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Abstract

The availability of high density single nucleotide polymorphisms (SNPs) data has made
genome-wide association study computationally challenging. Two-locus epistasis (gene-gene
interaction) detection has attracted great research interest as a promising method for genetic
analysis of complex diseases. In this paper, we propose a general approach, COE, for efficient
large scale gene-gene interaction analysis, which supports a wide range of tests. In particular,
we show that many commonly used statistics are convex functions. From the observed values
of the events in two-locus association test, we can develop an upper bound of the test value.
Such an upper bound only depends on single-locus test and the genotype of the SNP-pair. We
thus group and index SNP-pairs by their genotypes. This indexing structure can benefit the
computation of all convex statistics. Utilizing the upper bound and the indexing structure,
we can prune most of the SNP-pairs without compromising the optimality of the result. Our
approach is especially efficient for large permutation test. Extensive experiments demonstrate
that our approach provides orders of magnitude performance improvement over the brute force
approach.

1 Introduction
High throughput genotyping technologies produce vast amounts of genetic polymorphism data
which empowers genome-wide association study, and at the same time, makes it a computa-
tionally challenging task [Herbert & et al, 2006, Ozaki & et al, 2002, Roses, 2003]. As the most
abundant source of genetic variations, the number of single nucleotide polymorphisms (SNPs)
in public datasets is up to millions (http://www.jax.org/). Through analyzing genetic variation
across a population consisting of disease (case) and healthy (control) individuals, the goal of dis-
ease association study is to find the genetic factors underlying the disease phenotypes. Grow-
ing evidence suggests that many diseases are likely caused by the joint effect of multiple genes
[Carlson et al., 2004, Segre et al., 2005]. The interaction between genes is also referred to as epis-
tasis [Cordell, 2002]. In an epistatic interaction, each gene may only have weak association with
the disease. But when combined, they have strong effect on the disease. A large amount of re-
search has been devoted to find epistatic interactions between genes [Balding, 2006, Doerge, 2002,
Hoh & Ott, 2003], among which the two-locus association mapping has attracted most attention.
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The goal is to find SNP-pairs having strong association with the phenotype. Important findings
are appearing in the literature from studying the association between phenotypes and SNP-pairs
[Saxena & et al, 2007, Scuteri & et al, 2007, Weedon & et al, 2007].

Two critical issues need to be addressed in epistasis detection – one from the statistical side, and
one from the computational side. The statistic issue is to develop statistical tests that have strong
power in capturing epistatic interactions. Commonly used statistics in disease association study
include: chi-square test, G-test, information-theoretic association measurements, and trend test
[Balding, 2006, Pagano & Gauvreau, 2000, Thomas, 2004]. Different tests are good at detecting
different epistatic interactions, and there is no single winner. Another thorny challenge in epistasis
detection is the computational burden posed by the huge amount of SNPs genotyped in the whole
genome. The enormous search space often makes the complete genome-wide epistasis detection
intractable.

The computational issue is further compounded by the well-known multiple test problem,
which can be described as the potential increase in Type I error when tests are performed mul-
tiple times. Let α be the significant level for each independent test. If n independent comparisons
are performed, the family-wise error α′ is given by α′ = 1 − (1 − α)n. For example, if α = 0.05
and n = 20, then α′ = 1 − 0.9520 = 0.64. We have probability 0.64 to get at least one spurious
result. Permutation test is a standard procedure for family-wise error rate controlling. By repeating
the test many times with randomly permuted phenotype, a critical threshold can be established to
assess the statistical significance of the findings. Ideally, permutation test should be performed in
the genome-wide scale. In practice, however, permutation test is usually reserved for a small num-
ber of candidate SNPs. This is because large permutation test usually entails prohibitively long
computation time. For example, if the number of SNPs is 10,000, and the number of permutations
is 1,000. The number of SNP-pairs need to be tested in a two-locus epistasis detection is about
5×1010. In this paper, we focus on addressing the computational challenges of two-locus epistatic
detection when large permutation test is needed. In the following discussion, we briefly review the
related work from a computational point of view.

Exhaustive algorithms [Nelson et al., 2001, Ritchie et al., 2001] have been developed for small
datasets consisting of tens to hundreds of SNPs. Since they explicitly enumerate all possible SNP
combinations, they are not well adapted to genome-wide association studies. Genetic algorithm
[Carlborg et al., 2000] has been proposed. However, this heuristic approach does not guarantee
to find the optimal solution. A two-step approach [Evans et al., 2006, Storey et al., 2005] is com-
monly used to reduce the computational burden. The idea is to first select a subset of impor-
tant SNPs according to some criteria, which is also known as SNP tagging [Chi & et al, 2006,
Halperin et al., 2005, Sebastiani et al., 2003]. Then in the second step, an exhaustive search is per-
formed to find the interactions among the selected SNPs. This approach is incomplete since it
ignores the interactions among the SNPs that individually have weak association with the pheno-
type. A case study on colon cancer demonstrates that the two-step approach may miss important
interacting SNPs.

