
SPIN: Mining Maximal Frequent Subgraphs from Graph
Databases

Jun Huan, Wei Wang, Jan Prins
Department of Computer Science,

University of North Carolina at Chapel Hill
Chapel Hill,NC 27599, USA

{huan, weiwang, prins}@cs.unc.edu

Jiong Yang
Department of Computer Science,

University of Illinois
Urbana-Champaign, IL 61801, USA

jioyang@cs.uiuc.edu

ABSTRACT
One fundamental challenge for mining recurring subgraphs from
semi-structured data sets is the overwhelming abundance of such
patterns. In large graph databases, the total number of frequent
subgraphs can become too large to allow a full enumeration using
reasonable computational resources. In this paper, we propose a
new algorithm that mines only maximal frequent subgraphs, i.e.
subgraphs that are not a part of any other frequent subgraphs. This
may exponentially decrease the size of the output set in the best
case; in our experiments on practical data sets, mining maximal
frequent subgraphs reduces the total number of mined patterns by
two to three orders of magnitude.

Our method first mines all frequent trees from a general graph
database and then reconstructs all maximal subgraphs from the
mined trees. Using two chemical structure benchmarks and a set
of synthetic graph data sets, we demonstrate that, in addition to de-
creasing the output size, our algorithm can achieve a five-fold speed
up over the current state-of-the-art subgraph mining algorithms.

Categories and Subject Descriptors:H.2.8 [Database Applica-
tions]: Data Mining

General Terms: Algorithms

Keywords: Subgraph Mining, Spanning Tree

1. INTRODUCTION
In this paper, we focus on the problem of finding recurring sub-

graphs from graph databases, which is a very active topic in current
data mining research. Graphs provide a general way to model a va-
riety of relations among data, hence finding recurring subgraphs
has many applications in interdisciplinary research such as chem-
ical informatics [2] and bioinformatics [11]. There are also many
applications in data management research such as efficient storage
of semi-structured databases [5], efficient indexing [21], and web
information management [16].

One performance issue (among many others) in mining large
graph databases is the huge number of recurring patterns. The phe-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’04, August 22–25, 2004, Seattle, Washington, USA.
Copyright 2004 ACM 1-58113-888-1/04/0008 ...$5.00.

nomenon is well understood in mining “long” frequent itemsets.
Given a frequent itemset I , any subset of I is also frequent hence
the number of such frequent itemsets grows exponentially with |I|.

In this paper, we propose a new graph mining algorithm that
mines only maximal frequent subgraphs. Given a set of graphs
G (referred to as a graph database), the supportof a graph G is
defined as the fraction of graphs in G in which G occurs [9, 20]. G
is frequentif its support is at least a user specified threshold; a fre-
quent subgraph is maximalif none of its super graphs are frequent
[10]. Mining only maximal frequent subgraph offers the following
advantages in processing large graph databases. (1) It significantly
reduces the total number of mined subgraphs. In experiments we
performed on some realistic data sets, the total number of frequent
subgraphs is up to one thousand times greater than the number of
maximal subgraphs. We can save both space and subsequent analy-
sis effort if the number of mined subgraphs is significantly reduced.
(2) Several “pruning” techniques, which are detailed in this paper,
can be efficiently integrated into the mining process and dramati-
cally reduce the total mining time. (3) The non-maximal frequent
subgraphs can be reconstructed from the maximal subgraphs re-
ported. To get the actual frequency (support) of non-maximal sub-
graphs requires examination of the original database, but it is cer-
tain to be at least as high as the frequency of the maximal subgraph.
In addition, the techniques used in [15] can be easily adapted to
approximate the support of all frequent subgraphs within some er-
ror bound. (4) In some applications such as discovering structure
motifs in a group of homology proteins [7, 11], maximal frequent
subgraphs are the subgraphs of most interest since they encode the
maximal structure commonalities within the group.

