also designed to either find one bicluster or a set of biclusters, which consist of iterations
of masking null values and discovered biclusters, coarse and fine node deletion, node
addition, and the inclusion of inverted data. These heuristics inevitably suffer from some
serious drawback. The masking of null values and discovered biclusters with random
numbers may result in the phenomenon of random interference which in turn impacts
the discovery of high quality biclusters. To address this issue and to further accelerate
the biclustering process, we generalize the model of bicluster to incorporate null values
and propose a probabilistic algorithm (FLOC) that can discover a set of k possibly over-
lapping biclusters simultaneously. Furthermore, this algorithm can easily be extended
to support additional features that suit different requirements at virtually little cost.
Experimental study on the yeast gene expression data shows that the FLOC algorithm
can offer substantial improvements over the previously proposed algorithm.

1

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

2

1. Introduction

Microarrays are one of the latest breakthroughs in experimental molecular biology,
which provide a powerful tool by which the expression patterns of thousands of
genes can be monitored simultaneously and are already producing huge amount
of valuable data. Analysis of such data is becoming one of the major bottlenecks
in the utilization of the technology. The gene expression data are organized as
matrices — tables where rows represent genes, columns represent various samples
such as tissues or experimental conditions, and numbers in each cell characterize
the expression level of the particular gene in the particular sample. Investigations
show that more often than not, several genes contribute to the same pathway, which
motivates researchers to identify a subset of genes whose expression levels rise and
fall coherently under a subset of conditions, that is, they exhibit fluctuation of a
similar shape when conditions change. Discovery of such clusters of genes is essential
in revealing the significant connections in gene regulatory networks.

The concept of bicluster was introduced by Cheng and Church (2000) to cap-
ture the coherence of a subset of genes and a subset of conditions. Unlike previous
methods that treat similarity as a function of pairs of genes or pairs of conditions,
the bicluster model measures coherence within the subset of genes and conditions.
This model may be particularly useful to disclose the involvement of a gene or a
condition in multiple pathways, some of which can only be discovered under the
dominance of more consistent ones. The coherence score is defined as a symmetric
function of genes and conditions involved and thereby the biclustering is a process of
simultaneous grouping of genes and conditions. The so called mean squared residue
was employed and was applied to expression data transformed by a logarithm and
augmented by the additive inverse. While the mean squared residue represents the
variance of the selected genes and conditions with respect to the coherence, the goal
of biclustering is to find biclusters with low mean squared residue. In gene expres-
sion data analysis, this goal is often accompanied with an additional requirement
of reasonably large row variance. The rationale is that a low mean squared residue
only indicates that the gene expression levels fluctuate approximately in unison,
which also includes the constant biclusters where there is no or little fluctuation at
all. These trivial biclusters may not be as interesting as the biclusters where the set
of genes show strikingly similar up-regulation and down-regulation under the set of
conditions. It has been proven that the problem of finding biclusters satisfying these
criteria is NP-hard in general. Therefore, a set of heuristic algorithms were designed
by Cheng and Church (2000) to either find one bicluster or a set of biclusters, which
consist of iterations of masking null values and discovered biclusters, coarse and fine
node deletion, node addition, and the inclusion of inverted data. The computational
complexities are in the order of O(MN × (M + N)× k) for discovering k biclusters
where M and N are the number of conditions and the number of genes, respectively.
The proposed heuristics, which have been demonstrated to be able to produce good
quality biclusters, inevitably suffer from some serious drawback. The masking of

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

3

null values and discovered biclusters was performed by replacing the relevant cells
with random numbers. The rationale of replacing missing values with random num-
bers was that these random values only have a mathematical chance to form any
recognizable pattern and therefore would not result in distorted biclustering. The
original intention of masking discovered bicluster was to ensure that each successive
run of the (deterministic) algorithm outputs a different bicluster in the case where
multiple biclusters are preferred. In both cases, even though the random data is
unlikely to form any fictitious pattern, there exists a substantial risk that these
random numbers will interfere with the future discovery of biclusters, especially
those ones that have overlap with the discovered ones. We call this phenomenon
the random interference. Our experimental study has confirmed that this random
interference will impact the biclustering result.

To address this issue and to further accelerate the biclustering process, we gen-
eralize the model of bicluster to incorporate null values and propose a probabilistic
algorithm (FLOCa) that can discover a set of k possibly overlapping biclusters
simultaneously. Furthermore, this algorithm can easily be extended to support ad-
ditional features that suit different application needs at virtually little cost. Typical
features include the maximum amount of overlap allowed between biclusters, the
maximum/minimum size of each bicluster, the minimum overall coverage of the bi-
clusters, and so on. The general process of FLOC consists of iterations of series of
gene and condition moves (i.e., selections or deselections) aiming at achieving the
best potential residue reduction. During the course of biclustering, certain move
may be “blocked” temporarily if performing such move would lead to an unfavor-
able situation such as producing a trivial bicluster or violating one or more feature
constraints. We implemented FLOC to find 100 biclusters on the same yeast data
containing 2884 genes and 17 conditions with the same parameter setting as in
Cheng and Church (2000) and found that the biclusters returned by FLOC, on av-
erage, have a comparable mean squared residue but a larger size than that reported
by Cheng and Church (2000). In addition, FLOC is able to locate these biclusters
much faster than the algorithms proposed in Cheng and Church (2000).

