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ABSTRACT
Motivation: High density SNP data of model animal resources
provides opportunities for fine resolution genetic variation studies.
These genetic resources are generated through a variety of breeding
schemes that involve multiple generations of matings derived from
a set of founder animals. In this paper we investigate the problem
of inferring the most probable ancestry of resulting genotypes,
given a set of founder genotypes. Due to computational difficulty,
existing methods either handle only small pedigree data or disregard
the pedigree structure. However, large pedigrees of model animal
resources often contain repetitive sub-structures which can be utilized
in accelerating computation.
Results: We present an accurate and efficient method that can
accept complex pedigrees with inbreeding in inferring genome
ancestry. Inbreeding is a commonly used process in generating
genetically diverse and reproducible animals. It is often carried out
for many generations and can account for most of the computational
complexity in real-world model animal pedigrees. Our method builds a
Hidden Markov Model that derives the ancestry probabilities through
inbreeding process without explicit modeling every generation. The
ancestry inference is accurate and fast, independent of the number of
generations, for model animal resources such as the Collaborative
Cross (CC). Experiments on both simulated and real CC data
demonstrate that our method offers comparable accuracy to those
methods that build an explicit model of the entire pedigree, but much
better scalability with respect to the pedigree size.
Contact: weiwang@cs.unc.edu

1 INTRODUCTION
Model organisms, such as laboratory mice, are frequentlybred or
crossedin order to study genetic influences (Churchillet al., 2002;
Valdaret al., 2006; Chiaet al., 2005). Often, such animal resources
are generated using prescribed breeding system to ensure diversity
and reproducibility, which leads to complex pedigree structure
consisting of many generations. Through recombination, the DNA
sequences of founder organisms are intermixed in each generation.
A DNA sequence of any descendant organism is a mosaic of its
founders’ DNA segments. As recombinations at each breedingstage
cannot be observed directly, it is of great interest to inferthe
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ancestry of resulting DNA sequences. In other words, which part
of a resulting DNA sequence is inherited from which founder.

The vast majority of the sequence variations are attributedto
single base-pair mutations known assingle-nucleotide polymorphism
(SNPs), thus making SNPs ideal for resolving the genome ancestry
problem. The set of SNPs on the same chromosome constitutes a
haplotype. While any of the four nucleotides (A,T,C,G) is possible,
in practice nearly all SNPs appear in only two variations. This
results from the fact that SNPs originate as mutations, which are rare
events within a vast genome. It is therefore convenient to encode
a SNP allele as a binary value and represent haplotypes as binary
sequences. Modern high-throughput genotyping technologies are
unable to distinguish between the two haplotypes of a diploid
organism. Instead, agenotype sequenceis measured where, at each
SNP site, one of three possibilities is observed ({00, 01, 11}, since
10 cannot be distinguished from01).

Using the genotype representation for DNA sequences, the
genome ancestry problem estimates the origin of each genotype
from a descendant’s sequence given the genotype sequences of its
distant founders. To achieve high resolution, dense SNP markers
are used ( tens of thousands on each chromosome ). Knowledge
of genotype’s ancestry is particularly useful in many problems
such as studying the structure and history of haplotype blocks
(Gabriel et al., 2002; Zhanget al., 2002; Schwartzet al., 2004),
and mapping quantitative trait loci (QTLs)(Valdaret al., 2006; Mott
et al., 2000). In these studies, a probabilistic interpretationis favored
over discrete solutions, due to the prevalence of ambiguities and
measurement errors.

The genome ancestry problem is closely related to haplotype
inference with pedigree data. Inferring haplotypes in a pedigree
often involves solving the inheritance flow of alleles at each
generation. On the other hand, given the genome ancestry
information, it is straightforward to reconstruct the descendant
haplotypes. As pedigree analysis is NP-hard (Piccolboni and
Gusfield, 2003), existing algorithms are either approximate or
suffer exponential running times. Among the maximum likelihood
approaches, methods (Kruglyaket al., 1996; Abecasiset al., 2002;
Gudbjartssonet al., 2005) based on the Lander-Green algorithm
(Lander and Green, 1987) are often favored because their running
time is linear to the number of markers. MERLIN (Abecasiset al.,
2002), an implementation based on sparse binary trees, is one
of the most successful pedigree analysis programs. Unfortunately,
methods based on Lander-Green algorithms are limited to pedigrees
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of moderate size since the running time grows exponentiallywith
pedigree size. MCMC sampling methods (Sobel and Lange, 1996;
Jensen and Kong, 1999) have been proposed to address larger
pedigrees. But their computing time can be substantial whenapplied
to a large number of tightly linked markers. Other efforts include
rule-based methods (Qian and Beckmann, 2002; Li and Jiang, 2005)
which approximates a solution by minimizing recombinations in the
pedigree (MRHC). PedPhase (Li and Jiang, 2005), which employs
an effective integer linear programming (ILP) formulation, has been
widely used in solving the MRHC.

