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ABSTRACT

Motivation: High density SNP data of model animal resources
provides opportunities for fine resolution genetic variation studies.
These genetic resources are generated through a variety of breeding
schemes that involve multiple generations of matings derived from
a set of founder animals. In this paper we investigate the problem
of inferring the most probable ancestry of resulting genotypes,
given a set of founder genotypes. Due to computational difficulty,
existing methods either handle only small pedigree data or disregard
the pedigree structure. However, large pedigrees of model animal
resources often contain repetitive sub-structures which can be utilized
in accelerating computation.

Results: We present an accurate and efficient method that can
accept complex pedigrees with inbreeding in inferring genome
ancestry. Inbreeding is a commonly used process in generating
genetically diverse and reproducible animals. It is often carried out
for many generations and can account for most of the computational
complexity in real-world model animal pedigrees. Our method builds a
Hidden Markov Model that derives the ancestry probabilities through
inbreeding process without explicit modeling every generation. The
ancestry inference is accurate and fast, independent of the number of
generations, for model animal resources such as the Collaborative
Cross (CC). Experiments on both simulated and real CC data
demonstrate that our method offers comparable accuracy to those
methods that build an explicit model of the entire pedigree, but much
better scalability with respect to the pedigree size.

Contact: weiwang@cs.unc.edu

1 INTRODUCTION

Model organisms, such as laboratory mice, are frequéirtyg or
crossedin order to study genetic influences (Churclillal., 2002;
Valdaret al., 2006; Chiaet al., 2005). Often, such animal resources
are generated using prescribed breeding system to ensersit)i
and reproducibility, which leads to complex pedigree gtre
consisting of many generations. Through recombinatioa,GNA
sequences of founder organisms are intermixed in each ajérer

ancestry of resulting DNA sequences. In other words, whit p
of a resulting DNA sequence is inherited from which founder.

The vast majority of the sequence variations are attribtoed
single base-pair mutations knownsasgle-nucleotide polymorphism
(SNPs), thus making SNPs ideal for resolving the genomesanyce
problem. The set of SNPs on the same chromosome constitutes a
haplotype While any of the four nucleotides (A, T,C,G) is possible,
in practice nearly all SNPs appear in only two variationsisTh
results from the fact that SNPs originate as mutations, lwéie rare
events within a vast genome. It is therefore convenient tméa
a SNP allele as a binary value and represent haplotypes asybin
sequences. Modern high-throughput genotyping technedogre
unable to distinguish between the two haplotypes of a diploi
organism. Instead, genotype sequenég measured where, at each
SNP site, one of three possibilities is observg@D( 01, 11}, since
10 cannot be distinguished frofi).

Using the genotype representation for DNA sequences, the
genome ancestry problem estimates the origin of each gemoty
from a descendant’s sequence given the genotype sequenites o
distant founders. To achieve high resolution, dense SNKkergr
are used ( tens of thousands on each chromosome ). Knowledge
of genotype’s ancestry is particularly useful in many peois
such as studying the structure and history of haplotype kisloc
(Gabriel et al., 2002; Zhanget al, 2002; Schwartzt al, 2004),
and mapping quantitative trait loci (QTLs)(Valdetral., 2006; Mott
etal, 2000). In these studies, a probabilistic interpretasdavored
over discrete solutions, due to the prevalence of ambeguiind
measurement errors.

The genome ancestry problem is closely related to haplotype
inference with pedigree data. Inferring haplotypes in aigree
often involves solving the inheritance flow of alleles at teac
generation. On the other hand, given the genome ancestry
information, it is straightforward to reconstruct the dmsgant
haplotypes. As pedigree analysis is NP-hard (Piccolbord an
Gusfield, 2003), existing algorithms are either approxenat
suffer exponential running times. Among the maximum liketid
approaches, methods (Kruglyakal., 1996; Abecasist al., 2002;
Gudbjartssoret al., 2005) based on the Lander-Green algorithm

A DNA sequence of any descendant organism is a mosaic of it§) ander and Green, 1987) are often favored because theimngn

founders’ DNA segments. As recombinations at each breedagge
cannot be observed directly, it is of great interest to irfes