1.1 A Case Study of Colon Cancer
We perform two-locus chi-square test on genome-wide mouse SNP data. The dataset is extracted
from [Wade & Daly, 2005] and GNF (www.gnf.org). There are 14 cases out of 32 individuals.
The number of SNPs is 132,896. The top-100 SNP-pairs having highest chi-square test values are
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recorded. We show that a two-step approach will fail to identify most of the signficant pairs. We
compute the single-locus chi-square test value for every SNP in these pairs. In Figure 1, the yellow
bars show the histogram of their single-locus test values. More than half of the SNPs have very low
test values. However, when combined with other SNPs, the test values dramatically increases. The
green bar in the figure represents the histogram of the two-locus test values of the pairs. Since the
two-step approach ignores the interactions between SNPs that individually have weak association
with the phenotype, a majority of the top-100 SNP-pairs will not be identified.

Among the SNP pairs identified above, the interaction be-
tween the SNP located at 86,627,952 base pair on Chromo-
some 2 and the SNP located at 94,546,781 base pair on Chro-
mosome 6 was reported previously [Ruivenkamp et al., 2003].
They correspond to two candidate genes: Ptprj, located on
Chromosome 2 from 90,269,911 to 90,319,327, and Lrig1, lo-
cated on Chromosome 6 from 95,067,900 to95,079,646. Nu-
merous studies have emphasized the crucial importance of Pt-
prj to colon cancer susceptibility. It is well known that im-
mune system may play a protective role on colon-cancer, in-
dicating the potential importance of Ptprj to cancer suscep-
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Figure 1: Histogram test values

tibility [Kirman et al., 2004]. Ptprj knock-out mice display an impaired immune system with
decreased B cell number, abnormal B cell differentiation and shortened life-span. Previous ev-
idence also suggests that Lrig1 acts as a feedback negative regulator of signaling by receptor
tyrosine kinases through a mechanism that involves enhancement of receptor ubiquitination and
accelerated intracellular degradation. Rceptor tyrosine kinases including EGFR/ERBB1 are be-
lieved to be a main player on colon cancer-genesis, and Egfr expression has correlated with poor
prognosis of colon cancer. Therefore, Lrig1 is a good candidate for colon cancer susceptibility
[Erlichman & Sargent, 2004]. Each of the two genes individually shows very weak association
signal. Their single-locus chi-square test values are 1.81 and 0.79 respectively, depicted by the
two red dotted lines to the left in Figure 1. However, this pair of genes jointly show much stronger
association. The two-locus test value is 28.4, depicted by the blue dotted line to the right in Figure
1. This implies a strong epistatic interaction between the two genes. Using a two-step approach,
however, these two SNPs will not be selected for interaction study since they both have very low
single-locus test values.

Some recent work [Zhang et al., 2008, Zhang et al., 2009] has taken the initial steps to develop
complete algorithms for genome-wide two-locus epistasis detection: FastANOVA [Zhang et al., 2008]
for two-locus ANOVA (analysis of variance) test on quantitative traits and FastChi [Zhang et al., 2009]
for two-locus chi-square test on case-control phenotypes. Both methods rework the formula of
ANOVA test and Chi-square test to estimate an upper bound of the test value for SNP pairs.
These upper bounds are used to identify candidate SNP pairs that may have strong epistatic ef-
fect. Repetitive computation in a permutation test is also identified and performed once whose
results are stored for use by all permutations. These two strategies lead to substantial speedup,
especially for large permutation test, without compromising the accuracy of the test. These ap-
proaches guarantee to find the optimal solutions. However, a common drawback of these methods
is that they are designed for specific tests, i.e., chi-square test and ANOVA test. The upper bounds
used in these methods do not work for other statistical tests, which are also routinely used by
researchers. In addition, new statistics for epistasis detection are continually emerging in the liter-
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ature [Bohringer et al., 2003, Dong & et al., 2008, Zhao et al., 2005]. Therefore, it is desirable to
develop a general model that supports a variety of statistical tests.

In this paper, we propose a general approach, COE1, to scale-up the process of genome-wide
two-locus epistasis detection. Our method guarantees to find the optimal solution. A significant
improvement over previous methods is that our approach can be applied to a wide range of com-
monly used statistical tests. We show that a key property of these statistics is that they are all
convex functions of the observed values of certain events in two-locus tests. This allows us to
apply the convex optimization techniques [Boyd & Vandenberghe, 2004]. Specifically, by exam-
ining the contingency tables, we can derive constraints on these observed values. Utilizing these
constraints, an upper bound can be derived for the two-locus test value. Similar to the approaches
in [Zhang et al., 2008, Zhang et al., 2009], this upper bound only depends on single-locus test and
the genotype of the SNP-pairs. It avoids redundant computation in permutation test by grouping
and indexing the SNP-pairs by their genotypes. An important difference, however, is that the upper
bound presented in this paper is general and much tighter than those in previous methods such as
FastChi. It supports all tests using convex statistics and can prune the search space more efficiently.
As a result, our method is orders of magnitude faster than the brute force approach, in which all
SNP-pairs need to be evaluated for their test values, and is an order of magnitude faster than the
pruning strategies used in previous methods such as FastChi. In this paper, we focus on the case
where SNPs are binary variables which can be encoded by {0, 1}. The principle introduced here is
also applicable to heterozygous case where SNPs are encoded using {0, 1, 2}.