Current haplotyping methods for pedigrees are incapable of
solving the genome ancestry problem in animal resources for
the following reasons: 1) Pedigrees of model animal resources
often contain large number of generations to ensure diversity and
reproducibility. 2) None or few of the intermediate generations are
genotyped due to the size of the resources. 3) A large number
of dense markers are genotyped to achieve fine resolution. Asa
concrete example, more than one thousand lines have been started
in the Collaborative Cross project (Churchillet al., 2002). Each line
is expected to undergo at least 23 generations before reaching 99%
inbred. Hundreds of mice of various generations were genotyped,
but on average only few are from the same line. The missing
genotypes make the search space extraordinarily large.

Other computationally efficient approaches for solving the
genome ancestry problem have largely ignored the breeding
scheme. While breeding design does not determine the locations of
recombination, it often places constraints on the possibleancestry
choices at a single site and at neighboring sites. The genome
ancestry problem was modeled as a combinatorial optimization
problem in (Zhanget al., 2008). By minimizing recombinations,
discrete solutions are generated. Mott et al. has proposed an
approach using Hidden Markov Model (HMM) for ancestry
inference in HAPPY (Valdaret al., 2006; Mott et al., 2000), a
QTL mapping tool suite for association studies. All founderpairs
are considered as possible hidden states for emitting the observed
genotype at each site. Besides founder genotypes, no pedigree data
are used in these two approaches.

There have also been many efforts to analyze pedigree by
identifying symmetries in HMM state space (Donnelly, 1983;
McPeek, 2002; Browning and Browning, 2002; Geigeret al., 2009).
The states are then grouped to accelerate the calculation. However,
finding the maximal grouping is non-trivial. In real-world problems,
only obvious symmetries such as founder phase and chain structure
in pedigree can be best utilized.

Besides model organisms, the genetic ancestry problem has been
studied for human individuals that have recently been admixed from
a set of isolated populations, instead of a set of founders(Tang
et al., 2006; Sundquistet al., 2008; Sankararamanet al., 2008;
Pasaniucet al., 2009). In this problem, pedigree structure is
usually not present. Efficient methods have been developed to
handle large-scale datasets(Tanget al., 2006; Sundquistet al., 2008;
Sankararamanet al., 2008).

Leveraging the observation that large animal resource pedigrees
often contain repetitive sub-structures, we propose a method that
can efficiently handle complex pedigrees with inbreeding which is
an important process in generating animal resources. Usinga pair
of dependent quaternary indicators to capture all recombinations
in the inbreeding history, our method achieves accurate ancestry
inference without explicit modeling every generation. By encoding

the inbreeding model into the inheritance vectors, we design a
Lander-Green-like algorithm whose running time remains constant
with respect to the number of inbreeding generations. Our method
is implemented and evaluated on the Collaborative Cross breeding
design (Churchillet al., 2002) with dense SNP data. Experiments
show that, our approach generates accurate results efficiently on
data that cannot be handled by existing pedigree haplotyping
software. Compared with HAPPY, which does not consider pedigree
structure, our approach significantly reduces ambiguitiesand errors
in ancestry inference.

2 THE GENOME ANCESTRY PROBLEM
Given a pair of chromosomes, we considerL SNP markers ordered
by their chromosomal locations. For each SNP site, we use 0 and
1 to encode the two possible values. The genotype at each site
is the unordered combination of corresponding alleles fromboth
chromosomes, which can assume one of three values: 00, 01,
11. A genotype sequence is a genome-ordered set of genotypes
denoted as:G = g1...gl...gL, (gl ∈ {00, 01, 11}). A haplotype
H = h1...hl...hL consists of alleles from one of the chromosomes
wherehl ∈ {0, 1}.