Our mining method is based on a novel graph mining frame-
work in which we first mine all frequent tree patterns from a graph
database and then construct maximal frequent subgraphs from trees.
This approach offers asymptotic advantages compared to using sub-
graphs as building blocks, since tree normalization is a simpler
problem than graph normalization. The proposed method enables
us to integrate well-developed techniques from mining maximal
itemsets and knowledge gained in graph mining into a new algo-
rithm. According to our experimental study, such a combination
can offer significant performance speedup in both synthetic and
real data sets. The framework of our method is versatile. Depend-
ing on the particular tree mining algorithm, the search can be either
breadth-first or depth-first (preferred due to its better memory uti-
lization). It can also be designed to mine all frequent subgraphs
without major modifications.

Technically, we make three contributions: (1) we propose a novel
algorithm SPIN (SPanning tree based maximal graph mIN ing) to
mine only maximal frequent subgraphs of large graph databases,

Research Track Poster

581

(2) we integrate several optimization techniques, some from exist-
ing maximal itemset mining research and some developed by our-
selves, to speed up the mining process, (3) we perform an exten-
sive analysis of the proposed algorithm and analyze how its perfor-
mance on graph data sets with different characteristics.

The remainder of the paper is organized as follows. In Section 2,
we present the data structure and the proposed algorithm. Section 3
presents the results of our experimental study using synthetic graph
databases and two benchmark chemical data sets. We conclude the
paper with a discussion, related works, and conclusion.

2. MAXIMAL SUBGRAPH MINING
In the following discussion, we present a novel framework for

mining maximal frequent subgraphs from a graph database. The
framework combines tree mining and subgraph mining; we first
find all frequent trees from a graph database and then reconstruct
the group of frequent subgraphs from the mined trees. There are
two important components in the framework. The first is a graph
partitioning method through which we group all frequent subgraphs
into equivalence classes based on the spanning trees they contain.
The second important component is a set of pruning techniques
which aim to remove some partitions entirely or partially for the
purpose of finding maximal frequent ones only.

There are three reasons we advocate this two-step method for
finding maximal graph patterns. First, tree related operations such
as isomorphism, normalization, and testing whether a tree is a sub-
tree of another tree are asymptotically simpler than the comparable
operations for graphs, which are NP-complete. Second, in certain
applications, such as chemical compound analysis, most of the fre-
quent subgraphs are really trees. Last but not least, this frame-
work adapts well to maximalfrequent subgraph mining, which is
the focus of this paper. Using a chemical structure benchmark, we
show 99% of cyclic graph patterns and 60% of tree patterns can be
eliminated by our optimization technique in searching for maximal
subgraphs; further details about the efficiency of the optimization
techniques can be found in [10]. To the best of our knowledge,
we are the first to combine the two distinct methodologies: mining
frequent subgraphs in graph databases and mining frequent trees in
forests (a set of trees) for the purpose of designing efficient sub-
graph mining algorithm.

2.1 Tree-based Equivalence Classes
We define a subtreeof an undirected graph G as an acyclic con-

nected subgraph of G. A subtree T is a spanning treeof G if T
contains all nodes in G. Given a graph G, there are many spanning
trees and we define the maximal one, according to a total order de-
fined on trees [4, 10], and call it the canonical spanning treeof
G.

EXAMPLE 2.1. In Figure 1, we show an example of a labeled
graphP (upper-left) with all four-node subtrees ofP . Each subtree
is represented by its canonical representation and sorted according
to the total order� (as given in [10]). Each such tree is a spanning
tree of the graphP and the first one (T1) is the canonical spanning
tree ofP .

DEFINITION 2.1. Tree-based Equivalence Classes: Given two
graphsP andQ, we defined a binary relation∼= such thatP ∼= Q
if and only if their canonical spanning trees are isomorphic to each
other. The relation∼= is reflexive, symmetric, transitive, and hence
an equivalence relation.

a

b

a

a

y

y

x
b

a

y

x

y

a

a

‘ ‘

(T1) (T2)

b

a

y

x

x

a

a

b

a

y

xy
a

a

b

a

y

x

y

a

a

b

a

x

y

x

a

a

‘ ‘ ‘

(T6)(T5)(T4)

b

a

y

y

x

a

a

‘

(T3) (T7)

a

b

a

a

y

y

x
y

(P)

p2

p1

p3

p4

x

Figure 1: Example of a labeled graphP (upper-left), P ’s subtrees,
spanning trees, and its canonical spanning tree (T1).