The remainder of this paper is organized as follows. We present the generalized
bicluster model in Section 2. Section 3 and 4 present our basic FLOC algorithm
and some additional improvements, respectively. Experimental results are shown in
Section 5 and we draw the conclusion in Section 6.

2. The General Model of Bicluster

In this section, we formally present the generalized bicluster model that can handle
null values in a seamless manner. (In the remaining of this paper, we use the term
of biclusters to refer to the generalized biclusters.) A bicluster is defined on a gene-
expression matrix. Let � = {A1, A2, . . . , AM} be the set of conditions and � =

aFLOC stands for FLexible Overlapped biClustering

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

4

{O1, O2, . . . , ON} be the set of genes. The data can be viewed as an M ×N matrix
D of real numbers. Each entry dij in this matrix corresponds to the logarithm of the
relative abundance of the mRNA of a gene Oi under a specific condition Aj , and
may have a null value. Figure 1 illustrates the general format of the data matrix.

1 AA AA A

ge
ne

s

2 3 i M

ij

2

3

j

N

1O
O
O

O

O

d

conditions

Fig. 1. The Data Matrix

A bicluster essentially corresponds to a submatrix that exhibits some coherent
tendency. Formally, each bicluster can be uniquely identified by the set of relevant
genes and conditions. Even though allowing missing values brings great flexibility to
the bicluster model, the amount of missing entries in a bicluster should be limited
to some extent to avoid trivial cases. The rule of the thumb is that, despite the
missing values, there should still be sufficient evidence to demonstrate the coherency.
In Figure 2 (a), many values are missing, which prevents any potential coherence
from being observed, even though there is no sign that contradicts the existence
of coherence either. To exclude this kind of situation from being considered as a
meaningful bicluster, we introduce a parameter α (which is a positive number less
than or equal to 1) to limit the amount of missing values for each gene and each
condition in a bicluster.

gene 2

gene 3

cond 1 cond 2 cond 3 cond 4 cond 1 cond 2 cond 3 cond 4

gene 1

gene 2

gene 3

gene 1

(b) a bicluster

1

3

3

4

4

1

3

3

4

4

4

5

3

35

(a) not a valid bicluster

Fig. 2. Missing Values in Biclusters

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

5

Definition 2.1. For a given matrix � × � and an occupancy threshold α, a bi-
cluster (of α occupancy) can be represented by a pair (I, J) where I ⊆ {1, . . . , M}
is a subset of genes and J ⊆ {1, . . . , N} is a subset of conditions. For each gene
i ∈ I, |J′

i|
|J| > α where |J ′

i | and |J | are the number of specified conditions for gene i in
the bicluster and the number of conditions in the bicluster, respectively. Similarly,
for each condition j ∈ J ,

|I′
j |

|I| > α where |I ′j | and |I| are the number of specified
genes under condition j in the bicluster and the number of genes in the bicluster,
respectively.

Let α = 0.6, the submatrix in Figure 2 (a) is not a valid bicluster while the submatrix
in Figure 2 (b) is a bicluster. The number of specified (non-missing) entries in the
corresponding submatrix is referred to as the volume of the bicluster.

Definition 2.2. The volume of a bicluster (I, J) (vIJ) is defined as the number
of specified entries dij such that i ∈ I and j ∈ J .

In the case that all entries are specified, vIJ = |I| × |J | where |I| and |J | are
the number of conditions and the number of genes participating in the bicluster,
respectively. Figure 3(a) shows a gene expression matrix with ten genes (one for
each rows) under five conditions (one for each column). The bicluster defined by
picking I = {2, 3, 8} and J = {1, 3, 5} is shown in Figure 3(b). The volume of this
bicluster is 9.

5

7

8

1

2

3

6

10

9

2 51 3 4

4

5

7

8

1

2

3

6

10

9

2 51 3 4

401

318

4

120

conditions

4392 284 228

401 281

277318 280

580

271

285

277

278

273

274

401

2857

228

538

312

329

292

285

290

272

288

296

109

120

4108

48

266

40

33

238

226

224

236

232

228

(a) a data matrix

37 37

298

215

322 41 219

298

215

322 41 219

275

ge
ne

s

conditions

ge
ne

s

(b) a bicluster

Fig. 3. An Example of Bicluster

In order to properly accommodate various expression levels associated with each
gene and each condition within a bicluster, we introduce a concept — base.

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

6

Definition 2.3. For a given bicluster (I, J), the base of a gene Oi is defined as the

average value of Oi for all specified conditions in J , diJ =
�

j∈J′
i

dij

|J′
i| where J ′

i ⊆ J

is the set of specified conditions in J for gene Oi. Similarly, the base of a condition

Aj is the average specified value of Aj taken by all genes in I, i.e., dIj =
�

i∈I′
j

dij

|I′
j |

where I ′j ⊆ I is the set of genes whose value is specified in condition Aj . The base
of the bicluster is the average value of all specified entries of the submatrix defined
by (I, J), i.e., dIJ =

�
i∈I,j∈J dij

vIJ
where vIJ is the volume of the bicluster.