Consider a pedigree containing a set of foundersFS =
{F1, ..., FN} and a descendant of interest. We denote the set
of founder genotype sequences by{GF1, ..., GFN

}, all of which
are given. Given the genotype sequence,GD , of the descendant
generated through the pedigree structure, its genome ancestry is to
be determined. Every genotypegl in GD inherits its alleles from two
founders, sayFA andFB . We refer to the founder pair(FA, FB) as
the genome ancestry at sitel of genotype sequenceGD . We want to
estimate, for every SNP sitel, the probabilityP (Ancestry(gl) =
(FA, FB)) for every founder pair(FA, FB)∈FS×FS. Note that
founder pairs are unordered ((FA, FB) = (FB , FA)), and it is
possible thatFA = FB .

3 MODELING INHERITANCE IN PEDIGREE
We start from the standard Lander-Green approach to model a
pedigree: At each SNP site, an inheritance indicator is usedto
indicate the outcome of each meiosis. These inheritance indicators
together form the inheritance vector. Since a child haplotype
inherits its allele from either the paternal or maternal sequence, an
inheritance indicator is a binary variable. For a pedigree with n
non-founder animals, there are2× n inheritance indicators at each
site. Hence, the inheritance vector at sitel, vl, can be defined as
a binary sequence of length2 × n. An instance ofvl specifies a
possible configuration of inheritance flow at sitel of all animals in
the pedigree. When SNP markers are dense enough, we can assume
at most one recombination between two sites in generating one
haplotype. If a recombination happens between sitel andl + 1, the
corresponding inheritance indicator will have different states for the
two sites. Hence, to measure the number of recombinations between
l andl+1 in the whole pedigree, we can count the difference in bits
betweenvl andvl+1. The probability of havingd recombinations
betweenl andl+1 is θd(1− θ)2n−d, whereθ is the recombination
fraction.

The length of inheritance vector grows linearly with the number
of animals in the pedigree and this causes exponential growth in the
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number of possible inheritance patterns. Considering the fact that
full pedigree analysis is computationally intractable, weovercome
the issue by modeling important sub-structure in breeding systems
as a shortcut to efficient computation. Our first natural choice of
sub-structure is inbreeding: 1) Inbreeding is often used inmodel
animal resources to generate genetically diverse and/or reproducible
descendants. 2) Inbreeding is often carried out for many generations
and each generation elongates the inheritance vectors by 4 bits.
Hence, if a pedigree involves inbreeding, the inbreeding generations
often account for most of the computational complexity. We seek an
aggregated inheritance indicator to replace the collection of many
inheritance indicators in the inbreeding process. Such an aggregated
indicator can be encoded in much shorter length and incorporated
into the inheritance vector. If the state and transition probability of
the aggregated indicator can be modeled efficiently, full pedigree
analysis will become feasible on these animal resources. Inthe next
section, we explain how inheritance in inbreeding generations can
be modeled as an aggregated indicator.

(a)

(b)

Fig. 1. (a) Lattice of binary inheritance indicators representingthe
inheritance pattern of an inbreeding process at a single site. (b) An equivalent
quaternary indicator representation

3.1 Modeling Inbreeding Generations
During inbreeding, offspring are produced by sibling matings for
many generations. At each generation, four new haplotypes are
formed by recombining the four haplotypes from the previous
generation. The inbreeding process at a single site is shownin
Figure 1(a). We denote the beginning generation of inbreeding as
generationI0. Observe that, at each site, because of the symmetry
of inbreeding structure, the four alleles at generationI0 have equal
probabilities to be passed down to any haplotypes afterI1. Thus,
for a descendant haplotype at generationIk (k > 2), we can
simply replace the lattice of binary inheritance indicators by a single

quaternary indicator. Each choice of the quaternary indicator has
1/4 probability. Two quaternary indicators are needed for the two
haplotypes of aIk descendant (Figure 1(b)). However, the two
quaternary indicators are not independent as the two haplotypes
share the same inbreeding history untilIk−1. To model this
dependency between the two quaternary indicators, we find out
the transition events and probabilities of the pair of indicators. The
grouped pair is then used as an aggregated inheritance indicator as
discussed above.