EXAMPLE 2.2. In Figure 2, we show subgraphs of the graph
P in Figure 1 which are not necessarily trees. Subgraphs are
grouped together if they share the same canonical spanning tree.
The five non-singleton groups are shown here and the remaining
twelve groups are all singletons1

Class II

a

b

a

a

y

y

x

x

a

b

a

a

y

y

x

a

b

a

a

y

y
y

x

a

b

a

a

y

y

x
y

x

Class I

≅≅≅≅ ≅≅≅≅ ≅≅≅≅

b

a

y

x

y

a

a

b

a

y

x

y

a

a

y

Class III

≅≅≅≅

b

a

y

y

x

a

a

b

a

y

y

x

a

a

y

b

a

y

y

x

a

a

x
≅≅≅≅≅≅≅≅

b

a

y y

a

b

a

y y

ay

b

a

y x

a

b

a

y x

ax

Class IV

Class V

≅≅≅≅

≅≅≅≅

Figure 2: Example of tree based equivalence classes for subgraphs in
graph P , presented in Figure 1.

We can use a simple greedy search algorithm to find the canon-
ical spanning tree of a graph G, the details of which are given in
[10]. The frequent subgraph mining can conceptually be broken
into two steps: (1) mine all the frequent trees from a graph database
and (2) for each such frequent tree T , find all frequent subgraphs
whose canonical spanning trees are isomorphic to T . Maximal
frequent subgraphs can be found among frequent ones. We skip
the first step in the following discussion for two reasons. First, as
pointed out in [20], the current subgraph mining algorithms can be
easily tailored to find only trees from a graph database by limiting
the topology of the patterns. This is true for Closegraph [20] as
well as for FFSM [9], which is our recently developed depth-first
subgraph mining algorithm. Second, most of the techniques devel-
oped for mining subtrees from a forest can also be easily adapted
1Throughout the paper, we are interested only in subgraphs with at
least an edge (i.e. excluding frequent nodes as trivial cases).

Research Track Poster

582

a

b

a

a

y

y

x

x

a

b

a

a

y

y

x

a

b

a

a

y

y
y

x

a

b

a

a

y

y

x
y

x

K1

K2

K3

K4

C= {(k2, k3, y), (k3, k4, x)}

Class I

K
KS1

KS2

KS3

Figure 3: Example of enumerating graph’s search space. We use
dashed lines on the subgraphKS1 and KS3 to denote the fact that
they will be pruned by an optimization technique which is discussed in
Section 2.3.1

for the same purpose. Therefore, in the following discussion, we
focus on step 2, which is how to enumerate the equivalence class
of a tree T and how maximal subgraph mining is related to this
enumeration. We want to point out that the two-step division of
the mining algorithm is artificial but it makes it easy to explain the
key ideas of the algorithm without introducing too many details. In
our longer version of this paper [10], we discuss a fully optimized
algorithm which (1) uses a modified FFSM algorithm to enumer-
ate trees from graph databases and (2) integrates tree discovery and
maximal pattern mining for maximal performance.

2.2 Enumerating Graphs from Trees
We first outline a basic enumeration scheme to search the equiv-

alence class of a tree. We define a joining operation ⊕ between a
graph(tree) G and a hypothetical edge connecting any two nodes
i, j in G with label el such that G ⊕ (i, j, el) = G′ where G′ is
a supergraph of G with one additional edge between nodes i and
j with label el. If the graph G already contains an edge between
nodes i and j, the joining operation fails and produces nothing. If
G′ is frequent, we denote the hypothetical edge (i, j, el) as a can-
didate edgefor G. The above definition can serve as the basis for
a recursive definition of the joining operation between a graph G
and a candidate edge set E = {e1, e2, . . . , en} such that G ⊕ E =
(G ⊕ e1) ⊕ {e2, . . . , en}.

Let’s assume we already calculated the set of candidate edges
C = {c1, c2, . . . , cn} from the set of all possible frequent hypo-
thetical edges. We define the search spaceof G, denoted by G : C,
as the set of graphs which might be produced by joining the graph
G and a candidate edge set in the powerset set of C (denoted by
2C). That is:

G : C = {G ⊕ y|y ∈ 2C} (1)

In the following discussion, the group of candidate edges are some-
times referred to as the “tail” of the graph G in its search space. We
present a recursive algorithm in Table 2 to enumerate the search
space for a graph G. The procedure we use to calculate the set of
candidate edges for a tree pattern can be found in [10].