2 Problem Formalization
Let {X1, X2, · · · , XN} be the set of all biallelic SNPs for M individuals, and Y be the binary phe-
notype of interest (e.g., disease or non-disease). We adopt the convention of using 0 to represent
majority allele and 1 to represent minority allele, and use 0 for non-disease and 1 for disease. We
use T to denote the statistical test. Specifically, we represent the test value of SNP Xi and pheno-
type Y as T (Xi, Y ), and represent the test value of SNP-pair (XiXj) and Y as T (XiXj, Y ). A
contingency table, which records the observed values of all events, is the basis for many statistical
tests. Table 1 shows contingency tables for the single-locus test T (Xi, Y ), genotype relationship
between SNPs Xi and Xj , and two-locus test T (XiXj, Y ).

The goal of permutation test is to find a critical threshold value. A two-locus epistasis detection
with permutation test is typically conducted as follows [Pagano & Gauvreau, 2000, Zhang et al., 2008,
Zhang et al., 2009]. A permutation Yk of Y represents a random reshuffling of the phenotype
Y . In each permutation, the phenotype values are randomly reassigned to individuals with no
replacement. Let Y ′ = {Y1, Y2, · · · , YK} be the set of K permutations of Y . For each per-
mutation Yk ∈ Y ′, let TYk

represent the maximum test value among all SNP-pairs, i.e., TYk
=

max{T (XiXj, Yk)|1 ≤ i < j ≤ N}. The distribution of {TYk
|Yk ∈ Y ′} is used as the

null distribution. Given a Type I error threshold α, the critical value Tα is the αK-th largest
value in {TYk

|Yk ∈ Y ′}. After determining the critical value Tα, a SNP-pair (XiXj) is con-
sidered significant if its test value with the original phenotype Y exceeds the critical value, i.e.,
T(XiXj, Y ) ≥ Tα.

Determining the critical value is computationally more demanding than finding significant

1COE stands for Convex Optimization-based Epistasis detection algorithm.
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(a) Xi and Y

Xi = 0 Xi = 1 Total
Y = 0 event A event B

Y = 1 event C event D

Total M

(b) Xi and Xj

Xi = 0 Xi = 1 Total
Xj = 0 event S event T

Xj = 1 event P event Q

Total M

(c) XiXj and Y

Xi = 0 Xi = 1 Total
Xj = 0 Xj = 1 Xj = 0 Xj = 1

Y = 0 event a1 event a2 event b1 event b2

Y = 1 event c1 event c2 event d1 event d2

Total M

Table 1: Contingency Tables

SNP-pairs, since the test procedure needs to be repeated for every permutation in order to find
the maximum values. These two problems can be formalized as follows.

Determining Critical Value: For a given Type I error threshold α, find the critical value Tα,
which is the αK-th largest value in {TYk

|Yk ∈ Y ′}.
Finding Significant SNP-pairs: For a given critical value Tα, find the significant SNP-pairs

(XiXj) such that T (XiXj, Y ) ≥ Fα.
In the reminder of the paper, we first show the convexity of common statistics. Then we discuss

how to establish an upper bound of two-locus test and use it in the algorithm to efficiently solve
the two problems.

3 Convexity of Common Test Statistics
In this section, we show that many commonly used statistics are convex functions. Since there are
many statistics in the literature, it is impossible to exhaustively enumerate all of them. We focus on
four widely used statistics: chi-square test, G-test, entropy-based statistic, and Cochran-Armitage
trend test.

Let A,B,C,D, S, T, P,Q, a1, a2, b1, b2, c1, c2, d1, d2 represent the events as shown in Table 1.
Let Eevent and Oevent denote the expected value and observed value of an event. Suppose that
E0 = {a1, a2, b1, b2, c1, c2, d1, d2}, E1 = {a1, a2, c1, c2}, and E2 = {b1, b2, d1, d2}. The two-locus
chi-square tests can be calculated as follows:

χ2(XiXj, Y ) =
∑

event∈E1

(Oevent − Eevent)
2

Eevent

︸ ︷︷ ︸

χ2

1
(XiXjY )

+
∑

event∈E2

(Oevent − Eevent)
2

Eevent

︸ ︷︷ ︸

χ2

2
(XiXjY )

. (1)

Note that we intentionally break the calculation into two components: one for the events in E1,
denoted as χ2

1(XiXjY ), and one for the events in E2, denoted as χ2
2(XiXjY ). The reason for

separating these two components is that each of these two components is a convex function (See
Lemma 3.1).

The G-test, also known as a likelihood ratio test for goodness of fit, is an alternative to the
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chi-square test. The formula for two-locus G-test is

G(XiXj, Y ) = 2
∑

event∈E1

Oevent · ln(
Oevent

Eevent

) + 2
∑

event∈E2

Oevent · ln(
Oevent

Eevent

). (2)

Information-theoretic measurements have been proposed for association study [Dong & et al., 2008,
Zhao et al., 2005]. We examine the mutual information measure, which is the basic form of many
other measurements. The mutual information between SNP-pair (XiXj) and phenotype Y is
I(Y ; XiXj) = H(Y ) + H(XiXj) − H(XiXjY ), in which the joint entropy −H(XiXjY ) is
calculated as

−H(XiXjY ) =
∑

event∈E1

Oevent

M
· log

Oevent

M
+

∑

event∈E2

Oevent

M
· log

Oevent

M
. (3)

Let T (XiXj, Y ) represent any one of χ2(XiXj, Y ), G(XiXj, Y ), and −H(XiXjY ). Let
T1(XiXjY ) denote the component for events in E1, and T2(XiXjY ) denote the component for
events in E2. The following lemma shows the convexity of T1(XiXjY ) and T2(XiXjY ).