We label the fourI0 haplotypes as1, 2, 3, 4. We then denote
by a, b the two Ik descendant haplotypes andS(al), S(bl) are
their I0 sources at sitel, i.e., S(al), S(bl) ∈ {1, 2, 3, 4}. Their
I0 sources along the chromosome is denoted byS(a), S(b) ∈
{1, 2, 3, 4}L. A transition happens inS(a) between sitel and
l + 1 if S(al) 6=S(al+1). We consider, between two adjacent
sites,l and l + 1, all the possible transitions fromS(al), S(bl) to
S(al+1), S(bl+1) (Table 1).

Note that:

PEE0 + PEN1 + PEE2 + PEN2 = P (S(al) = S(bl)) =

PEE0 + PEE2 + PNE1 + PNE2 = P (S(al+1) = S(bl+1))

and

PNE1 + PNN0 + PNN1 + PNN2 + PNE2 = P (S(al) 6=S(bl)) =

PEN1+PEN2+PNN0+PNN1+PNN2 = P (S(al+1) 6=S(bl+1))

The prior probabilityP (S(al) = S(bl)) at any sitel is called the
inbreeding coefficient(Wright, 1922). To calculate the probability,
let ICk denote the inbreeding coefficient at generationIk. ICk can

be computed recursively usingICk =

k−2∑

j=0

(
1

2
)k−j × (1 + ICj).

Next, we derive the probabilities in Table 1. Consider that any
transition inS(a) or S(b) is caused by one or more recombinations
in the inbreeding process (Figure 1(a)). Our calculation isbased
on the assumption that the recombination fraction,θ, is reasonably
small. Hence, for any haplotypec at generationIj (1≤j≤k), we
assume that any single transition inS(c) is solely caused by one
recombination in generatingc or its ancestor haplotypes. In other
words, a single transition inS(c) is not the result of multiple
recombinations in the pedigree. Our assumption is generally true
for dense SNP markers whereθ is usually well below0.001.
Under the assumption, if a transition inS(c) is caused by a
recombination in generatingc itself, we define this to be alead
transition. Intuitively, a lead transition is one not inherited from its
ancestors. A lead transition inc will change theI0 source ofc and all
descendant haplotypes inheriting the transition. A lead transition is
only possible when the two parental haplotypes ofc have different
I0 sources. Hence, between two sites, a haplotype at generation j
has a lead transition with probabilityθ × (1− ICj−1).

With the inbreeding coefficients calculated, we can derive the
marginal probability of observing transition in one of theIk
haplotypes,P1T = P (S(al) 6=S(al+1)) = P (S(bl) 6=S(bl+1)).
Without loss of generality, we considerP (S(al) 6=S(al+1)) for
haplotypea. S(a) will transition if a itself or any of its ancestor
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Sitel Possible Transitions Sitel + 1 Denote By

S(al) = S(bl)

NeitherS(a) orS(b) transitions. S(al+1) = S(bl+1) PEE0

EitherS(a) or S(b) transitions, but not both. S(al+1) 6=S(bl+1) PEN1

BothS(a) andS(b) transition to same value. S(al+1) = S(bl+1) PEE2

BothS(a) andS(b) transition, but to different values. S(al+1) 6=S(bl+1) PEN2

S(al) 6=S(bl)

NeitherS(a) norS(b) transitions. S(al+1) 6=S(bl+1) PNN0

EitherS(a) or S(b) transitions, but not both.S(a) andS(b) become equal after the transition.S(al+1) = S(bl+1) PNE1

EitherS(a) or S(b) transitions, but not both.S(a) andS(b) remain different after the transition. S(al+1) 6=S(bl+1) PNN1

BothS(a) andS(b) transition.S(a) andS(b) remain different after the transition. S(al+1) 6=S(bl+1) PNN2

BothS(a) andS(b) transition.S(a) andS(b) become the same after the transition. S(al+1) 6=S(bl+1) PNE2

Table 1. All possible transitions ofS(a), S(b). Each type of transition is denoted by 3 characters. First two letters indicate the equality ofS(a), S(b) before
and after the transition. Then followed by a digit indicating the number of transitions inS(a), S(b).

haplotypes has a lead transition. At generationk, the lead transition
happens with probabilityθ × (1 − ICk−1). For generationk − 1,
there are 2 possible ancestor haplotypes, each with1

2
θ×(1−ICk−2)

chance of causing a transition inS(a). For each generationj
from 1 to k − 2, there are 4 possible ancestor haplotypes with
probability 1

4
θ × (1 − ICj−1). Consider that, at one site, any two

haplotypes from the same generation cannot both be the ancestor of
a. Thus, for any generationj, the expected probability of causing
transition inS(a) is θ × (1 − ICj−1). Under our assumption,