For example, we have d2,J = 273, d3,J = 190, d8,J = 194, and dI,1 = 347,
dI,3 = 66, dI,5 = 244, and dIJ = 219 in Figure 3(b). While diJ and dIj take
care of the potential tendency that may associate with each individual gene or
condition, the value of dIJ set the base point of the entire bicluster. In a perfect
bicluster where each gene and condition exhibits an absolutely consistent tendencyb,
the value of each entry dij can be uniquely determined by its gene base diJ , its
condition base dIj , and the bicluster base dIJ . The difference diJ −dIJ is essentially
the relative tendency held by gene Oi in contrast to other genes in the bicluster.
This tendency should hold exactly on the entry dij as well in a perfect bicluster.
That is, dij − dIj = diJ − dIJ . Consequently, we have dij = diJ + dIj − dIJ .
Figure 3(b) is a perfect bicluster even though the values are quite far apart (which
may produce poor quality bicluster(s) of the traditional meaning). For example, the
entry d2,1 = d2,J − dI,1 + dIJ = 273 − 347 + 219 = 401 and this property holds for
every entry in Figure 3(b).

In practice, the bicluster may not always be perfect. The concept of residue
is thus introduced to quantify the difference between the actual value of an entry
and the expected value of an entry predicted from the corresponding gene base,
condition base, and the bicluster base.

Definition 2.4. The residue of an entry dij in a bicluster is rij = dij −diJ −dIj +
dIJ if dij is specified. Otherwise, rij = 0.

It is obvious that every entry in Figure 3(b) has a zero residue. The residue indeed
serves as an indicator of the degree of coherence of an entry with the remaining
entries in the bicluster given the tendency of the relevant gene and the relevant
condition. The lower the residue, the stronger the coherence. To assess the overall
quality of a bicluster, the residue of the bicluster can be defined as the mean
residue of all specified entries. The mean can be in the form of either arithmetic,
geometric, or square mean. In this paper, we use the square mean in the assessment
of the bicluster residue as in Cheng and Church (2000).

Definition 2.5. The residue of a bicluster (I, J) is rIJ =
�

i∈I,j∈J r2
ij

vIJ
where rij is

the residue of the entry dij and vIJ is the volume of the bicluster.

bThe entries of each gene (or condition) can be exactly generated by shifting the entries of other
genes (or conditions) by a common offset.

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

7

In the above example, the residue of the bicluster in Figure 3(b) is 0. The lower the
residue, the stronger the coherence exhibited by the bicluster, and the better the
quality of the bicluster. We also refer to a bicluster (I, J) as a r-residue bicluster
if its residue rIJ ≤ r where r is a constant number. In addition, we may prefer the
row variance to be relatively large to reject trivial biclusters.

Definition 2.6. The row variance of a bicluster (I, J) is defined as varI,J =
�

i∈I,j∈J (dij−diJ)2

vIJ
.

This accompanying score would warrant the bicluster to capture genes exhibiting
fluctuating yet coherent trends under some set of conditions. The basic bicluster
model can also be easily extended to support some additional features that may be
very useful in many applications.

• The amount of overlap allowed between a pair of biclusters Conso: Some
application may require mutually exclusive biclusters while others may pre-
fer some degree of overlap. The user can control the amount of overlap by
specifying some threshold.

• The coverage of the biclusters Consc: the number of genes/conditions
should be covered by any of the biclusters. In some case, the user may
want every gene to be covered by some bicluster.

• The balance between number of genes and conditions of the bicluster Consb:
the desirable ratio (or its range) between the number of genes and the
number of conditions of each bicluster can be also be specified if the user
prefers to find “balanced” biclusters.

• The volume of the final biclusters Consv: The user can also control the
volume of the final biclusters. This can be useful in the application where
certain statistical significance needs to be warranted.

We shall see later in this paper that our proposed algorithm can be applied with
minor modification to suit the above purposes and to produce promising results. A
list of notations and conventions that will be used throughout this paper is provided
in Table 1.

3. The Basic FLOC Algorithm

3.1. Algorithm Description

In general, the bicluster problem is NP-hard as proven by Cheng and Church (2000).
Thus, finding an exact solution could be time consuming. In this section, we present
a new probabilistic move-based algorithm called FLOC, which can efficiently and
accurately approximate the k biclusters with low mean squared residues. The data
is represented in the form of a matrix as shown in Figure 3(a) where the rows
correspond to the genes and the columns correspond to the conditions. The FLOC
biclustering algorithm starts from a set of seeds (initial biclusters) and carries out an

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

8

Table 1. Notation and Convention

D the data matrix

� the set of conditions

� the set of genes

M the number of conditions (i.e., M = |�|)
N the number of genes (i.e., N = |�|)
Aj the jth condition in �
Oi the ith gene in �
dij the entry in the matrix which corresponds to the value

of gene Oi on condition Aj

I (possibly with subscript) the subset of genes that participate in a bicluster

J (possibly with subscript) the subset of conditions that participate in a bicluster