Lemma 3.1. Given the values of OA, OB, OC , OD, OP , OQ, T1(XiXjY ) is a convex function of
Oc2 , and T2(XiXjY ) is a convex function of Od2

.

Proof. See Appendix.

The Cochran-Armitage test for trend is another widely used statistic in genetic association
study. Let Z = (Oc1 − pOS)(s1 − s̄) + (Oc2 − pOP )(s2 − s̄) + (Od1

− pOT )(s3 − s̄) + (Od2
−

pOQ)(s4 − s̄). The Cochran-Armitage two-locus test can be calculated as

z2 = Z2/[p(1− p)(OS(s1 − s̄)2 + OP (s2 − s̄)2 + OT (s3 − s̄)2 + OQ(s4 − s̄)2)],

where p is the percentage of cases in the case-control population, si (i ∈ {1, 2, 3, 4}) are user
specified scores for the four possible genotype combinations of (XiXj): {00, 01, 10, 11}, and s̄ =
(OSs1 + OP s2 + OT s3 +OQs4)/M is the weighted average score. The following theorem shows
the convexity of the trend test.

Lemma 3.2. Given the values of OA, OB, OC , OD, OP , OQ, the Cochran-Armitage test for trend
z2 is a convex function of (Oc2 , Od2

).

Proof. See Appendix.

Suppose that the range of Oc2 is [lc2 , uc2 ], and the range of Od2
is [ld2

, ud2
]. For any convex func-

tion, its maximum value is attained at one of the vertices of it convex domain [Boyd & Vandenberghe, 2004].
Thus, from Lemmas 3.1 and 3.2, we have the following theorem.

Theorem 3.3. Given the values of OA, OB, OC , OD, OP , OQ, for chi-square test, G-test, and entropy-
based test, the maximum value of T1(XiXjY ) is attained when Oc2 = lc2 or Oc2 = uc2 . The
maximum value of T2(XiXjY ) is attained when Od2

= ld2
or Od2

= ud2
. The maximum value of

Cochran-Armitage test z2 is attained when (Oc2 , Od2
) takes one of the four values in {(lc2 , ld2

), (lc2 , ud2
),

(uc2 , ld2
), (uc2 , ud2

)}.
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Therefore, we can develop an upper bound of the two-locus
test if we identify the range of Oc2 and Od2

. For example,
suppose that the value of vector (OA, OB, OC , OD, OP , OQ) is
(6, 10, 10, 6, 7, 6). In Figure 2, we plot function χ2

1(XiXj, Y ).
The blue stars represent the values of χ2

1(XiXj, Y ) when Oc2

takes different values. Clearly, χ2
1(XiXj, Y ) is a convex func-

tion of Oc2 , and its upper bound is determined by the two end
points of the range of Oc2 . Since Oc2 is always less than OC ,
in this example, the default range of Oc2 is [0, OC ] = [0, 10].
Typically, the actual range of Oc2 is tighter, as indicated by the
red dotted lines, which leads to a tighter upper bound of the test
value. In the next section, by examining the contingency tables,
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Figure 2: Convexity Example

we derive a set of constraints that determine the range of Oc2 and Od2
.

4 Constraints on Observed Values







Oa1
+ Oa2

= OA

Ob1 + Ob2 = OB

Oc1 + Oc2 = OC

Od1
+ Od2

= OD

Oa1
+ Oc1 = OS

Oa2
+ Oc2 = OP

Ob1 + Od1
= OT

Ob2 + Od2
= OQ

=⇒





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


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1 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0
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0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1


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Figure 3: Linear equation system derived from contingency tables







Oa1

Oa2

Oc1

Oc2







=







OA −OP

OP
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0






−







−1
1
1
−1




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Oc2 , and




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
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Ob2

Od1

Od2




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OQ
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Figure 4: Relations between observed values in the contingency table of two-locus test

From the contingency tables shown in Table 1, we can develop a set of equations, as shown
in Figure 3 at the left side of the arrow sign. Although there are 8 equations, the rank of the
linear equation system is 6. We choose 6 linear equations to form a full rank system. The matrix
multiplication form of these 6 equations is shown in Figure 3 at the right side of the arrow sign.
The reason for choosing the 6 equations is two-fold. First, these 6 equations can be used to derive
the range of Oc2 and Od2

. Second, the values of OA, OB, OC , OD are determined by the single-
locus contingency table in Table 1(a). The remaining two values, OP and OQ, only depend on the
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SNP-pair’s genotype. It enables us to index the SNP-pairs by their (OP , OQ) values to effectively
apply the upper bound. This will become clear when we present the algorithm in Section 5.

From these 6 equations, we obtain the relationships between the observed values shown in
Figure 4. Since all observed values in the contingency table must be greater or equal to 0, the
ranges of Oc2 and Od2

are stated in Theorem 4.1.