*to whom correspondence should be addressed

time is linear to the number of markers. MERLIN (Abecasisl.,
2002), an implementation based on sparse binary trees, €és on
of the most successful pedigree analysis programs. Umfaizly,
methods based on Lander-Green algorithms are limited tigyees
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of moderate size since the running time grows exponentiaiti

the inbreeding model into the inheritance vectors, we desig

pedigree size. MCMC sampling methods (Sobel and Lange,;1998 ander-Green-like algorithm whose running time remainsstant
Jensen and Kong, 1999) have been proposed to address largeith respect to the number of inbreeding generations. Ouhaoke

pedigrees. But their computing time can be substantial valpelied

to a large number of tightly linked markers. Other effortslinle
rule-based methods (Qian and Beckmann, 2002; Li and Ji&0§)2
which approximates a solution by minimizing recombinasiamthe
pedigree (MRHC). PedPhase (Li and Jiang, 2005), which eyaplo
an effective integer linear programming (ILP) formulatibas been
widely used in solving the MRHC.

is implemented and evaluated on the Collaborative Crosxirg
design (Churchillet al,, 2002) with dense SNP data. Experiments
show that, our approach generates accurate results efffyjcimm
data that cannot be handled by existing pedigree haplayypin
software. Compared with HAPPY, which does not considergreei
structure, our approach significantly reduces ambiguéieserrors

in ancestry inference.

Current haplotyping methods for pedigrees are incapable of
solving the genome ancestry problem in animal resources for

the following reasons: 1) Pedigrees of model animal ressurc
often contain large number of generations to ensure diveasid
reproducibility. 2) None or few of the intermediate geninas are

genotyped due to the size of the resources. 3) A large numb
of dense markers are genotyped to achieve fine resolutiora As
concrete example, more than one thousand lines have betdsta

in the Collaborative Cross project (Churclatial., 2002). Each line
is expected to undergo at least 23 generations before renéBbdo
inbred. Hundreds of mice of various generations were g@eoty

but on average only few are from the same line. The missinth

genotypes make the search space extraordinarily large.

Other computationally efficient approaches for solving the
genome ancestry problem have largely ignored the breedin

scheme. While breeding design does not determine the doxsadif
recombination, it often places constraints on the posshlsestry

choices at a single site and at neighboring sites. The genom

ancestry problem was modeled as a combinatorial optinoizati
problem in (Zhanget al,, 2008). By minimizing recombinations,
discrete solutions are generated. Mott et al. has proposed

approach using Hidden Markov Model (HMM) for ancestry

inference in HAPPY (Valdaet al, 2006; Mottet al., 2000), a
QTL mapping tool suite for association studies. All foungeirs
are considered as possible hidden states for emitting teerodd
genotype at each site. Besides founder genotypes, no pedigta
are used in these two approaches.

a

2 THE GENOME ANCESTRY PROBLEM

Given a pair of chromosomes, we consideSNP markers ordered
by their chromosomal locations. For each SNP site, we used0 an

I to encode the two possible values. The genotype at each site

is the unordered combination of corresponding alleles flmth
chromosomes, which can assume one of three values: 00, 01,
11. A genotype sequence is a genome-ordered set of genotypes
denoted asG = g¢i...gi...g1, (g1 € {00,01,11}). A haplotype
H = hy...h;...hy, consists of alleles from one of the chromosomes
ereh; € {0,1}.
Consider a pedigree containing a set of foundér§
F1,..,Fy} and a descendant of interest. We denote the set
f founder genotype sequences 1, ..., Gry }, all of which
are given. Given the genotype sequen€d,, of the descendant
enerated through the pedigree structure, its genometanceso
e determined. Every genotypgein G p inherits its alleles from two
founders, say’4 and Fz. We refer to the founder pa{#4, Fz) as
the genome ancestry at sitef genotype sequend&p. We want to

estimate, for every SNP sife the probabilityP(Ancestry(gi)
(Fa, Fp)) for every founder paifFa, Fp)cFSxFS. Note that
founder pairs are unorderedHs, Fg) = (FB,Fa)), and it is
possible that's = Fz.