(I, J) the bicluster defined by genes in I and conditions in J

vIJ the volume of the bicluster (I, J)

diJ the average value of entries corresponding to gene Oi

of all conditions in J

dIj the average value of entries corresponding to condition
Aj on all genes in I

dIJ the average value of entries corresponding to genes in
I and conditions in J

rij the residue of the entry dij with respect to some
bicluster

rIJ the residue of the bicluster (I, J)

r residue threshold

i (possibly with subscript) index term for gene

j (possibly with subscript) index term for condition

α the occupancy threshold

k number of biclusters

Conso the threshold of overlap between a pair of biclusters

Consc the percentage threshold of genes (or conditions)
covered by at least one bicluster

Consb the balance ratio threshold of each bicluster

Consv the volume threshold of each bicluster

ρ the probability that a row or column is assigned to
a bicluster at the initial phase

x a row or a column in the data matrix

c a bicluster

Action(x, c) the action of changing membership of x with
respect to c

a (possibly with subscript) an action

g (possibly with subscript) the gain of some action

iterative process to improve the overall quality of the biclustering. At each iteration,
each row and column is moved among biclusters to produce a better biclustering
in terms of lower mean squared residues. The best biclustering obtained during
each iteration will serve as the initial biclustering for the next iteration. The algo-
rithm terminates when the current iteration fails to improve the overall biclustering
quality.

The FLOC algorithm has two phases (Figure 4). In the first phase, k initial
biclusters are constructed. As we presented in the previous section, a bicluster con-

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

9

tains a set of genes (rows) and a set of conditions (columns). A parameter ρ is
introduced to control the size of a bicluster. For each initial bicluster, a random
switch is employed to determine whether a row or column should be included. Each
row and column is included in the bicluster with probability ρ. Consequently, each
initial bicluster is expected to contain M × ρ rows and N × ρ columns. If the per-
centage of specified values in an initial cluster falls below the α threshold, then we
keep generating new clusters until the percentage of specified values of all columns
and rows satisfy the α threshold. In this paper, the α is chosen as follows. Let D

be the original matrix, which has N rows and M columns. α is set to |D|
N×M where

|D| is the volume of D. In this case, we can guarantee that any biclusters of D has
at most the same percentage of unspecified values as D itself. (We will discuss how
to choose ρ in the next section.)

row and each column
determine the best action for each

perform the best action of every
row and column sequentially

improved?

generating initial biclusters

start

end

Y

N

Phase 1

Phase 2

Fig. 4. The Flowchart of the FLOC Algorithm

The second phase is an iterative process to improve the quality of the biclusters
continuously. During each iteration in the second phase, each row and each column
are examined to determine its best action towards reducing the overall mean squared
residue. These actions are then performed successively to improve the biclustering.
An action is defined with respect to a row (or column) and a bicluster. There are k

actions associated with each row (or column), one for each bicluster. For a given row
(or column) x and a bicluster c, the action Action(x, c) is defined as the change of
membership of x with respect to c. Note that this action is uniquely defined at any
stage. If x is already included in c, then Action(x, c) represents the removal x from

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

10

the bicluster c. Otherwise, Action(x, c) denotes the addition of x to the bicluster c.
Figure 5 shows a data matrix with 3 rows and 4 columns. Assume that we want to
find two biclusters and their current status is indicated by the dash lines. Bicluster 1
contains row 1, 2 and column 1, 2; whereas bicluster 2 contains row 2, 3 and column
1, 2, 3. Each row (or column) in Figure 5 is then associated with two actions, one for
each bicluster. For example, the actions associated with column 3 are (1) inserting
into bicluster 1, and (2) deleting from bicluster 2. The better action among these
two need to be identified and performed. In general, if the data matrix contains N

rows and M columns, then N + M actions will be performed during each iteration,
one for each row (or column). We will discuss shortly that sometimes an action may
be blocked temporarily during an iteration due to the violation of some constraint
(by the action).

4

1

3 4

3

column

2

row

3

2

1

21 3 4

2

3

4

cluster 2

cluster 1

0

2

Fig. 5. An Example of the Actions

Since there are k biclusters, the number of potential actions associated with
the row (or column) x is k. Among these k actions, the action that brings most
improvement needs to be identified. To assess the amount of improvement that can
be brought by an action, we introduce a new concept called gain. Since our objective
is to find biclusters with low residue (< r), the gain of an action Action(x, c)
is defined as a function of the relative reduction of c’s residue and the relative
enlargement of c’s volume as a consequence of performing Action(x, c).

Definition 3.1. Given a residue threshold r, the gain of an action Action(x, c) is
defined as Gain(x, c) = rc−rc′

r2
rc

+ vc′−vc

vc
where rc, rc′ are the residues of bicluster c and

the bicluster, c′, obtained by performing Action(x, c) on c, respectively. Similarly,
vc and vc′ are the volumes of c and c′, respectively.