Theorem 4.1. Given the values of OA, OB, OC , OD, OP , OQ, the ranges of Oc2 and Od2
are

{
max{0, OP −OA} ≤ Oc2 ≤ min{OP , OC};
max{0, OQ −OB} ≤ Od2

≤ min{OQ, OD}.

Given OA, OB, OC , OD, OP , OQ, the values of Oa1
, Oa2

, Oc1 are determined by Oc2 , the values
of Ob1 , Ob2 , Od1

are determined by Od2
. So all values in the contingency table for two-locus test

in Table 1(c) depend only on Oc2 and Od2
. The maximum value, ub(T (XiXj, Y )), is attained

when Oc2 and Od2
take the boundary values shown in Theorems 3.3 and 4.12. Continuing with the

example in Figure 2, the value of (OA, OB, OC , OD, OP , OQ) is (6, 10, 10, 6, 7, 6). From Theorem
4.1, the range of Oc2 is [1, 7], as indicated by the red lines. The upper bound of χ2

1(XiXj, Y ) is
reached when Oc2 = 1.

Note that the upper bound value only depends on OA, OB, OC , OD, OP , OQ. This property
allows us to group and index SNP-pairs by their genotypes so that the upper bound can effectively
estimated and applied to prune the search space.

5 Applying the Upper Bound
Theorems 3.3 and 4.1 show that the upper bound value of the two-locus test T (XiXj, Y ) (for any
one of the four tests discussed in Section 3) is determined by the values of OA, OB, OC , OD, OP , OQ.
As shown in Table 1, these values only depend on the contingency table for the single-locus test
T (Xi, Y ) and the contingency table for the SNP-pair (XiXj)’s genotype. This allows us to group
the SNP-pairs and index them by their genotypes. The idea of building such indexing structure
has also been explored in [Zhang et al., 2008, Zhang et al., 2009]. For self-containment, in this
section, we first discuss how to apply the upper bound to find the significant SNP-pairs. Then we
show that a similar idea can be used to find the critical values Tα using permutation test.

For every Xi (1 ≤ i ≤ N), let AP (Xi) = {(XiXj)|i + 1 ≤ j ≤ N} be the SNP-pairs with
Xi being the SNP of lower index value. We can index the SNP-pairs in AP (Xi) by their (OP , OQ)
values in a 2D array, referred to as Array(Xi). Note that OP is the number of 1’s in Xj when Xi

takes value 0. OQ is the number of 1’s in Xj when Xi takes value 1.

2For entropy-based statistic, so far we have focused on the joint entropy −H(XiXjY ). Note that, given the values
of OA, OB , OC , OD, OP , OQ, the upper bound for the mutual information I(XiXj , Y ) can also be easily derived.
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Figure 5: Indexing SNP-pairs

For example, suppose that there are 13 individuals in the dataset.
SNP Xi consists of 8 0’s and 5 1’s. Thus for the SNP-pairs in
AP (Xi), the possible values of OP are {0, 1, 2, · · · , 8}. The pos-
sible values of OQ are {0, 1, 2, · · · , 5}. Figure 5 shows the 6 × 9

array, Array(Xi), whose entries represent the possible values of
(OP , OQ) for the SNP-pairs (XiXj) in AP (Xi). Each entry of the
array is a pointer to the SNP-pairs (XiXj) having the correspond-
ing (OP , OQ) values. For example, all SNP-pairs in AP (Xi) whose
(OP , OQ) value is (5,4) are indexed by the entry (5,4) in Figure 5.

It is obvious that for any SNP-pair (XiXj) ∈ AP (Xi), if the up-
per bound value of the two-locus test is less than the critical value,
i.e., ub(T (XiXj, Y )) < Tα, then this SNP-pair cannot be signifi-

cant since its actual test value will also be less than the threshold. Only the SNP-pairs whose upper
bound values are greater than the threshold need to be evaluated for their test values. We refer to
such SNP-pairs as candidates.

Recall that from Theorems 3.3 and 4.1, the upper bound of two-locus test value is a constant for
given OA, OB, OC , OD, OP , OQ. Given SNP Xi and phenotype Y , the values of OA, OB, OC , OD

are fixed. For SNP-pairs (XiXj) ∈ AP (Xi), once we index them by their (OP , OQ) values as
shown in Figure 5, we can identify the candidate SNP-pairs by accessing the indexing structure:
For each entry of the indexing structure, we calculate the upper bound value. If the upper bound
value is greater than or equal to the critical value Tα, then all SNP-pairs indexed by this entry are
candidates and subject to two-locus tests. The SNP-pairs whose upper bound values are less than
the critical value are pruned without any additional test.

Suppose that there are m 1’s and (M −m) 0’s in SNP Xi. The maximum size of the indexing
structure Array(Xi) is m(M−m). Usually, the number of individuals M is much smaller than the
number of SNPs N . Therefore, the number of entries in the indexing structure is also much smaller
than N . Thus there must be a group of SNP-pairs indexed by the same entry. Since all SNP-pairs
indexed by the same entry have the same upper bound value, the indexing structure enables us to
calculate the upper bound value for this group of SNP-pairs together.