There have also been many efforts to analyze pedigree b§ MODELING INHERITANCE IN PEDIGREE

identifying symmetries in HMM state space (Donnelly, 1983;

McPeek, 2002; Browning and Browning, 2002; Geigeal., 2009).
The states are then grouped to accelerate the calculatmmeVér,
finding the maximal grouping is non-trivial. In real-worldgblems,
only obvious symmetries such as founder phase and chaitateu
in pedigree can be best utilized.
Besides model organisms, the genetic ancestry problemewas b

studied for human individuals that have recently been adchirom

a set of isolated populations, instead of a set of foundarg(T
et al, 2006; Sundquiset al., 2008; Sankararamaet al., 2008;

We start from the standard Lander-Green approach to model a
pedigree: At each SNP site, an inheritance indicator is ueed
indicate the outcome of each meiosis. These inheritandeatois
together form the inheritance vector. Since a child haplety
inherits its allele from either the paternal or maternalusgge, an
inheritance indicator is a binary variable. For a pedigreth w
non-founder animals, there a2ex n inheritance indicators at each
site. Hence, the inheritance vector at dite);, can be defined as

a binary sequence of lengthx n. An instance ofv; specifies a
possible configuration of inheritance flow at sitef all animals in

Pasaniucet al, 2009). In this problem, pedigree structure is the pedigree. When SNP markers are dense enough, we caneassum
usually not present. Efficient methods have been developed tat most one recombination between two sites in generatireg on

handle large-scale datasets(Tangl., 2006; Sundquisit al., 2008;
Sankararamaat al., 2008).

Leveraging the observation that large animal resourcegpeet
often contain repetitive sub-structures, we propose a odethat
can efficiently handle complex pedigrees with inbreedindctviis
an important process in generating animal resources. Usioar
of dependent quaternary indicators to capture all recoatioins
in the inbreeding history, our method achieves accuratesinc
inference without explicit modeling every generation. Bizeding

haplotype. If a recombination happens betweenisited/ + 1, the
corresponding inheritance indicator will have differetattss for the
two sites. Hence, to measure the number of recombinatidnseba
landl+ 1 in the whole pedigree, we can count the difference in bits
betweenv; andv;41. The probability of havingl recombinations
betweenl and! + 1 is 0%(1 — 6)?"~%, wheref is the recombination
fraction.

The length of inheritance vector grows linearly with the temn
of animals in the pedigree and this causes exponential griowihe
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number of possible inheritance patterns. Consideringdlethat  quaternary indicator. Each choice of the quaternary itdichas
full pedigree analysis is computationally intractable, ewercome  1/4 probability. Two quaternary indicators are needed for the t
the issue by modeling important sub-structure in breedysgesns  haplotypes of al;, descendant (Figure 1(b)). However, the two
as a shortcut to efficient computation. Our first natural chaf  quaternary indicators are not independent as the two hggast
sub-structure is inbreeding: 1) Inbreeding is often usedatel share the same inbreeding history unijl_;. To model this
animal resources to generate genetically diverse andioodacible  dependency between the two quaternary indicators, we find ou
descendants. 2) Inbreeding is often carried out for mangiggions  the transition events and probabilities of the pair of iatlics. The
and each generation elongates the inheritance vectors ht{s.4 b grouped pair is then used as an aggregated inheritanceaiodi&s
Hence, if a pedigree involves inbreeding, the inbreedingegations  discussed above.

often account for most of the computational complexity. \&feksan We label the fourl, haplotypes ad,2,3,4. We then denote
aggregated inheritance indicator to replace the colleatiomany by a,b the two I, descendant haplotypes arft{a;), S(b;) are
inheritance indicators in the inbreeding process. Suctygregated  their Iy sources at sité, i.e., S(a;), S(bi) € {1,2,3,4}. Their
indicator can be encoded in much shorter length and incatpdr 1, sources along the chromosome is denotedStoy), S(b) €
into the inheritance vector. If the state and transitiorbptwlity of {1,2,3,4}*. A transition happens irf(a) between sitel and
the aggregated indicator can be modeled efficiently, fulligee [ + 1 if S(ai)#S(ai+1). We consider, between two adjacent
analysis will become feasible on these animal resourcebelnext  sites,/ andl + 1, all the possible transitions frorfi(a;), S(b;) to
section, we explain how inheritance in inbreeding genenatican ~ S(ai+1), S(bi+1) (Table 1).

be modeled as an aggregated indicator.

Note that:
0
Pgpo + Peni + Prr2 + Pen2 = P(S(a1) = S(b)) =
1,
Prro+ Per2 + Pne1 + Pve2 = P(S(air1) = S(big1))
1 and
: PnE1+ Pyno + Pynt + Pyne + Pyez = P(S(a)#S(b)) =
I
' Ppn1+ Pen2+Pynno+Pyni + Pz = P(S(ai41)#S(bi+1))
L a b

The prior probabilityP(S(a;) = S(b;)) at any sitel is called the
inbreeding coefficienfWright, 1922). To calculate the probability,

let IC, denote the inbreeding coefficient at generatipn/ C. can
k—2
1, be computed recursively using@’, = » (%)k’j x (1+IC;).