When c has a much smaller residue than the threshold r (rc << r), the gain
measurement would favor those actions that enlarge c, especially if c has a small
volume. This encourages the FLOC algorithm to find large biclusters with tolerable
residues. On the other hand, when c’s residue is larger than r (rc << r), the

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

11

measurement of gain inclines to keep the residue of c under control, especially
if c already has a sufficiently large volume. Obviously, a positive gain indicates
that performing Action(x, c) has a potential to produce a better bicluster while a
negative gain suggests that such an action would be likely to degrade the bicluster
quality. Therefore, the intermediate goal during the course of biclustering becomes,
for each row (or column) x, to find and perform the action with the highest gain.
In the above example, the residue of bicluster 1 and bicluster 2 are 1

16 and 7
6 ,

respectively. Let r = 1 and consider the two actions associated with column 3: (1)
inserting into bicluster 1 and (2) deleting from bicluster 2. The resulting bicluster
after inserting column 3 into bicluster 1 would contain row 1,2 and column 1,2,3,
and its residue is 1

6 . Therefore, the gain of inserting column 3 into bicluster 1 is
1
16− 1

6
12

1/16

+ 2
4 = − 5

768 + 1
2 = 379

768 . Via similar computation, the gain of deleting column 3

from bicluster 2 is
7
6−1
12
7/6

− 1
3 = 7

36 − 1
3 = − 5

36 . Consequently, the first action is chosen

as the best action for column 3. Note that the best action for a row or column might
be negative. Such negative action(s) will still be performed. The rationale is that the
(temporary) degradation of the bicluster quality may lead to an ultimate (bigger)
improvement. We will explain shortly that such action will not take into effect if
the bicluster quality fails to improve by the end of the iteration. Nevertheless, the
highest gain of any action associated with a given row (or column) is positive in
many cases and will directly contribute to the improvement of the bicluster quality.
For example, the highest gain of any action associated with column 3 is 379

768 .
To compute the gain of a particular action, the residue of the resulting bicluster

(if the action was taken) needs to be computed. The straightforward way to com-
pute the residue after each action is to recompute from scratch. This involves the
computation of each gene base, each condition base, and bicluster base, and finally
the bicluster residue. A more efficient method is to recompute only those gene and
condition bases affected by the action. This can be done efficiently (in an incremen-
tal manner) if the gene bases and condition bases of the bicluster are maintained
along with the bicluster base throughout the course. This technique effectively re-
duces the time complexity from O(N × M) to O(N + M) where N and M are the
number of rows and the number of columns of the data matrix, respectively.

After the best action is identified for every row (or column), these N +M actions
are then performed sequentially. The best biclustering obtained during the last iter-
ation, denoted by best biclustering, is used as the initial biclustering of the current
iteration. Let Biclusteringi be the set of biclusters after applying the first i actions.
After applying all actions, we would obtain M + N sets of biclusterings. Among
them, if any biclustering with all r-biclustersc has a larger aggregated volume than
that of best biclustering, then there is an improvement in the current iteration.

cIt is possible that the biclustering at some stage contains some bicluster with residue larger than
r. The biclustering at this stage will not be considered even the aggregated volume is larger than
that of best biclustering.

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

12

The biclustering with the minimum average residue is stored in best biclustering

and the process continues to the next iteration. Otherwise, there is no improve-
ment in the current iteration and the process terminates. The biclustering stored
in best biclustering is then returned as the final result. It is obvious that the order
to perform these actions plays an important role in this process. The simplest way
to decide the order is to assume a fixed order among all actions, e.g., row 1 to row
N followed by column 1 to column M . We will explain in the next section that
the fixed ordering suffers from some inherit drawback that may be overcome by
employing a dynamic ordering.

3.2. Complexity Analysis

In the first phase, a set of k biclusters (seeds) are generated. Thus, the time com-
plexity of the first phase is O(k × (N + M)) where N and M are the number of
rows and columns of the matrix D while k is the number of the biclusters. The
second phase is a series of iterations. During each iteration, each possible action
of each row (or column) needs to be considered. There are k possible actions for a
given row (or column). Thus, (N + M) × k actions have to be considered. In turn,
the overall time complexity to evaluate all of these actions is O((N + M)2 × k).
The time complexity to perform an action is the same as to compute the gain of
that action which is O(N + M). There are (N + M) actions to perform. Thus, the
overall time complexity for an iteration is O((N +M)2 × k), which implies that the
complexity of the FLOC algorithm is O((N + M)2 × k × p) where p is the number
of iterations till termination. Note that FLOC has less computational complexity
than the Cheng-Church algorithm as it is typically the case where p << N + M .

3.3. Additional Features

As mentioned previously, the bicluster model can support many optional constraint
specified by the user. In order to enforce the constraint, the basic FLOC algorithm
needs to be modified. In the first phase where the set of initial biclusters are gener-
ated, the produced biclusters have to comply with the specified constraint. During
the second phase where the iterative improvement is carried out, some action may
be “blocked” temporarily (e.g., the gain is assigned to −∞) during an iteration if it
will result in the violation of some constraint. Only those actions that fully comply
with the constraint will be performed. For example, if an action would cause the
percentage of specified values for a gene or a condition in a bi-cluster falls below
α, then the gain of this action will be assigned to −∞. Furthermore, if all actions
for a row or column are associated with −∞ gain, then no action of this row or
column will be performed at this iteration. It is obvious that the result produced by
this modified version of the FLOC algorithm is guaranteed to satisfy the specified
constraint.