So far, we have discussed how to use the indexing structure and the upper bound to prune
the search space to find significant SNP-pairs for a given critical value Tα. The problem of find-
ing this critical value Tα is much more time consuming than finding the significant SNP-pairs
since it involves large scale permutation test. The indexing structure Array(Xi) can be easily
incorporated in the algorithm for permutation test. The key property is that the indexing struc-
ture Array(Xi) is independent of the phenotype. Once Array(Xi) is built, it can be reused in
all permutations. Therefore, building the indexing structure Array(Xi) is only a one time cost.
The permutation procedure is similar to that of finding significant SNP-pairs. The only differ-
ence is that the threshold used to prune the search space is a dynamically updated critical value
found by the algorithm so far. The overall procedure of our algorithm COE is similar to that in
[Zhang et al., 2008, Zhang et al., 2009]. An important difference is that COE utilizes the convexity
of statistical tests and is applicable to all four statistics. We omit the pseudo code of the algorithm
in the main body of the paper. Please refer to the Appendix for further details.

Property 5.1. The indexing structure Array(Xi) can be applied in computing the upper bound
value for all four statistical tests, i.e., chi-square test, G-test, mutual information, and trend test.
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The correctness of Property 5.1 relies on the fact that the upper bound is always a function
of OA, OB, OC , OD, OP , OQ, regardless of the choice of test. All SNP-pairs having the same
(OP , OQ) value will always share a common upper bound. This property shows that there is no
need to rebuild the indexing structure if the users want to switch between different tests. It only
needs to be built once and retrieved for later use.

The time complexity of COE for permutation test is O(N 2M + KNM 2 + CM), where N is
the number of SNPs, M is the number of individuals, K is the number of permutations, and C
is the number of candidates reported by the algorithm. Experimental results show that C is only
a very small portion of all SNP-pairs. A brute force approach has time complexity O(KN 2M).
Note that N is the dominant factor, since M � N . The space complexity of COE is linear to
the size of the dataset. The derivation of the complexity is similar to that in [Zhang et al., 2008,
Zhang et al., 2009] and can be found in the Appendix.

6 Experimental Results
In this section, we present extensive experimental results on evaluating the performance of the
COE algorithm. COE is implemented in C++. We use COE Chi, COE G, COE MI, COE T to
represent the COE implementation for the chi-square test, G-test, mutual information, and trend
test respectively. The experiments are performed on a 2.4 GHz PC with 1G memory running
WindowsXP system.

Dataset and Experimental Settings: The SNP dataset is extracted from a set of combined
SNPs from the 140k Broad/MIT mouse dataset [Wade & Daly, 2005] and 10k GNF (www.gnf.org)
mouse dataset. This merged dataset has 156,525 SNPs for 71 mouse strains. The missing values
in the dataset are imputed using NPUTE [Roberts et al., 2007]. The phenotypes used in the exper-
iments are simulated binary variables which contain half cases and half controls. This is common
in practice, where the numbers of cases and controls tend to be balanced. If not otherwise spec-
ified, the default settings of the experiments are as follows: #individuals = 32, #SNPs=10,000,
#permutations=100. There are 62,876 unique SNPs for these 32 strains.

6.1 Performance Comparison
Figure 6 shows the runtime comparison of the brute force two-locus chi-square test, the FastChi
algorithm [Zhang et al., 2009], and the COE implementation of chi-square test, COE Chi, in per-
mutation test under various settings. Note that the runtime reported in this section are based on
the complete executions of all methods including the one time cost for building the indexing struc-
tures. Figure 6(a) shows the comparison when the Type I error threshold varies. The y-axis is in
logarithm scale. COE Chi improves the efficiency of two-locus epistasis detection by one order of
magnitude over FastChi (which was specifically designed for two-locus chi-square test), and two
orders of magnitude over the brute force approach. Figure 6 (b), (c), and (d) demonstrate similar
performance improvements of COE Chi over the other two approaches when varying number of
SNPs, number of permutations, and number of individuals respectively. This is consistent with the
pruning effect of the upper bounds which will be presented later.

Figure 7 shows the runtime comparison between the brute force two-locus G-test and COE G
when varying the type I error threshold. The runtime of COE G dramatically reduces as the type
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Figure 6: Performance comparison of the brute force approach, FastChi, and COE Chi
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Figure 7: Performance comparison of the brute force approach and COE G
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Figure 8: Performance comparison of the brute force approach and COE MI

I error threshold decreases. COE G is one to two orders magnitudes faster than the brute force
approach. Similar performance improvement can also be observed for COE MI and COE T in
Figures 8 and 9.
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Figure 9: Performance comparison of the brute force approach and COE T

FastChi COE Chi COE G COE MI COE T
0.05 87.59% 95.70% 95.84% 95.80% 99.90%
0.04 87.98% 96.11% 96.23% 96.23% 99.92%

α 0.03 88.12% 96.32% 96.40% 96.43% 99.93%
0.02 89.43% 98.18% 98.31% 98.28% 99.96%
0.01 90.03% 98.59% 98.65% 98.62% 99.98%
10k 90.03% 98.59% 98.65% 98.62% 99.98%
23k 91.52% 99.08% 99.50% 99.13% 99.99%