(@

j=0
Next, we derive the probabilities in Table 1. Consider that a
I a b transition inS(a) or S(b) is caused by one or more recombinations
in the inbreeding process (Figure 1(a)). Our calculatiobased
(b) on the assumption that the recombination fractiris reasonably
small. Hence, for any haplotypeat generatiory; (1<j<k), we
assume that any single transition $f{c) is solely caused by one
Fig. 1. (a) Lattice of binary inheritance indicators representitie ~ '€COmbination in generating or its ancestor haplotypes. In other
inheritance pattern of an inbreeding process at a single(sl)t An equivalent ~ Words, a single transition irf(c) is not the result of multiple
quaternary indicator representation recombinations in the pedigree. Our assumption is geyetale
for dense SNP markers whefeis usually well below0.001.
Under the assumption, if a transition ifi(c) is caused by a
) . . recombination in generating itself, we define this to be &ad
31 Modeling Inbreeding Generations transition Intuitively, a lead transition is one not inherited frors it
During inbreeding, offspring are produced by sibling mgsifor ~ ancestors. A lead transition irwill change thel, source of: and all
many generations. At each generation, four new haplotypes a descendant haplotypes inheriting the transition. A leadsition is
formed by recombining the four haplotypes from the previousonly possible when the two parental haplotypeg bfve different
generation. The inbreeding process at a single site is shown I, sources. Hence, between two sites, a haplotype at gerreyatio
Figure 1(a). We denote the beginning generation of inbregds  has a lead transition with probabilityx (1 — IC;_1).
generation/,. Observe that, at each site, because of the symmetry With the inbreeding coefficients calculated, we can derhe t
of inbreeding structure, the four alleles at generafiphave equal marginal probability of observing transition in one of thg
probabilities to be passed down to any haplotypes dfteThus,  haplotypes,Pir = P(S(ai)#S(ai+1)) = P(S(b1)#S(bi41))-
for a descendant haplotype at generatian(k > 2), we can  Without loss of generality, we considé?(S(a;)#S(ai+1)) for
simply replace the lattice of binary inheritance indicatoy a single  haplotypea. S(a) will transition if a itself or any of its ancestor
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Sitel Possible Transitions Sitel + 1 Denote By
NeitherS(a) or S(b) transitions. S(ai+1) = S(bi+1) Prro
S(ar) = S(by) EitherS(a) or S(b) transitions, but not both. S(ai+1)#S(big1) Pen1
Both S(a) and.S(b) transition to same value. S(ar41) = S(biy1) Prps
Both S(a) and.S(b) transition, but to different values. S(ai+1)#S(biy1) Pen2
NeitherS(a) nor S(b) transitions. S(ai+1)#S(big1) Pnno
Either S(a) or S(b) transitions, but not bottt'(a) and.S(b) become equal after the transition. S(a;+1) = S(bi41) PnE1
S(ar)#S(by) | EitherS(a) or S(b) transitions, but not boths'(a) and.S(b) remain different after the transition. S(ai+1)#S(bi+1) Pyt
Both S(a) andS(b) transition.S(a) andS(b) remain different after the transition. S(ai+1)#S(big1) Pnna
Both S(a) andS(b) transition.S(a) andS(b) become the same after the transition. S(ai+1)#S(big1) PnE2
Table 1. All possible transitions o6 (a), S(b). Each type of transition is denoted by 3 characters. Firstiétters indicate the equality &f(a), S(b) before

and after the transition. Then followed by a digit indicgtithe number of transitions ifi(a), S(b).

haplotypes has a lead transition. At generafipthe lead transition
happens with probability x (1 — ICx—_1). For generatiork — 1,
there are 2 possible ancestor haplotypes, eachémh(l—lck,g)
chance of causing a transition ifi(a). For each generation

that ofb. Due to space limitation, we omit the detailed discussion of
c at different generations.