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

13

3.4. Inclusion of Inverted Rows

Sometimes, it is also interesting to discover genes that are co-regulated but receiving
opposite regulation. Their patterns essentially present mirror images. The FLOC
algorithm can also find this type of patterns by allowing bicluster to contain inverted
row(s). The rationale is that if a row resembles the mirror image of the rest set of
rows in a bicluster, the inverse of this row (obtained by augmenting the additive
inverse − to each entry of the row) should obey the same regulation as the rest set
of rows in the bicluster. The FLOC algorithm can be easily extended to discover
this type of patterns by introducing three new actions for each rowd x with respect
to each bicluster c.

(1) inserting the inversion of x in c if x does not participate in c yet,
(2) deleting the inversion of x from c if the inversion of x is currently in c,
(3) inverting x in c if either x or the inversion of x is currently in c.

Accordingly, the residue of an entry dij becomes

rij =

⎧⎨
⎩

0 if i /∈ I ′j
dij − diJ − dIj + dIJ if i ∈ I ′j
−dij − diJ − dIj + dIJ if −i ∈ I ′j

where

dIj =

∑
i∈I′

j
dij −

∑
−i∈I′

j
dij

|I ′j |
,

diJ =

⎧⎨
⎩

�
j∈J′

i
dij

|J′
i| if i ∈ I

−
�

j∈J′
i

dij

|J′
i| if −i ∈ I

,

dIJ =

∑
i∈I,j∈J dij −

∑
−i∈I,j∈J dij

vIJ
.

At any time during the biclustering, a row may have two possible actions with
respect to a cluster and a total of 2k actions are evaluated for each row, from which
the best one is chosen and performed during the biclustering process. Beside the
enriched set of actions, the rest part of the FLOC algorithm remains intact and so
does the computational complexity.

4. Improvements of the Basic FLOC Algorithm

In the previous section, we presented the basic algorithm that still has room for
improvement. In this section, we present the further optimization on two aspects of
the FLOC algorithm.

dThe actions for each column remain the same.

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

14

4.1. Initial Size of a Bicluster

As mentioned before, the parameter ρ is used to control the size of a bicluster in the
initial assignment phase. The average number of rows and columns in a bicluster is
ρ×N and ρ×M , respectively. We experiment with different value of ρ. If the optimal
bicluster size is very different from the initial (seed) bicluster size, then it would
take more iterations to reach the optimal bicluster and the response time could
be prolonged. In order to expedite the response time, it is beneficial to make the
initial seed as close to the optimal bicluster size as possible. The optimal bicluster
size is usually unknown in advance and may be significant disparate for different
biclusters. Therefore, we generate initial biclusters of different sizes, i.e., different ρ

values for different biclusters. In our experiments, we explore the effects of mixed
ρ values and find that our biclustering algorithm can well adjust the bicluster size
and discover both large and small biclusters.

4.2. Order of Actions

In the previous section, we assume the same order to perform actions at all itera-
tions. This implies that for the set of rows and columns that are at the beginning
of the order, their membership always has a higher priority to be changed than the
rows and columns at the end of the order. This approach has one drawback. If a
large number of actions with negative gain proceed a small number of actions with
positive gain at the end of the performance list, then the set of actions with posi-
tive gain may never be given a full play. To solve the problem, we need to deploy a
dynamic ordering among all actions. In this section, we discuss two possible ways
to determine the action order.

4.2.1. Random Order of Actions

In this approach, the order of actions are randomly determined at the beginning
of each iteration. This means that the membership of every column and row has
the same priority to be changed. There are many algorithms to produce a random
ordered sequence. Here we present one algorithm that can produce such a sequence.
Assume that these actions are stored in an array. A series of action swapping is then
performed, where each time two actions are randomly chosen and their positions are
swapped. This random swapping procedure repeats g times. We experiment with
various value of g and found that the randomness of the list is satisfactory where
g ≥ 2× (M + N). Thus, we chose g = 2× (M + N) to generate a random sequence
in this paper. An action on a specific row or column may be performed first at one
iteration, and performed very late at another iteration. With this technique, the
problem mentioned above can be avoided since the positive actions at the end of
one iteration may be at a very early position of the next iteration. Table ?? in the
experimental results section shows the benefit of this improvement.