EXAMPLE 2.3. in Figure 3, we single out the largest equiva-
lence class (Class One) from Figure 2. We show a treeK together
with its tail C = {(k2, k3, y), (k3, k4, x)}. K ’s search space is
hence composed of four graphs{K, KS1, KS2, KS3} (K is al-
ways included in its search space) and is organized into a “search
tree” in analogy to frequent item set mining. This tree structure
follows the recursive procedure we present in Table 2.

Before we proceed to details about mining maximal frequent
subgraphs, we outline the enumeration scheme discussed so far
in Table 1 and Table 2. Our strategy is quite straightforward: we
first find all frequent trees; trees are expanded to cyclic graphs by
searching their search spaces; and maximal frequent subgraphs are
constructed from frequent ones. We notice that this algorithm is
correct, which means we are guaranteed to find all maximal fre-
quent subgraphs. However, it is not efficientin that we still need
to enumerate all frequent subgraphs to construct maximal ones. In
the next section, we introduce optimization techniques to improve
the search for maximal frequent subgraphs.

Algorithm Maximal Subgraph Mining(G, σ)
begin
1. R← {T |T is a frequent tree in G}
2. S ← {G|G ∈ Expansion(T) and T ∈ R}
3. return {G|G ∈ S and G is maximal }
end

Table 1: An outline of the maximal subgraph mining algorithm

Algorithm Expansion(T)
begin
1. C ← {c| c is a candidate edge for T}
2. S ← Search Graphs (T, C)
3. return {G| G ∈ S, G is frequent, and G has the same

canonical spanning tree as T has}
end
Algorithm Search Graphs(G, C = {c1, c2, . . . , cn})
begin
1. Q← ∅
2. for each ci ∈ C
3. Q← Q ∪ Search Graphs(G⊕ ci, {ci+1, ci+2 . . . , cn})
4. endfor
5. return Q
end

Table 2: An algorithm for exploring the equivalence class of a treeT

2.3 Optimizations: Global and Local Maxi-
mal Subgraphs

In this section, we explore several techniques for fast maximal
frequent subgraph mining. These techniques (“pruning” techniques)
dynamically remove a set of frequent subgraphs that can not be
maximal from a search space. To that end, we define a frequent
subgraph G to be locally maximalif it is maximal in its equiva-
lence class i.e. G has no frequent supergraph(s) that share the same
canonical spanning tree as G; we refer to a subgraph as globally
maximalif it is maximal frequent in a graph database. Clearly, ev-
ery global maximal subgraph must be locally maximal but not ev-
ery local maximal subgraph is necessarily globally maximal. Our
pruning techniques aim to avoid enumerating subgraphs which are
not locally maximal.

Not surprisingly, the problem of finding all locally maximal fre-
quent subgraphs can be transformed to the well-known maximal
frequent itemset mining problem. Each candidate edge is an item;
the joining operation can be viewed as the union operation for item-
sets; and each local maximal subgraph corresponds to a maximal
frequent itemset in its search space. Hence, we advocate the fol-
lowing pruning techniques, which are partially adapted from the
maximal itemset mining and partially developed in the graph min-
ing context, for maximal frequent subgraph mining.