Under our assumption of a small Pnvn2, PNz, PEn2 are
all sufficiently small and can be ignored in calculating othe

from 1 to k — 2, there are 4 possible ancestor haplotypes withprobabilities. The intuition is as follows: it is small, there are

probability 26 x (1 — IC;_1). Consider that, at one site, any two

haplotypes from the same generation cannot both be thetanoés
a. Thus, for any generatiop, the expected probability of causing
transition inS(a) is § x (1 — IC;_1). Under our assumption,

k
P(S(a)#S(ar11)) can be expressed by— [J(1 -0 x (1 -
j=1
IC;1)).

We then derive the probability’z z2 that S(a) and S(b) have
equal state at site and both transition to another state at site 1.
This event happens only if a haplotypat some previous generation
is the common ancestor ef, b and ¢ has a lead transition. The
probability of ¢ at generation; being the common ancestor of
andb is iICk,j. The probability thatc has a lead transition is

few animals in the inbreeding lattice and the chance of ofisgr
multiple transitions is rare; wheh becomes larger, the probability
P(S(ai)#S(by)) approached) rapidly and Pyn2, Pne2, Pen2
are much smaller tha®(S(a;)#S(b;)). With Pir, Pgg2 and
Pn 1 derived, we can easily solve all the rest probabilities ibl&a
1:

Pne1 = Pen1 = = (2 X (Pir — Peg2) — Pynt)

N =

Pepo = ICx — Peg2 — Pen:

Pyno =1—ICx — Pver — Py

0 x (1 — IC;—-1). Again, consider the fact that, at one site, any two _ y
haplotypes from the same generation cannot both be the commoP~ w2, PnE2, PEn2 are allpproxllmated by a small probalblllllty
ancestor ofa and b. Thus, the probability of EE2 event caused Pnr1xPyr1. We use simulation to validate the probabilities

by lead transition af; (1<j<k —2)is0 x (1 — IC;—-1)ICk_;.
k—2

Assuming a smald, Pr g2 can be calculated by — H(l — 0 x
j=1

(1—1IC; 1)ICk_;).

Lastly we consider the probabilityPx 1. To simplify our
discussion, assume that the transition happensS(in) (i.e.
S(ar)#S(ai+1)) and it inherits a lead transition in haplotypeof
generation;. Since S(a;), S(ai+1) and S(b;) all have different
I ancestry, alleles from at least 3 distinkt haplotypes should
be observed at generation — 1. Let Ppistinct(m,j) be the
probability of observing exactlyn distinct I, alleles at generation
J- Ppistinet(3,7) @and Ppistinct (4, 7) can be computed recursively
using:

1 .
ZPDistinct (47] - 1)

. 1 . 1 .
PDistinct (3,]) = §PDistinct (3,] - 1) + §PDistinct (47] - 1)

Then, Pny1 is the probability that (1) at least 3 distinks alleles
are present at generatign- 1 and (2)a’s ancestor: at generation

has a lead transition between sitemnd!/ + 1 which is inherited by
a (3) before and after transition, tHe source ofc is different from

PDistinct (47 J) =

derived above. The results are shown in Figure 2. fFaround
0.01, our method gives reasonably close approximationd Befow
0.001, our method is very accurate. The recombination ifmact
between dense SNP markers is usually well below 0.001.

So far we have derived all event probabilities in Table 1. The
transition probability from(S(a;), S(b:)) to (S(ai+1), S(bit1)) is
the corresponding probability in Table 1 conditioned{t (a;) =
S(br)) or P(S(ar) £S5 (b))

3.2 Integratingthelnbreeding Model

We have argued that each inbreeding process can be modeled by
two quaternary indicators and their transition probalkitcan be
accurately approximated whéns small. It is then straightforward
to integrate the inbreeding model into the original LanGeeen
model. We encode the two quaternary indicators using 4 Yinar
bits in the inheritance vector. Consider a pedigree coimgin
i inbreeding processes and other members not involved in
inbreeding. The inheritance vector at every sitd now has length

2 x n’ + 4 x i. Each possible realization ef is a hidden state
in HMM. The transition probability fromy; to v;41 is the product

of transition probabilities of all binary indicators and igsaof
quaternary indicators. We can then solve the HMM using stethd
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Fig. 2. Comparison of predicted probabilities and observed pritibed
from 10000000 simulations. The data points in the figuresaolgerved
probabilities from simulations. The curves are derivedifimur formulas. (a)
Predicted and simulateBg g for 6 = 0.01,0.001, 0.0001. (b) Predicted
and simulatedPgny1 = Pypgi for 6 = 0.001,0.0001. (c) Predicted
and simulatedPr g5 for & = 0.001,0.0001. We do not plot the case of
6 = 0.01 in (b) and (c) because the values are much larger than thheof t
other twod values.