P (S(al) 6=S(al+1)) can be expressed by1 −
k∏

j=1

(1 − θ × (1 −

ICj−1)).
We then derive the probabilityPEE2 that S(a) andS(b) have

equal state at sitel, and both transition to another state at sitel + 1.
This event happens only if a haplotypec at some previous generation
is the common ancestor ofa, b and c has a lead transition. The
probability of c at generationj being the common ancestor ofa
and b is 1

4
ICk−j . The probability thatc has a lead transition is

θ × (1− ICj−1). Again, consider the fact that, at one site, any two
haplotypes from the same generation cannot both be the common
ancestor ofa and b. Thus, the probability of EE2 event caused
by lead transition atIj (1≤j≤k − 2) is θ × (1 − ICj−1)ICk−j.

Assuming a smallθ, PEE2 can be calculated by1 −

k−2∏

j=1

(1 − θ ×

(1− ICj−1)ICk−j).

Lastly we consider the probabilityPNN1. To simplify our
discussion, assume that the transition happens inS(a) (i.e.
S(al) 6=S(al+1)) and it inherits a lead transition in haplotypec of
generationj. SinceS(al), S(al+1) and S(bl) all have different
I0 ancestry, alleles from at least 3 distinctI0 haplotypes should
be observed at generationj − 1. Let PDistinct(m, j) be the
probability of observing exactlym distinctI0 alleles at generation
j. PDistinct(3, j) andPDistinct(4, j) can be computed recursively
using:

PDistinct(4, j) =
1

4
PDistinct(4, j − 1)

PDistinct(3, j) =
1

2
PDistinct(3, j − 1) +

1

2
PDistinct(4, j − 1)

Then,PNN1 is the probability that (1) at least 3 distinctI0 alleles
are present at generationj− 1 and (2)a’s ancestorc at generationj
has a lead transition between sitesl andl + 1 which is inherited by
a (3) before and after transition, theI0 source ofc is different from

that ofb. Due to space limitation, we omit the detailed discussion of
c at different generations.

Under our assumption of a smallθ, PNN2, PNE2, PEN2 are
all sufficiently small and can be ignored in calculating other
probabilities. The intuition is as follows: ifk is small, there are
few animals in the inbreeding lattice and the chance of observing
multiple transitions is rare; whenk becomes larger, the probability
P (S(al) 6=S(bl)) approaches0 rapidly andPNN2, PNE2, PEN2

are much smaller thanP (S(al) 6=S(bl)). With P1T , PEE2 and
PNN1 derived, we can easily solve all the rest probabilities in Table
1:

PNE1 = PEN1 =
1

2
(2× (P1T − PEE2)− PNN1)

PEE0 = ICk − PEE2 − PEN1

PNN0 = 1− ICk − PNE1 − PNN1

PNN2, PNE2, PEN2 are approximated by a small probability
PNE1×PNE1. We use simulation to validate the probabilities
derived above. The results are shown in Figure 2. Forθ around
0.01, our method gives reasonably close approximation. Forθ below
0.001, our method is very accurate. The recombination fraction
between dense SNP markers is usually well below 0.001.

So far we have derived all event probabilities in Table 1. The
transition probability from(S(al), S(bl)) to (S(al+1), S(bl+1)) is
the corresponding probability in Table 1 conditioned onP (S(al) =
S(bl)) or P (S(al) 6=S(bl)).

3.2 Integrating the Inbreeding Model
We have argued that each inbreeding process can be modeled by
two quaternary indicators and their transition probabilities can be
accurately approximated whenθ is small. It is then straightforward
to integrate the inbreeding model into the original Lander-Green
model. We encode the two quaternary indicators using 4 binary
bits in the inheritance vector. Consider a pedigree containing
i inbreeding processes andn′ other members not involved in
inbreeding. The inheritance vectorvl at every sitel now has length
2 × n′ + 4 × i. Each possible realization ofvl is a hidden state
in HMM. The transition probability fromvl to vl+1 is the product
of transition probabilities of all binary indicators and pairs of
quaternary indicators. We can then solve the HMM using standard
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Fig. 2. Comparison of predicted probabilities and observed probabilities
from 10000000 simulations. The data points in the figures areobserved
probabilities from simulations. The curves are derived from our formulas. (a)
Predicted and simulatedPEE0 for θ = 0.01, 0.001, 0.0001. (b) Predicted
and simulatedPEN1 = PNE1 for θ = 0.001, 0.0001. (c) Predicted
and simulatedPEE2 for θ = 0.001, 0.0001. We do not plot the case of
θ = 0.01 in (b) and (c) because the values are much larger than that of the
other twoθ values.