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

15

4.2.2. Weighted Random Order of Actions

In the above random order scheme, each action has the same probability to be as-
signed as the first action, the second action, and so on, regardless its gain. It means
that a positive action has the same chance to be scheduled as the first action as
a negative action. Intuitively, it is more desirable to perform actions with greater
positive gain early so that its effect can be brought into play early. However, if we
sort the actions in descending order of their gains and perform them accordingly,
then we may only find the local optimal biclustering, but not the global optimal
biclustering. As a result, we propose a weighted random order scheme to provide
better ordering. Informally, this algorithm is very similar to the random order algo-
rithm. The only difference is whether a swap would occur for two randomly picked
actions. The rule of thumb is that if the action in the front has a larger gain than
the one in the back, then the swap is less likely to occur. Let’s consider two ac-
tions ai and aj and ai is in front of aj . The gain of the two actions are gi and
gj , respectively. The probability p(i, j) of swapping of ai and aj is a function of to
gj − gi. Let R be the difference between the maximum gain and minimum gain of
all actions. Then p(i, j) = 0.5 + gj−gi

2×R . When aj has the maximum gain and ai has
the minimum gain, then the probability of swapping ai and aj is 1. On the other
hand, if gj is the minimum gain and gi is the maximum gain, then p(i, j) = 0. In
the case that gi = gj , p(i, j) = 0.5. Table ?? shows the improvement of the weighted
random order algorithm. The weighted approach produces about 5% improvement
in the quality of the final biclustering over the random ordering due to the fact that
more positive actions are performed. In other words, the priority of membership
migration favors the row or column whose gain is high. As a result, the weighted
ordering can provide the best final biclustering.

5. Experimental Results

The FLOC algorithm is implemented with C programming language and is executed
on an IBM AIX machine. We compare our FLOC algorithm with the Cheng-Church
algorithm (CC algorithm) proposed by Cheng and Church (2000) on the yeast micro
array containing 2884 genes under 17 conditions. Table 2 shows the performance of
the two algorithms. Both algorithms are used to find 100 largest biclusters whose
residue is less than 300.

Table 2. Performance comparison of FLOC and CC al-
gorithms

CC algorithm FLOC algorithm

avg. residue 204.293 187.543

avg. volume 1576.98 1825.78

avg. gene num. 167 195

avg. cond. num. 12 12.8

time 12 min 6.7 min

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

16

At a glance, the FLOC algorithm is able to locate larger biclusters with smaller
residue in substantially less amount of computation time. This is due to the fact
that the FLOC algorithm is able to find highly coherent genes and condition which
will lead to less residue. On the other hand, since random data is used to replace the
discovered bicluster, the Cheng-Church algorithm tends to find smaller cluster with
less coherence, i.e., larger residue. For almost all biclusters discovered by the Cheng-
Church algorithm, they are subclusters of some bicluster discovered by the FLOC
algorithm. Due to space limitations, we show two examples in this paper. Figure 6
shows two biclusters output by the FLOC algorithm, which entirely encompass some
bicluster reported by the Cheng-Church algorithm. In Figure 6(a), the fine curves
represent the expression levels of genes in bicluster 66 in Cheng and Church (2000)
while the bold curve is the additional gene (YOR074C) discovered by FLOC, which
also exhibits a similar behavior as the rest. It is interesting to know that the residue
decreases with the inclusion of this gene because the addition of highly coherent
matches will reduce the residue. Figure 6(b) presents another bicluster that contains
two more conditions (condition 0 and condition 9) and six more genes (YAR007C,
YAR008W, YBR089W, YDR097C, YJL187C, and YKL113C) than bicluster 95
reported by the Cheng-Church algorithm. The residue of this bicluster is 279.85
comparing to residue 311.7 of the bicluster reported by Cheng-Church algorithm.

0 2 4 6 8 10 12 14 16
50

100

150

200

250

300

350

400

450

Conditions

E
xp

re
ss

io
n

va
lu

e

(a)

0 2 4 6 8 10 12 14 16
50

100

150

200

250

300

350

400

450

500

Conditions

E
xp

re
ss

io
n

va
lu

e

(b)

Fig. 6. Discovered Biclusters

After a thorough study, we found that the deficiency of the Cheng-Church algo-
rithm results from a combined effect of the random interference and the vulnerability
of the Cheng-Church algorithm to local optimum. As the Cheng-Church algorithm
proceeds, more biclusters are located and are masked with random data, and the
phenomenon of random interference becomes more severe, which impacts the discov-
ery of large biclusters. For instance, the missed genes by Cheng-Church algorithm
in Figure 6 is due to the fact that all (or majority) of the conditions on the missing
genes have been included in some previous discovered biclusters. As a result, the
exact value is replaced by some random numbers, and in turn, they are not included

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

17

in the new bicluster. On the other hand, the order of bicluster discovery has little
importance in our FLOC algorithm. Therefore, FLOC is able to include these genes
in the discovered bicluster. This can be further confirmed by Figure 7 which show
the trends (after smoothing) of residues and volumes presented by the 100 biclusters
from the Cheng-Church algorithm. Note that this results in smaller average volume
over the discovered biclusters comparing to FLOC. Nevertheless the average residue
under FLOC is still smaller as the additional genes are high quality matches. We
believe that the random interference is the prime reason to cause this phenomenon.