routine:
P(Gplu)P(v)
P(Gbp)

P(g1, -, gilv) P(gisa, -, g o) P(wr)
P(Gp)

P(gl7 <oy gl UZ)P(gl+17 ) ngvl)
P(Gp)

a(v)B(w)
P(Gp)

P(1)1|GD) =

where

Oé(v[) = P(glv---vghvl)
B(v) = P(gi+1,-, gc|v)

a(vr) andB(v;) can be solved recursively:

alvyr) = Z a(v) P(vig1|v) P(gis1|vi41)

Bw) = > Bvesr) Puso) P(gis|vira)

Vi+1

P(Gp) is obtained from the calculated(v;) and 5(v;) at any

sitel:
P(Gp) =) a(u)B(w)

vy

The genome ancestry at sites, for every founder paitFa, Fs),

P(Ancestry(gi) = (Fa, FB)) = ZP(UI|GD)

for all v; s.t.g; is inherited from(Fa, Fp)

Note that, if we place the bits of quaternary indicators atehd
of inheritance vector, the recursive calculationnoénd 8 can still
greatly benefit from the Elston-Idury algorithm (Idury antstén,
1997).

4 MODELING THE COLLABORATIVE CROSS

The Collaborative Cross (CC) is a large panel of reprodecibl
recombinant-inbred mouse lines proposed by the Compleit Tra
Consortium (Churchillet al., 2002). Over a thousand of mouse
lines have been started among which several hundred liedeept
inbreeding. All mouse lines are generated using eight gealist
diverse founders via a common breeding scheme designed to
randomize the genomic contribution of each founder. It jples

an ideal platform for testing our approach.

4.1 TheBreeding Scheme

CC mice are derived from 8 fully inbred founders using the&rw
funnel breeding scheme shown in Figure 3(a). The chromosaie
the eight founders (shown in different colors) are combibgdwo
generations of crosses (labeleéd andG21y), followed by at least
20 inbreeding generation&@/; to G21.).

The positions of the 8 founders are not fixed. Permutations
of the founders are used to randomize the genomes and balance
the founder contributions to the resulting CC lines. Thigat&on
in initial positions imposes different ancestry constraion each
line. Without loss of generality, we assume a founder order o
Fy Fy F3 Fy Fs Fs Fr Fs as shown in Figure 3(a).

4.2 Modeling the Genome of G2, Generation

In a CC pedigree, any recombination in the formation (of
haplotypes can be virtually ignored since all founders aiéy f
inbred. Hence, at each SNP site, we only need 4 inheritance
indicators forG2I, haplotypes and 2 quaternary indicators for the
two haplotypes in a resulting2/, descendant. The structure of the
inheritance indicators is shown in Figure 3(b).

G2I; mice are an exception which only involve one generation
of inbreeding. For &21; mouse, we simply let the two quaternary
indicators revert back to binary indicators. This becomstwadard
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Fig. 3. (a) Collaborative Cross breeding scheme: An example d&niva
of chromosomes by recombining chromosomes from 8 ordereddfers.
G1 andG21, are two generations of crossés2/; to G2/, are multiple
generations of inbreeding. (b) The inheritance indicatmsd to represent
the inheritance flow at a SNP site.

Lander-Green model and it can be seen that the G/,
haplotypes are restricted to be from the left and right héalfhe
funnel respectively.

5 EXPERIMENTS
In this section, we evaluate the proposed model on both aiedl

markers. HAPPY is a QTL mapping tool suite and can analyze
genome ancestry based on only founder and descendant genoty
data, i.e., it ignores pedigree structure. Both softwatienase the
genome ancestry directly or indirectly.

5.1 Experimentson simulated data

As ground truth is generally unavailable for real data, wal@ate
the accuracy of genome ancestry analysis using simulated \de
simulate the genotype of @21, mouse by recombining real CC
founder haplotypes according to the CC pedigree structaiieen
the founder genotypes, the founder haplotypes can be ebtain
trivially since all founders are fully inbred. At each geaton we
choose recombination position randomly. To simulate gging
errors, we also introduce random errors to the resultingtype
sequence. When a site is selected to represent an error, pve fli
its value to heterozygous if it is homozygous originally. df
heterozygous site is selected, we change it to one of the hapas
state randomly. This resembles the fact that most gendaypin
errors are between heterozygous and homozygous statesdrof
between the two homozygous states.