routine:

P (vl|GD) =
P (GD|vl)P (vl)

P (GD)

=
P (g1, ..., gl|vl)P (gl+1, ..., gL|vl)P (vl)

P (GD)

=
P (g1, ..., gl, vl)P (gl+1, ..., gL|vl)

P (GD)

=
α(vl)β(vl)

P (GD)

where

α(vl) = P (g1, ..., gl, vl)

β(vl) = P (gl+1, ..., gL|vl)

α(vl) andβ(vl) can be solved recursively:

α(vl+1) =
∑

vl

α(vl)P (vl+1|vl)P (gl+1|vl+1)

β(vl) =
∑

vl+1

β(vl+1)P (vl+1|vl)P (gl+1|vl+1)

P (GD) is obtained from the calculatedα(vl) andβ(vl) at any
sitel:

P (GD) =
∑

vl

α(vl)β(vl)

The genome ancestry at sitel is, for every founder pair(FA, FB),

P (Ancestry(gl) = (FA, FB)) =
∑

vl

P (vl|GD)

for all vl s.t.gl is inherited from(FA, FB)

Note that, if we place the bits of quaternary indicators at the end
of inheritance vector, the recursive calculation ofα andβ can still
greatly benefit from the Elston-Idury algorithm (Idury and Elston,
1997).

4 MODELING THE COLLABORATIVE CROSS
The Collaborative Cross (CC) is a large panel of reproducible,
recombinant-inbred mouse lines proposed by the Complex Trait
Consortium (Churchillet al., 2002). Over a thousand of mouse
lines have been started among which several hundred lines are kept
inbreeding. All mouse lines are generated using eight genetically
diverse founders via a common breeding scheme designed to
randomize the genomic contribution of each founder. It provides
an ideal platform for testing our approach.

4.1 The Breeding Scheme
CC mice are derived from 8 fully inbred founders using the 8-way
funnel breeding scheme shown in Figure 3(a). The chromosomes of
the eight founders (shown in different colors) are combinedby two
generations of crosses (labeledG1 andG2I0), followed by at least
20 inbreeding generations (G2I1 toG2I∞).

The positions of the 8 founders are not fixed. Permutations
of the founders are used to randomize the genomes and balance
the founder contributions to the resulting CC lines. This variation
in initial positions imposes different ancestry constraints on each
line. Without loss of generality, we assume a founder order of
F1F2F3F4F5F6F7F8 as shown in Figure 3(a).

4.2 Modeling the Genome of G2Ik Generation
In a CC pedigree, any recombination in the formation ofG1
haplotypes can be virtually ignored since all founders are fully
inbred. Hence, at each SNP site, we only need 4 inheritance
indicators forG2I0 haplotypes and 2 quaternary indicators for the
two haplotypes in a resultingG2Ik descendant. The structure of the
inheritance indicators is shown in Figure 3(b).
G2I1 mice are an exception which only involve one generation

of inbreeding. For aG2I1 mouse, we simply let the two quaternary
indicators revert back to binary indicators. This becomes astandard
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(a)

(b)

Fig. 3. (a) Collaborative Cross breeding scheme: An example derivation
of chromosomes by recombining chromosomes from 8 ordered founders.
G1 andG2I0 are two generations of crosses.G2I1 to G2I∞ are multiple
generations of inbreeding. (b) The inheritance indicatorsused to represent
the inheritance flow at a SNP site.

Lander-Green model and it can be seen that the twoG2I1
haplotypes are restricted to be from the left and right half of the
funnel respectively.

5 EXPERIMENTS
In this section, we evaluate the proposed model on both simulated
data and real CC genotype data. We implement our model GAIN
(GenomeAncestry withINbreeding) for CC using C++. GAIN is
compared with MERLIN (Abecasiset al., 2002) and HAPPY (Mott
et al., 2000). MERLIN is a widely used pedigree analysis software
based on Lander-Green algorithm and can handle large numberof

markers. HAPPY is a QTL mapping tool suite and can analyze
genome ancestry based on only founder and descendant genotype
data, i.e., it ignores pedigree structure. Both software estimate the
genome ancestry directly or indirectly.