Research Track Poster

583

2.3.1 Bottom-Up Pruning
The search space of a graph G is exponential in the cardinality of

the candidate edges set C. One heuristic to avoid such an exponen-
tial search space is to check whether the largest possible candidate
G′ = G ⊕ C is frequent or not. If G′ is frequent, each graph in
the search space is a subgraph of G′ and hence not maximal. This
heuristics is referred to as the Bottom-Up Pruningand can be ap-
plied to every step in the recursive search procedure presented in
Table 2. By applying bottom-up pruning to the equivalence class I
presented in Figure 2, graph KS1 and KS3 are pruned.
Dynamic Reordering: An important technique related to the effi-
ciency of the bottom-up pruning is the so-called dynamic reorder-
ing technique, which works in two ways. First, it trims infrequent
candidate edges from the tail of a graph to reduce the size of the
search space (an edge candidate can become infrequent after sev-
eral iterations since other edges are incorporated into the patterns).
Second, it rearranges the order of the elements in the tail accord-
ing to their support value. For example, given a graph’s tail C,
by dynamic reordering, we sort the elements in C by their support
values, from lowest to highest. After this sorting, the infrequent
“heads” are trimmed. At the end of the remaining tail is a family
of elements individually having high support and hence the pat-
tern obtained by grouping them together is likely to still have high
support value. This heuristics is widely used in mining maximal
itemsets to gain performance. However, without the spanning tree
framework, applying dynamic ordering is very difficult in any of
the current subgraph mining algorithms, which intrinsically have a
fixed order of adding edges to an existing pattern for various per-
formance considerations.

2.3.2 Tail Shrink
Given a graph G and a supergraph G′ of G, an embeddingof G

in G′ is a subgraph isomorphism f from G to G′. We prefer the
term embedding to subgraph isomorphism, though they are inter-
changeable, for the purpose of intuitive descriptions. In Figure 4,
we show a subgraph L and its supergraph P . There are two em-
beddings of L in P : (l1 → p1, l2 → p2, l3 → p3, l4 → p4) and
(l1 → p1, l2 → p3, l3 → p2, l4 → p4). We define a candidate
edge (i, j, el) to be associativeto a graph G if it appears in every
embedding of G in a graph database. In other words, a candidate
edge (i, j, el) of G is associative if and only if for every embed-
ding f of G in a graph G′, G′ has the edge (f(i), f(j)) with label
el. One example of associative edge is edge (l1, l3, y) to the tree L
shown in Figure 4.

If a tree T contains a set of associative edges {e1, e2, . . . , en},
any maximal frequent graph G which is a supergraph of T must
contain all such edges. Hence we can remove these edges from
the tail of T and augment them to T without missing any maximal
ones. This technique is referred to as the tail shrink technique. Tail
shrink has two advantages: (1) it reduces the search space and (2)
it can be used to prune the entire equivalence class in certain cases.
To elaborate the latter point, we define a set of associative edges C
of a tree T to be lethal if the resulting graph G′ = T ⊕ C has a
canonical spanning tree other than that of T . For example, in Figure
4, associative edge e = (1, 3, y) of L is lethal since G′ = L ⊕ e
has a different canonical spanning tree than that of L. In the same
example, the lethal edge e can be augmented to each member of the
class II to produce a supergraph with the same support. Therefore
the whole class can be pruned away once we detect a lethal edge(s)
to the tree L. Detecting a group of lethal edges can do further
pruning other than trimming off the whole equivalence class. Those
details as well as the formal proof of the optimization are discussed
in [10].

Class II

b

a

y

y

x

a

a

b

a

y

y

x

a

a

y

b

a

y

y

x

a

a

x
≅≅≅≅≅≅≅≅

L LS1 LS2

l1

l2

l3

l4y
a

b

a

a

y

y

x
y

(P)

p1

p2

p3

p4

x

Figure 4: An example showing how tail shrink might be used to prune
the whole equivalence class. Edgee = (l1, l3, y), denoted by a dashed
line to be distinguished from other edges, is associative to treeL and
lethal to L as well. The graph obtained by joiningL and e should
belong to equivalence class I shown in Figure 2.

2.3.3 External-Edge Pruning
In this section, we introduce a technique to remove one equiva-

lence class without any knowledge about its candidate edges. We
refer to this technique as the external-edge pruning. We define an
edge to be an external edgefor a graph G if it connects a node in
G and a node which is not in G. We represent an external edge as a
three-element tuple (i, el, vl) to stand for the fact that we introduce
an edge with label el incident on the node i in a graph G and a node
which does not belong to G with node label vl. An external edge
(i, el, vl) is associativeto a graph G if and only if:

• for every embedding f of G in a graph G′, G′ has a node v
with the label vl,

• v connects to the node f(i) with an edge label el in G′, and

• � node j ∈ V [G] such that v = f(j).

.