We simulate 20 test cases for each generation ft&2d; to
G2I5. The number of markers ranges from 6 to 10 thousands.
As MERLIN does not output probability distribution for each
inheritance vector, we first compare the best founder arncpatr
estimated by each method against the true answer. The ateor r
is measured by the percentage of sites where the estimastd be
founder ancestry does not match the ground truth. Figureowsh
the error rate of all three methods in the simulated data wuitth
without errors. Results of MERLIN are only available for tirest
4 generations as the running time grows exponentially vhighsize
of pedigree. No results can be generated within reasonabteng
time (3 hours) for generations beyor@2,. By incorporating
pedigree information, both GAIN and MERLIN infer accurate
estimates (error rate less than 2%). In contrast, HAPPY hashm
higher error rates and is more sensitive to noise.

As mentioned previously, an accurate solution to the genome
ancestry problem is important to subsequent studies su€iras
analysis. In such studies, not only the most likely genontestny
is desired, but also the probabilities of each founder painanted.
Hence, it is also important to evaluate the probability ribstion
generated by each method. Both GAIN and HAPPY compute a
probability distribution of each founder pair being the estcy at
a SNP site. We investigate the proportion of probabilitiesigned
to wrong founder ancestry. The result in Figure 5 shows that t
knowledge of pedigree structure is indispensable in sghtime
genome ancestry problem. While HAPPY infers the most prigbab
ancestry correctly for more than 80% of the markers, it assig
near 60% of the total probabilities to wrong ancestry clmice
The misassigned probabilities could hamper further studigith
pedigree structure modeled, GAIN can resolve most amléguit
and assigns only less than 4% of the total probabilities tongr
ancestry.

data and real CC genotype data. We implement our model GAINP-2 Experimentson real CC data

(GenomeAncestry withINbreeding) for CC using C++. GAIN is
compared with MERLIN (Abecasist al., 2002) and HAPPY (Mott

Our data set consists of genotypes of all autosomes from 86 mi
of generationG215 to G21:5. The number of SNP markers on each

et al, 2000). MERLIN is a widely used pedigree analysis softwarechromosome ranges from 4122 to 35172. Due to the running time
based on Lander-Green algorithm and can handle large nuofiber constraint of MERLIN, we only compare GAIN with HAPPY which
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Fig. 4. (a) Comparison of error rates of GAIN, MERLIN and HAPPY on Fig. 5. (a) Proportion of probabilities assigned to wrong ancelsyriGAIN

a simulated data set with no noise. (b) Comparison on a sietiata set
with 1% noise.

does not consider pedigree structure. Since the true geanoestry
is unknown, we investigate the difference between the tesfithe
two approaches.

and HAPPY on a simulated data set with no noise. (b) Proportib
probabilities assigned to wrong ancestry by GAIN and HAPRY @
simulated data set with 1% noise.

founder-mating pair$Fi, F»),(Fs, Fu), (F5, Fs), (Fr7, Fg) cannot
serve as ancestry for any genotypesi¥I, descendants. This is

We compare both the best ancestry estimated and the fulbecause any genetic material passed from a founder mating pa

probability distribution of each possible ancestry. Thestfir

is carried by a single haplotype in th&2I, generation. These

comparison (Figure 6(a)) shows the percentage of sites @ftwh four founder pairs are thus invalid ancestry choices if theigree
the best ancestry estimated by the two methods do not agreetructure is considered. As an example to show the improved

The difference in best ancestry choice is very similar ta tfa

inference due to incorporating pedigree knowledge, thestng of

our experiments on simulated data with random error: thelt®s chromosome 7 of @21 mouse inferred by GAIN and HAPPY
from the two methods differ by 20%. We further measure theare shown in Figure 7(a) and 7(b) respectively. The mostaiteb

difference in probability distributions quantitativelysing Jensen-

founder pair inferred by HAPPY agrees with our result at most

Shannon(JS) Divergence (Lin, 1991) which is a smoothed andites. But their actual probabilities are often differefu. quantify

bounded divergence based on Kullback-Leibler Divergembe.JS
Divergence (JSD) between two probability distributignsand p»
is defined as:

JSD(p1||p2) =
o p2(7)
2_pili) @ s T

A low JS Divergence indicates high similarity betweehand p2.