# SNPs 36k 91.39% 99.03% 99.43% 99.09% 99.99%
49k 91.39% 99.04% 99.43% 99.09% 99.99%
62k 91.22% 99.04% 99.43% 99.09% 99.99%
100 90.03% 98.59% 98.65% 98.62% 99.98%
200 91.79% 99.03% 99.42% 99.08% 99.99%

# Perm. 300 91.90% 99.04% 99.43% 99.09% 99.99%
400 91.91% 99.04% 99.43% 99.09% 99.99%
500 91.99% 99.04% 99.43% 99.09% 99.99%
28 91.05% 98.77% 99.83% 99.06% 99.99%
30 91.23% 98.83% 98.94% 99.06% 99.98%

# Indiv. 32 90.03% 98.59% 99.65% 98.62% 99.98%
34 91.54% 98.80% 99.74% 98.84% 99.97%
36 89.08% 97.94% 95.74% 93.55% 99.94%

Table 2: Pruning effects of FastChi and COE on four different statistics

6.2 Pruning Power of the Upper Bound
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Figure 10: FastChi v.s. COE Chi

Table 2 shows the percentage of SNP-pairs pruned un-
der different experimental settings for the four statistical
tests. We also include the pruning ratio of FastChi in the ta-
ble for comparison. From the table, most of the SNP-pairs
are pruned by COE. Note that COE Chi has more pruning
power than FastChi. The upper bound used in FastChi is
derived by loosening the observed values for the events in
two-locus test without using the convexity property. The
tighter upper bound of COE Chi demonstrates the strength
of convex optimization in finding the maximum values. In
addition, the upper bound derived by applying convex opti-
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mization is not only more effective, but also more robust for unbalanced datasets.
Figure 10 shows the pruning effectiveness of FastChi and COE Chi when the ratio of case/control

varies. It is clear that the pruning power of FastChi is weakened when the case/control ratio be-
comes unbalanced. Therefore, FastChi is not very effective for unbalanced case-control datasets.
In contrast, COE Chi maintains a steady pruning percentage under different case/control ratios.
Thus it remains effective for the unbalanced datasets. Similar behaviors of COE are also observed
in the other three statistical tests.

7 Discussion
Genome-wide epistasis detection is computationally demanding due to the large number of SNPs.
As a golden standard for proper family-wise error controlling, the permutation test dramatically
increases the computation burden. In this paper, we present a general approach COE that support
genome-wide disease association study with a wide range of statistics composing of convex terms.
We use four commonly used statistics as prototypes: chi-square test, G-test, entropy-based test,
and Cochran-Armitage trend test. COE guarantees optimal solution and performs two orders of
magnitude faster than brute force approaches.

The performance gain is attributed to two main contributions of COE. The first is a tight upper
bound estimated using convex optimization. It has much higher pruning power than any upper
bounds used in previous methods such as FastChi. As a result, COE Chi is an order of mag-
nitude faster than FastChi. Moreover, COE serves as a general platform for two-locus epistasis
detection, which eliminates the need of designing specific pruning methods for different statistical
tests. Recall that any observed value in a two-locus test is a function of Oc2 and Od2

for given
OA, OB, OC , OD, OP , OQ. Let x = Oc2 and y = Od2

. A wide spectrum of functions of x and y are
convex [Boyd & Vandenberghe, 2004], which include all linear and affine functions on x and/or y,
exponential terms eax (a ∈ R), powers xa (a ≥ 1 or a ≤ 0), negative logarithm − log x, maximum
max{x, y}. In addition, many operations preserve convexity. For example, if f(x, y) is a convex
function, and g(x, y) is an affine mapping, then f(g(x, y)) is also a convex function. Please refer
to [Boyd & Vandenberghe, 2004] for further details.

The second source of performance improvement is from indexing SNP-pairs by their geno-
types. Applying this indexing structure, we can compute a common upper bound value for each
group. The indexing structure is independent of the phenotype permutations and the choice of sta-
tistical test . We can eliminate redundant computation in permutation test and provide the flexibility
of supporting multiple statistical tests on the fly.

In this paper, we focus on binary SNPs and case-control phenotypes. The principle is also
applicable to the heterozygous case, where SNPs are encoded using {0, 1, 2}, and to evaluate
quantitative phenotypes, where phenotypes are continuous variables. We will investigate these two
cases in our future work.
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Appendix
Proof of Lemma 3.1 and Lemma 3.2

Proof. We first show that χ2
1(XiXj, Y ) is a convex function of Oc2 . Recall that

χ2
1(XiXj, Y ) =

∑

event∈{a1,a2,c1,c2}

(Oevent − Eevent)
2

Eevent

.

For fixed OA, OB, OC , OD, OP , OQ, we know that the expected values of the four events are con-
stants: 





Ea1
=

OS(OA + OB)

M
=

(OA + OC −OP )(OA + OB)

M

Ea2
=

OP (OA + OB)

M

Ec1 =
OS(OC + OD)

M
=

(OA + OC −OP )(OC + OD)

M

Ec2 =
OP (OC + OD)

M
From the relations between the observed values of the events in two-locus test (as shown in Figure
4), we have that Oa1

, Oa2
, Oc1 are linear functions of Oc2

3. So χ2
1(XiXj, Y ) is a positive quadratic

function of Oc2 . Thus χ2
1(XiXj, Y ) is a convex function of Oc2 .