EXAMPLE 2.4. We show two examples of associative external
edges in Figure 5. One is(m1, x, a) for the treeM and another one
is (nf1, y, a) for the treeN . If a treeT has at least one associative
external edge, the entire equivalence class ofT can be pruned since
the same edge can be augmented to every member of the class. In
this example, both equivalence classes IV and V can be eliminated
due to the external-edge pruning.

Once we find a tree T has an associative external edge, the same
edge can be augmented to each members in T ’s equivalence class
and therefore none of them are maximal.

Figure 5: Examples showing external edges and associative external
edges.

In a brief summary, we present three pruning techniques to speed
up maximal subgraph mining. For the graph P shown in Figure
1, there are a total of twenty five subgraphs of P , including itself

Research Track Poster

584

and excluding the null graph. These subgraphs are partitioned into
five non-singleton classes, shown in Figure 2, and twelve singleton
classes (not shown). There is only one maximal subgraph, namely,
graph P itself. We have successfully pruned every one of the five
non-singleton equivalence classes (P of the equivalence class I is
left untouched since it is maximal). What we do not show further
is that we can apply the same techniques to the remaining twelve
singleton equivalence classes to eliminate all of them. Interested
readers might verify that themselves.

Table 3 and Table 4 integrate these optimizations into the basic
enumerate technique we presented in Table 1 and Table 2.

Algorithm MaxSubgraph-Expansion(T)
begin
1. C ← {c| c is a candidate edge for G}
2. A← {c| c ∈ C and c is associative }
3. ifA is lethal return ∅ #tail shrinking
4. S ← Search Graphs (T ⊕A, C −A)
5. return {G| G ∈ S, G is frequent, and G has the same

canonical spanning tree as T has}
end
Algorithm Search Graphs(G, C = {c1, c2, . . . , cn})
begin
1. if G⊕ C is frequent, return G⊕ C #bottom-up pruning
2. Q← ∅
3. for each ci ∈ C
4. Q← Q ∪ Search Graphs(G⊕ ci, {ci+1, ci+2 . . . , cn})
5. endfor
6. return Q
end

Table 3: An algorithm for exploring the equivalence class of a treeT
for maximal subgraph mining

Algorithm Maximal Subgraph Mining(G, σ)
begin
1. R← {T |T is a frequent tree in G}
2. S ← {G|G ∈ Expansion(T), T has no external associative edge,

and T ∈ R} #external-edge prunning
3. return {G|G ∈ S and G is maximal }
end

Table 4: An outline of the maximal subgraph mining algorithm

Due to the space limitation, several important details are omitted
which include: (1) how to enumerate frequent trees from a graph
database using a modified FFSM algorithm, (2) how to interleave
the tree mining algorithm and the maximal subgraph mining algo-
rithm and deliver the final optimized algorithm, (3) how we guaran-
tee that each reported pattern is (a) frequent, (b) maximal, and (c)
unique, (4) how to calculate the edge candidates for a tree, and (5)
how to determine associative external edges. Those can be found
in [10].

3. EXPERIMENTAL STUDY
We performed our empirical study using a single processor of

a 2.8GHz Pentium Xeon with 512KB L2 cache and 2GB main
memory, running RedHat Linux 7.3. The SPIN algorithm is imple-
mented using the C++ programming language and compiled using
g++ with O3 optimization. We compared SPIN with two alter-
native subgraph mining algorithms: FFSM ([9]) and gSpan [19].
Every maximal subgraph reported by SPIN in synthetical and real
data sets are cross validated using results from FFSM and gSpan to
make sure it is (a) frequent, (b) maximal, and (c) unique.

3.1 Synthetic Dataset
To evaluate the performance of the SPIN algorithm, we first gen-

erate a set of synthetic graph databases using a synthetic data gen-
erator [13].

In Figure 6, we represent the performance comparison of SPIN,
FFSM, and gSpan algorithms for a synthetic data set with different
support values. When the support is set to a pretty high value e.g.
5%, the performance of all three algorithms are pretty close. SPIN
scales much better than the other two algorithms as we decrease the
support values. At support value 1%, SPIN provides a six and ten
fold speed-up over FFSM and gSpan, respectively. We do not show
data with support value great than 5% since there is little difference
among the three methods. More testing results on synthetical data
sets can be found in [10].