) lo,
g2 1 1(~ 2p2

the extent to which HAPPY assigns positive probabilitiegtalid
ancestry, at each site we aggregate the probabilities of invalid
ancestry and plot this “pedigree inconsistency” measur€ignire
7(c). We can see that, the difference between Figure 7(a)7dhyl
is largely influenced by the “pedigree inconsistency”. Muwer,
the probability distributions of ancestry choices at nbiging sites
are not independent. Probabilities assigned to pedigremisistent
ancestry can substantially influence the choice of ancesatry

The JS divergence ranges between 0 and 2. Figure 6(b) cosmparaeighboring sites. Such “propagated error” is sometimesnthin
the mean and standard deviation of the JS Divergence betweerause of the JS Divergence between HAPPY’s results and Asrs.

HAPPY’s results and ours over all markers and all 96 miceyped
by chromosomes.

an example, Figure 7(d) shows a region in chromosome 1 from
anotherG2Is mouse where the propagated error is the main cause

Though we cannot compare the results against the grourtd trutof divergence. In this region, HAPPY does not assign sigguific

for real CC data, the source of difference are further ingated.

probabilities to invalid ancestry choice, except for a fé@@sat both

Consider again the CC pedigree in Figure 3(a). The initigir fo ends of this region. But, in the middle part, HAPPY favorsestry
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Fig. 6. (a) The difference in best ancestry estimated by GAIN and PPAP
(b) The average JS Divergence between results from GAIN akidRY on
chromosome 1 to 19 of 96 real CC mice.

choices that are one recombination away from these invatidstry
choices.

To sum up, even partial pedigree knowledge causes a big
difference in analyzing genome ancestry. Though HAPPY can
conduct analysis rapidly, its results on complex pedigieses be
biased. On the other hand, our method can provide a pedigree
consistent inference in comparable running time.

5.3 Running Time Performance

For a pedigree containinginbreeding processes amd members

not involved in inbreeding, the time complexity of GAIN is
O(Lxn' x 22" x 2%) whereL is the number of SNP markers.
For anyG21;, animal in CC pedigree, the time complexity remains
the same. The running time does not depend on the error rate of
genotype data either. Figure 8 shows the running time casgrar

of GAIN, MERLIN and HAPPY.

6 DISCUSSION
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Fig. 7. (a) Ancestry inference on chromosome 7 @¥2/¢ mouse by GAIN

The development of high density SNP technology makes mode(b) Ancestry inference on chromosome 7 of the same mouse BRYAC)

animal resources a powerful tool for studying genetic \ames.

It also makes any analysis on such resources computagional
challenging. In this paper, we demonstrate that modelipgtiéve
sub-structure of a pedigree can provide significant impreve in
efficiency without compromising accuracy. We introduce &eho
method for modeling the inbreeding process. Integrated ihe
Hidden Markov Model framework originally introduced by the

The pedigree inconsistency in (b), i.e. the aggregatedaitity assigned
|to ancestry that violates pedigree knowledge. (d) A regiopnhromosome
1 from anotherG21g mouse where propagated error is the main cause of
divergence.




Efficient Genome Ancestry Inference in Complex Pedigrees wi

th Inbreeding

10000 — T T T T
MERLIN

GAIN —— |

1000 F HAPPY ---%--- |

Running Time (s)
=
o
o
T
1

————t————————————+—+
1k

MKW N HHCR w e e K S K e o ]

0 2 4 6 8 10 12 14 16 18 20
Inbreeding Generation

Fig. 8. Average running time of the three methods on data set comgain
6644 markers. The experiment is conducted on an Intel deskiith
2.66Ghz CPU and 8GB memory.

Lander-Green algorithm, our method can handle large peesgr
such as Collaborative Cross efficiently. The inbreedingstulicture
model alone does not speed up the ancestry inference fopais t
of pedigrees, but, as we have shown with the CollaboratissEr
the computational benefit can be crucial for analyzing mangeh
animal resources. In analyzing such data, our method dotpes
previous methods in terms of accuracy and efficiency. Weebel
that sub-structure modeling is a promising approach fogelar
pedigree analysis, especially when specific types of pedigre of
interest. In the future, we plan to investigate other comrsob-
structures and build a more general framework to allow effici
computation on more types of pedigrees.
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