0 10 20 30 40 50 60 70 80 90 100
200

210

220

230

240

250

260

270

280

Bicluster number

T
re

nd
 o

f r
es

id
ue

0 10 20 30 40 50 60 70 80 90 100
0

2000

4000

6000

8000

10000

12000

Bicluster number

T
re

nd
 o

f v
ol

um
e

Fig. 7. Trend of Cheng-Church algorithm

5.1. Order of Actions

One of the improvements that we made to the FLOC algorithm is the action reorder-
ing at the beginning of each iteration. Table 2 shows the effects of action reordering.
There are three ordering methods: fixed, random, and weighted random. Since the
FLOC algorithms using random order and weighted random order are not deter-
ministic algorithms (i.e., each run may produce different results), we also include
the range in addition to the mean value for each measure we took. It is clear that
the weighted random ordering is the winner. We believe that this is due to the fact
that the weighted random order favors actions with large gains while still allow
enough room for the algorithm to surpass local optimum.

5.2. Initial Bicluster Volumes

We also studied the effect of initial bicluster volume to the performance of FLOC.
In all the test, the volume of initial bicluster follows the Erlang distribution with
various mean and variance. We found that the performance of FLOC is robust and
shows little dependency on the varying volume of initial biclusters. Even if the initial

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

18

Table 3. Performance comparison of different action orders in FLOC

fixed order random order weighted random order

avg. residue 199.393 192.67± 10 187.543 ± 10

avg. volume 1696.11 1753.26 ± 1825.78± 100

avg. gene num. 177 188 ± 10 195 ± 10

avg. cond. num. 12 13± 1 12.8± 1

time 8.3 min 8.5 ± 0.4 min 6.7 ± 0.3 min

biclusters are far from the optimal ones, our FLOC algorithm can still “reshape”
the biclusters into good quality.

6. Conclusions

In this paper, we proposed a generalized model of bicluster to address potential
problems when dealing with gene expression data with missing values. Our obser-
vation of the random interference phenomenon, which is inherit to the “masking”
operation in the Cheng-Church algorithm, motivates us to devise and deploy a novel
algorithm, FLOC, to efficiently discover biclusters on gene expression data. The key
feature of the FLOC algorithm is to trigger temporary “blocking” of certain action
if such action has a potential to violate any criterion. This mechanism not only
enables the FLOC algorithm to deliver better result faster than the Cheng-Church
algorithm, but also enriches the bicluster model by supporting additional feature
constraint at nearly no extra cost.

References

Aach, J., Rindone, W., and Church, G. (2000) Systematic management and analysis of
yeast gene expression data. Genome Research, 10, 431-445.

Alizadeh, A. et al. (2000) Distinct types of diffuse large B-cell lymphoma identified
by gene expression profiling. Nature, 403, 503-510.

Ben-Dor, A. and Yakhini, Z. (1999) Clustering gene expression patterns. Proc. ACM
RECOMB, 33-43.

Ben-Dor, A., Friedman, N., and Yakhini, Z. (2001) Class discovery in gene expression
data. Proc. ACM RECOMB, 31-38.

Bussemaker, H., Li, H., and Siggia, E. (2001) Regulatory element detection using corre-
lation with expression. Nature Genetics, 27, 167-171.

Califano, A., Stolovitzky, G., and Tu, Y. (2000) Analysis of gene expression microar-
rays for phenotype classification. Proc. ISMB.

Cheng, Y. and Church, G. (2000) Biclustering of expression data, Proc. ISMB.

Cho, R., Campbell, M., et al. (1998) A genome-wide transcriptional analysis of the
mitotic cell cycle. Mol. Cell, 2, 65-73.

February 2, 2005 15:54 WSPC/INSTRUCTION FILE paper

19

Eisen M. and BrownP. (1999) DNA arrays for analysis of gene expression. Methods
in Enzymology, 303, 179-205.

Eisen, M., Spellman, P., et al. (1998) Clustering analysis and display of genome-wide
expression patterns. Proc. Natl. Acad. Sci. USA, 96, 14863-14868.

Hartuv, E., Schmitt, A., Lange, J., Meier-Ewert, S., Lehrach, H., and Shamir, R. (1999)
An algorithm for clustering cDNAs for gene expression analysis using short oligonu-
cleotide fingerprints. Proc. ACM RECOMB, 188-197.

Kaufmann, L. and Rousseuw, P. (1990) Finding groups in data – an introduction to
cluster analysis, Wiley series in Probability and Mathematical Statistics.

Mirkin, B. (1996) Mathematical Classification and Clustering, Kluwer.

Segal, E., Taskar, B., Gasch, A., Friedman, N., and Koller, D. (2001) Rich probabilistic
models for gene expression. Bioinformatics, 17, 243-252.

Sharan, R. and Shamir, R. (2000) CLICK: a clustering algorithm with applications
to gene expression analysis. Proc. ISMB.

Tavazoie, S., Hughes, J., Campbell, M., Cho, R., and Church, G. (1999) Systematic
determination of genetic network architecture. Nature Genetics, 22, 281-285.

Xing, E. and Karp, R. (2001) CLIFF: clustering of high-dimensional microarray data
via iterative feature filtering using normalized cuts. Bioinformatics, 17, 306-315.

Yeast Micro Data Set, available at http://arep.med.harvard.edu/network discovery.

Zien, A., Aigner, T., Zimmer, R., and Lengauer, T. (2001) Centralization: a new method
for the normalization of gene expression data. Bioinformatics, 17, 323-331.