1 2 3 4 5 6
10

0

10
1

10
2

10
3

R
un

 ti
m

e
(s

)

Support Threshold (%)

SPIN
FFSM
gSpan

1 2 3 4 5 6
10

2

10
3

10
4

10
5

10
6

T
ot

al
 id

en
tif

ie
d

su
bg

ra
ph

s

Support Threshold (%)

SPIN
FFSM/gSpan

Figure 6: Left: performance comparison under different support
values for data setD10kT30L200I11V 4E4 using SPIN, FFSM and
gSpan. Here we follow the common convention of encoding the param-
eters of a synthetic graph database as a string. Right: Total frequent
patterns identified by the algorithms.

3.2 Chemical Data Set
We also applied SPIN to two widely used chemical data sets to

test its performance. The data sets are obtained from the DTP AIDS
Antiviral Screen test, conducted by U.S. National Cancer Institute.
In the DTP data set, chemicals are classified into three sets: con-
firmed active (CA), confirmed moderately active (CM) and con-
firmed inactive (CI) according to experimentally determined activ-
ities against the HIV virus. There are a total of 423, 1083, and
42115 chemicals in the three sets, respectively. For our own pur-
poses, we used all compounds from CA and from CM to form
two data sets, which are subsequently referred to as DTP CA and
DTP CM, respectively. The DTP data can be downloaded from
http://dtp.nci.nih.gov/docs/aids/aids data.html.

In Figure 7, we show the performance comparison of SPIN, FFSM,
and gSpan using the DTP CA data set. We report that SPIN is
able to expedite the program up to five(eight) fold, comparing with
FFSM(gSpan) at support value 3.3%. Mining only maximal sub-
graphs can reduce the total number of mined patterns by a factor
up to three orders of magnitude in this data set. We also applied
the same algorithms to the data set DTP CM. In this case, SPIN
has a performance very close to FFSM and both are around eight
fold speed-up over gSpan. However, if we impose an additional
constraint to let FFSM output the maximal patterns it finds among
the set of frequent patterns, SPIN offers a three fold speed-up from
FFSM.

Research Track Poster

585

3 4 5 6 7 8 9 10 11

10
1

10
2

10
3

10
4

R
un

 ti
m

e
(s

)

Support Threshold (%)
3 4 5 6 7 8 9 10 11

10
2

10
3

10
4

10
5

10
6

10
7

T
ot

al
 id

en
tif

ie
d

su
bg

ra
ph

s

Support Threshold (%)

SPIN
FFSM
gSpan

SPIN
FFSM/gSpan

2 3 4 5 6 7 8 9 10 11

10
1

10
2

10
3

10
4

R
un

 ti
m

e
(s

)

Support Threshold (%)
2 3 4 5 6 7 8 9 10 11

10
2

10
3

10
4

10
5

10
6

T
ot

al
 id

en
tif

ie
d

su
bg

ra
ph

s

Support Threshold (%)

SPIN
FFSM
gSpan

SPIN
FFSM/gSpan

Figure 7: Left: performance comparison under different support values for DTP CA data set using SPIN, FFSM and gSpan. Right: Total frequent
patterns identified by the algorithms.

4. RELATED WORK
Knowledge discovery from semi-structured data sets is an ac-

tive topic in the data mining/machine learning community. Many
different pattern definitions were proposed from different perspec-
tives such as finding patterns from a single large network [14], find-
ing approximately matched patterns [17], mining patterns using do-
main knowledge from bioinformatics [8], and finding frequent sub-
graphs. The later one is the focus of our paper.

Recent subgraph mining algorithms can be roughly classified
into two categories. Algorithms in the first category use a level-
wise search scheme based on the Apriori property to enumerate
the recurrent subgraphs [12, 13]. Rather than growing a graph by
one single node/edge at a time, Vanetik et al. recently proposed
an Apriori-based algorithm using paths as building blocks with a
novel support definition [18].

Algorithms in the second category use a depth-first search to enu-
merate candidate frequent subgraphs [19, 20, 2, 9]. As demon-
strated in these papers, depth first algorithms provide advantages
over level-wise search for (1) better memory utilization and (2) ef-
ficient subgraph testing, e.g. it usually permits the subgraph test to
be performed incrementally at successive levels during the search
[9].