Next, we show that

G1(XiXj, Y ) =
∑

event∈{a1,a2,c1,c2}

Oevent · ln
Oevent

Eevent

is a convex function of Oc2 . From previous result, for fixed OA, OB, OC , OD, OP , OQ, the expected
values of the four events {a1, a2, c1, c2} are constants, and Oa1

, Oa2
, Oc1 are linear functions of Oc2 .

Thus G1(XiXj, Y ) is a function of Oc2 . To prove the convexity of G1(XiXj, Y ), it suffices to show

that the second derivative∇2G1(XiXj, Y ) =
∂2G1(XiXj, Y )

∂O2
c2

is nonnegative. We show this is the

case for the component of event a2:

∇2(Oa2
· ln

Oa2

Ea2

) = ∇2((OP −Oc2) · ln
OP −Oc2

Ea2

) =
1

OP −Oc2

≥ 0.

Similarly, we can prove that the second derivative of other components are nonnegative. Therefore,
G1(XiXj, Y ) is a convex function of Oc2 .

Following the similar idea, i.e., by showing the second derivative of −H(XiXjY ) is nonnega-
tive, we can prove that −H1(XiXjY ) is a convex function of Oc2 .

Thus we have shown the T1(XiXjY ) is a convex function of Oc2 . The convexity T2(XiXjY )
can be proven in a similar way.

We now prove that the Cochran-Armitage trend test is a convex function of (Oc2 , Od2
). Observe

that the Oc1 is a linear function of Oc2 , and Od1
is a linear function of Od2

. The values of p, si

(i ∈ {1, 2, 3, 4}), and s̄ are fixed. Thus the trend statistic z2 is a quadratic function of the two
variables (Oc2 , Od2

). This completes the proof.
3Note that, although these relations are presented after shown the convexity of the statistics, it is easy to see that

the derived relations are independent of whether the statistics are convex.
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Pseudo code of COE for permutation test

Algorithm 1: COE for permutation test
Input: SNPs X ′ = {X1, X2, · · · , XN}, phenotype permutations Y ′ = {Y1, Y2, · · · , YK},

and the Type I error α.
Output: the critical value Tα.

T list← αK dummy phenotype permutations with test value 0 ;1

Tα = 0;2

for every Xi ∈ X ′, do3

index (XiXj) ∈ AP (Xi) by Array(Xi);4

for every Yk ∈ Y ′, do5

access Array(Xi) to find the candidate SNP-pairs and store them in Cand(Xi, Yk);6

for every (XiXj) ∈ Cand(Xi, Yk) do7

if T (XiXj, Yk) ≥ Tα then8

update T list;9

Tα = the smallest test value in T list;10

end11

end12

end13

end14

return Tα.15

Algorithm 1 describes our COE algorithm for finding critical values in two-locus epistasis
detection using permutation test. The algorithm for finding significant SNP-pairs is similar. The
overall process is similar to that in [Zhang et al., 2008, Zhang et al., 2009]. The goal is to find the
critical value Tα, which is the αK-th largest value in {TYk

|Yk ∈ Y ′}. We use T list to keep the αK
phenotype permutations having the largest test values found by the algorithm so far. Initially, T list
contains αK dummy permutations with test values 0. The smallest test value in T list, initially 0,
is used as the threshold to prune the SNP-pairs. For each Xi, the algorithm first builds the indexing
structure Array(Xi) for the SNP-pairs (XiXj) ∈ AP (Xi). Then it accesses Array(Xi) to find the
set of candidates Cand(Xi, Yk) for every phenotype permutation. Two-locus tests are performed
on these candidates to get their test values. If a candidate’s test value is greater than the current
threshold, then T list is updated: If the candidate’s phenotype Yk is not in the T list, then the
phenotype in T list having the smallest test value is replaced by Yk. If the candidate’s phenotype
Yk is already in T list, we only need to update its corresponding test value to be the maximum
value found for the phenotype so far. The threshold is also updated to be the smallest test value in
T list.

Time complexity: For each Xi, the algorithm needs to index (XiXj) in AP (Xi). The com-
plexity to build the indexing structure for all SNPs is O(N(N − 1)M/2). The worst case for
accessing all Array(Xi) for all permutations is O(KNM 2). Let C =

∑

i,k |Cand(Xi, Yk)| rep-
resent the total number of candidates. The overall time complexity of our algorithm is O(N(N −
1)M/2) + O(KNM 2) + O(CM) = O(N 2M + KNM 2 + CM).

Space complexity: The total number of variables in the dataset, including the SNPs and the
phenotype permutations, is N + K. The maximum space of the indexing structure Array(Xi)
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is O(M 2 + N). For each SNP Xi, our algorithm only needs to access one indexing structure,
Array(Xi), for all permutations. Once the evaluation process for Xi is done for all permutations,
Array(Xi) can be cleared from the memory. Therefore, the space complexity of COE is O((N +
K)M)+O(M 2 +N) = O((N +K +M)M +N). Since M � N , the space complexity is linear
to the dataset size.
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