5.1 Experiments on simulated data
As ground truth is generally unavailable for real data, we evaluate
the accuracy of genome ancestry analysis using simulated data. We
simulate the genotype of aG2Ik mouse by recombining real CC
founder haplotypes according to the CC pedigree structure.Given
the founder genotypes, the founder haplotypes can be obtained
trivially since all founders are fully inbred. At each generation we
choose recombination position randomly. To simulate genotyping
errors, we also introduce random errors to the resulting genotype
sequence. When a site is selected to represent an error, we flip
its value to heterozygous if it is homozygous originally. Ifa
heterozygous site is selected, we change it to one of the homozygous
state randomly. This resembles the fact that most genotyping
errors are between heterozygous and homozygous states, instead of
between the two homozygous states.

We simulate 20 test cases for each generation fromG2I1 to
G2I20. The number of markers ranges from 6 to 10 thousands.
As MERLIN does not output probability distribution for each
inheritance vector, we first compare the best founder ancestry pair
estimated by each method against the true answer. The error rate
is measured by the percentage of sites where the estimated best
founder ancestry does not match the ground truth. Figure 4 shows
the error rate of all three methods in the simulated data withand
without errors. Results of MERLIN are only available for thefirst
4 generations as the running time grows exponentially with the size
of pedigree. No results can be generated within reasonable running
time (3 hours) for generations beyondG2I4. By incorporating
pedigree information, both GAIN and MERLIN infer accurate
estimates (error rate less than 2%). In contrast, HAPPY has much
higher error rates and is more sensitive to noise.

As mentioned previously, an accurate solution to the genome
ancestry problem is important to subsequent studies such asQTL
analysis. In such studies, not only the most likely genome ancestry
is desired, but also the probabilities of each founder pair are wanted.
Hence, it is also important to evaluate the probability distribution
generated by each method. Both GAIN and HAPPY compute a
probability distribution of each founder pair being the ancestry at
a SNP site. We investigate the proportion of probabilities assigned
to wrong founder ancestry. The result in Figure 5 shows that the
knowledge of pedigree structure is indispensable in solving the
genome ancestry problem. While HAPPY infers the most probable
ancestry correctly for more than 80% of the markers, it assigns
near 60% of the total probabilities to wrong ancestry choices.
The misassigned probabilities could hamper further studies. With
pedigree structure modeled, GAIN can resolve most ambiguities
and assigns only less than 4% of the total probabilities to wrong
ancestry.

5.2 Experiments on real CC data
Our data set consists of genotypes of all autosomes from 96 mice
of generationG2I5 toG2I12. The number of SNP markers on each
chromosome ranges from 4122 to 35172. Due to the running time
constraint of MERLIN, we only compare GAIN with HAPPY which
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Fig. 4. (a) Comparison of error rates of GAIN, MERLIN and HAPPY on
a simulated data set with no noise. (b) Comparison on a simulated data set
with 1% noise.

does not consider pedigree structure. Since the true genomeancestry
is unknown, we investigate the difference between the results of the
two approaches.

We compare both the best ancestry estimated and the full
probability distribution of each possible ancestry. The first
comparison (Figure 6(a)) shows the percentage of sites of which
the best ancestry estimated by the two methods do not agree.
The difference in best ancestry choice is very similar to that of
our experiments on simulated data with random error: the results
from the two methods differ by 20%. We further measure the
difference in probability distributions quantitatively using Jensen-
Shannon(JS) Divergence (Lin, 1991) which is a smoothed and
bounded divergence based on Kullback-Leibler Divergence.The JS
Divergence (JSD) between two probability distributionsp1 andp2
is defined as:

JSD(p1||p2) =

∑

i

p1(i) log2
p1(i)

1

2
p1(i) +

1

2
p2(i)

+
∑

i

p2(i) log2

p2(i)
1

2
p1(i) +

1

2
p2(i)

A low JS Divergence indicates high similarity betweenp1 andp2.
The JS divergence ranges between 0 and 2. Figure 6(b) compares
the mean and standard deviation of the JS Divergence between
HAPPY’s results and ours over all markers and all 96 mice, grouped
by chromosomes.