Our current work benefits extensively from existing algorithms
for maximal itemset mining such as [3, 6] and frequent subtree
mining algorithms [1, 22].

5. CONCLUSION AND FUTURE WORK
In this paper we present SPIN, an algorithm to mine maximal fre-

quent subgraphs from a graph database. A new framework, which
partitions frequent subgraphs into equivalence classes is proposed
together with a group of optimization techniques. Compared to cur-
rent state-of-the-art subgraph mining algorithms such as FFSM and
gSpan, SPIN offers very good scalability to large graph databases
and at least an order of magnitude performance improvement in
synthetic graph data sets. The efficiency of the algorithm is also
confirmed by a benchmark chemical data set. The algorithm of
compressing large number of frequent subgraphs to a much smaller
set of maximal subgraphs will help us to investigate demanding ap-
plications such as finding structure patterns from proteins in the
future.
AcknowledgementWe thank Dr. Jack Snoeyink at the University
of North Carolina for helpful discussions about the paper.

6. REFERENCES
[1] T. Asai, K. Abe, S. Kawasoe, H. Arimura, and H. Sakamoto. Efficiently

substructure discovery from large semi-structured data. SDM, 2002.
[2] C. Borgelt and M. R. Berhold. Mining molecular fragments: Finding relevant

substructures of molecules. In Proc. International Conference on Data
Mining’02.

[3] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A maximal frequent itemset
algorithm for transactional databases. ICDE, 2001.

[4] Y. Chi, Y. Yang, and R. Muntz. Indexing and mining free trees. ICDM, 2003.
[5] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing semistructured data with

STORED. in SIGMOD, pages 431–442, 1999.
[6] K. Gouda and M. J. Zaki. Efficiently mining maximal frequent itemsets. ICDM,

2001.
[7] J. Hu, X. Shen, Y. Shao, C. Bystroff, and M. J. Zaki. Mining protein contact

maps. 2nd BIOKDD Workshop on Data Mining in Bioinformatics, 2002.
[8] J. Huan, W. Wang, D. Bandyopadhyay, J. Snoeyink, J. Prins, and A. Tropsha.

Mining protein family specific residue packing patterns from protein structure
graphs. In Eighth Annual International Conference on Research in
Computational Molecular Biology (RECOMB), pages 308–315, 2004.

[9] J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraphs in the
presence of isomorphism. in ICDM’03, 2003.

[10] J. Huan, W. Wang, J. Prins, and J. Yang. Spin: Mining maximal frequent
subgraphs from graph databases. UNC Technical Report TR04-018, 2004.

[11] J. Huan, W. Wang, A. Washington, J. Prins, and A. Tropsha. Accurately classify
protein family based on coherrent subgraph mining. in Pacific Symposium on
Biocomputing, 2004.

[12] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining
frequent substructures from graph data. In Proc. of the 4th European Conf. on
Principles and Practices of Knowledge Discovery in Databases (PKDD), pages
13–23, 2000.

[13] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc.
International Conference on Data Mining’01.

[14] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse
graph. SDM, 2004.

[15] J. Pei, G. Dong, W. Zou, and J. Han. On computing condensed frequent pattern
bases. ICDM, 2002.

[16] S. Raghavan and H. Garcia-Molina. Representing web graphs. In Proceedings
of the IEEE Intl. Conference on Data Engineering, 2003.

[17] N. Vanetik and E. Gudes. Mining frequent labeled and partially labeled graph
patterns. ICDE, 2004.

[18] N. Vanetik, E. Gudes, and E. Shimony. Computing frequent graph patterns from
semi-structured data. Proc. International Conference on Data Mining’02, 2002.

[19] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Proc.
International Conference on Data Mining’02.

[20] X. Yan and J. Han. Closegraph: Mining closed frequent graph patterns.
KDD’03, 2003.

[21] X. Yan, P. Yu, and J. Han. Graph Indexing: A Frequent Structure-based
Approach. SIGMOD’04, 2004.

[22] M. Zaki. Efficiently mining freqeunt trees in a forest. SIGKDD, 2002.

Research Track Poster

586