Though we cannot compare the results against the ground truth
for real CC data, the source of difference are further investigated.
Consider again the CC pedigree in Figure 3(a). The initial four
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Fig. 5. (a) Proportion of probabilities assigned to wrong ancestryby GAIN
and HAPPY on a simulated data set with no noise. (b) Proportion of
probabilities assigned to wrong ancestry by GAIN and HAPPY on a
simulated data set with 1% noise.

founder-mating pairs(F1, F2),(F3, F4), (F5, F6), (F7, F8) cannot
serve as ancestry for any genotypes ofG2Ik descendants. This is
because any genetic material passed from a founder mating pair
is carried by a single haplotype in theG2I0 generation. These
four founder pairs are thus invalid ancestry choices if the pedigree
structure is considered. As an example to show the improved
inference due to incorporating pedigree knowledge, the ancestry of
chromosome 7 of aG2I6 mouse inferred by GAIN and HAPPY
are shown in Figure 7(a) and 7(b) respectively. The most probable
founder pair inferred by HAPPY agrees with our result at most
sites. But their actual probabilities are often different.To quantify
the extent to which HAPPY assigns positive probabilities toinvalid
ancestry, at each sitel, we aggregate the probabilities of invalid
ancestry and plot this “pedigree inconsistency” measure inFigure
7(c). We can see that, the difference between Figure 7(a) and7(b)
is largely influenced by the “pedigree inconsistency”. Moreover,
the probability distributions of ancestry choices at neighboring sites
are not independent. Probabilities assigned to pedigree-inconsistent
ancestry can substantially influence the choice of ancestryat
neighboring sites. Such “propagated error” is sometimes the main
cause of the JS Divergence between HAPPY’s results and ours.As
an example, Figure 7(d) shows a region in chromosome 1 from
anotherG2I6 mouse where the propagated error is the main cause
of divergence. In this region, HAPPY does not assign significant
probabilities to invalid ancestry choice, except for a few sites at both
ends of this region. But, in the middle part, HAPPY favors ancestry
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Fig. 6. (a) The difference in best ancestry estimated by GAIN and HAPPY
(b) The average JS Divergence between results from GAIN and HAPPY on
chromosome 1 to 19 of 96 real CC mice.

choices that are one recombination away from these invalid ancestry
choices.

To sum up, even partial pedigree knowledge causes a big
difference in analyzing genome ancestry. Though HAPPY can
conduct analysis rapidly, its results on complex pedigreescan be
biased. On the other hand, our method can provide a pedigree
consistent inference in comparable running time.

5.3 Running Time Performance
For a pedigree containingi inbreeding processes andn′ members
not involved in inbreeding, the time complexity of GAIN is
O(L×n′ × 22n

′

× 28i) whereL is the number of SNP markers.
For anyG2Ik animal in CC pedigree, the time complexity remains
the same. The running time does not depend on the error rate of
genotype data either. Figure 8 shows the running time comparison
of GAIN, MERLIN and HAPPY.

6 DISCUSSION
The development of high density SNP technology makes model
animal resources a powerful tool for studying genetic variations.
It also makes any analysis on such resources computationally
challenging. In this paper, we demonstrate that modeling repetitive
sub-structure of a pedigree can provide significant improvement in
efficiency without compromising accuracy. We introduce a novel
method for modeling the inbreeding process. Integrated into the
Hidden Markov Model framework originally introduced by the
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Fig. 7. (a) Ancestry inference on chromosome 7 of aG2I6 mouse by GAIN
(b) Ancestry inference on chromosome 7 of the same mouse by HAPPY (c)
The pedigree inconsistency in (b), i.e. the aggregated probability assigned
to ancestry that violates pedigree knowledge. (d) A region in chromosome
1 from anotherG2I6 mouse where propagated error is the main cause of
divergence.
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Lander-Green algorithm, our method can handle large pedigrees
such as Collaborative Cross efficiently. The inbreeding sub-structure
model alone does not speed up the ancestry inference for all types
of pedigrees, but, as we have shown with the Collaborative Cross,
the computational benefit can be crucial for analyzing many model
animal resources. In analyzing such data, our method outperforms
previous methods in terms of accuracy and efficiency. We believe
that sub-structure modeling is a promising approach for large
pedigree analysis, especially when specific types of pedigree are of
interest. In the future, we plan to investigate other commonsub-
structures and build a more general framework to allow efficient
computation on more types of pedigrees.
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