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Abstract

We describe a method to assign a protein structure to a
functional family using family-specific fingerprints. Fin-
gerprints represent amino acid packing patterns that occur
in most members of a family but rare in the background,
a non-redundant subset of PDB; their information is ad-
ditional to sequence alignments, sequence patterns, struc-
tural superposition and active site templates.

Fingerprints were derived for 120 families in SCOP us-
ing Frequent Subgraph Mining. For a new structure, all
occurrences of these family-specific fingerprints may be
found by a fast algorithm for subgraph isomorphism; the
structure can then be assigned to a family with a confi-
dence value derived from the number of fingerprints found
and their distribution in background proteins.

In validation experiments, we infer the function of new
members added to SCOP families, and we discriminate
between structurally similar, but functionally divergent,
TIM barrel families. We then apply our method to pre-
dict function for several structural genomics proteins, in-
cluding orphan structures. Some predictions have been
corroborated by other computational methods, and some
validated by subsequent functional characterization.
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Introduction

Structural genomics projects (Burley, 2000) have gener-

ated structures for many proteins of unknown function.

Function for these so-called hypothetical proteins is tra-

ditionally inferred from sequence similarity or overall

structure similarity. Structural genomics targets, how-

ever, are selected to avoid sequence similarity so as to

sample the protein “structure space:” a quarter of struc-

tural genomics proteins deposited by May 2005 had less

than 30% sequence identity and DALI Z-scores (Holm &

Sander, 1996) less than 10 with proteins of known func-

tion (Bandyopadhyay, 2005). Other inference tools are

needed for these orphan protein structures.

Recently, methods have been developed to infer func-

tion from local structural similarity, without relying on se-

quence and overall structure similarity. Aloy et al. (2001)

found that conserved geometric packing patterns of a few

residues are often responsible for protein function, and

finding them can lead to more accurate function inference

than obtained by structural homology. Laskowski et al.

(2005b) developed SiteSeer’s reverse template method,

which also searches for conserved packing patterns within

protein structures. Other recent methods find functionally

important residues using computed chemical properties

(Ko et al., 2005), careful alignments (Pegg et al., 2005),

evolutionary information (Wang & Samudrala, 2005), and
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computational protein design (Cheng et al., 2005). Still

other methods use Gene Ontology (Gene Ontology Con-

sortium, 2004) as a reference to define function, such as

ProKnow (Pal & Eisenberg, 2005) and PHUNCTIONER

(Pazos & Sternberg, 2004). A recent review (Ofran et al.,

2005) covers these and other structure-based function pre-

diction methods.

Graph representations of protein structure allow more

flexibility than rigid templates in representing and match-

ing structural motifs. Earlier methods used graph

representations to search for known structure patterns

(Artymiuk et al., 1994; Stark & Russell, 2003), or de-

termine patterns with limited topology, such as cliques,

from groups of proteins (Wangikar et al., 2003; Milik

et al., 2003). Using frequent subgraph mining, Huan et

al. (2004, 2005) defined family-specific fingerprints as

those packing patterns that are frequent within a family of

protein structures but rare within the background. Using

serine protease and kinase families, they showed that fin-

gerprints often cover functionally important residues and

can distinguish between proteins from similar families.

In this paper, we propose a new method for function

inference that uses family-specific fingerprints automati-

cally derived from SCOP families (Murzin et al., 1995).

The method searches for fingerprints within a new struc-

ture using fast subgraph isomorphism (Ullman, 1976),

and assigns a significance score to family membership us-

ing the distribution of fingerprints found in members of

the family and in the background. Its strength is in distin-

guishing between proteins with related and similar func-

tions.

Our method does not restrict pattern graph types, or

assume the functional sites are known. Each fingerprint

is statistically linked to its family, and our consensus ap-

proach using multiple fingerprints improves the accuracy

and specificity of function inference. Families with dif-

ferent function but similar structure can be distinguished,

since the fingerprints tend to identify functionally impor-

tant parts of a protein. In contrast, methods based on Gene

Ontology suggest broader functional categories more than

specific functional families (Pazos & Sternberg, 2004; Pal

& Eisenberg, 2005).

Results

We derived family-specific fingerprints for proteins in

120 SCOP families using a background of 6,749 non-

redundant proteins, as described in the Methods section.

After this, we examined the family specificity of the fin-

gerprints, then classified new protein structures by identi-

fying cases of functional similarity with and without over-

all structure similarity, and inferred function for orphan

structures from structural genomics targets.

Fingerprint occurrence in family and background:

To test the uniqueness of a family’s fingerprints, and es-

tablish significance of function inference, we examined

the frequency of family-specific fingerprints in the back-

ground, as described in Materials and Methods. In most

families, almost all background proteins have fewer fin-

gerprints than the minimum found in any family mem-

ber; see Figure 1(a)–(b) for examples of the metallo-

dependent hydrolase (SCOP: 51556) and antibiotic re-

sistance (SCOP:54598) families. Some family members

have few fingerprints; the majority of those we inspected

had either a different function or mechanism from the

other members, or errors in the structure file that prevent

the identification of fingerprints.

Many background proteins with a majority of the fin-

gerprints for a family turned out to be new family mem-

bers. For example, four proteins with 30 or more of

the 49 metallo-dependent hydrolase fingerprints, 1un7A

(48), 1rk6A (40), 1ndyA (33) and 1kcxA (32), were

not included in the metallo-dependent hydrolase fam-

ily in SCOP 1.65, but were in SCOP 1.67. Other
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high-scoring proteins had closely related enzymatic func-

tions (e.g. phosphatases, phosphoesterases) but came

from different SCOP families, such as metallohydro-

lase/oxidoreductase of TIM barrel fold (1p9e, 48) and

mannose hydrolase of (βα)7 fold (1qwn, 44).

Validation on proteins added to SCOP: To test the

validity of inferring family membership, we used finger-

prints derived from SCOP 1.65 families to classify pro-

teins that were newly added to these families in SCOP

1.67. The detailed results are shown in Tables II– IV in

the online supplementary material. Of the 442 new mem-

bers added to 94 families, the number of proteins that can

be inferred using fingerprints from the correct family is

316 (71%) at the sensitivity cutoff, and 284 (64%) at the

99%-specificity cutoff. Most importantly, for 287 (65%)

of the new members, among families with fingerprints

above 95% specificity, the correct family was the choice

with highest specificity. By contrast, for only 234 (53%)

of the new members did a member of the correct family

have the most significant sequence hit, among all proteins

in SCOP 1.65 with at least 40% sequence identity, which

is the threshold suggested for inferring function from se-

quence (Wilson et al., 2000).

Discriminating between similar structures with dif-

ferent function: To test the discrimination power of fin-

gerprints, we searched for the fingerprints of 20 struc-

turally similar (super)families of the TIM barrel fold

that have different functions. As shown in Figure 2,

the average member of any of these families has 70–

90% of the fingerprints of its own family (orange or red,

seen on the diagonal), and 0–40% of the fingerprints

of any other family (blue, seen off the diagonal). Ex-

ceptions arise from superfamily-subfamily pairs such as

enolase C-terminal domains(ENC) and D-glucarate de-

hydratases(DGL) that share fingerprints since their mem-

bers overlap, and from families that do not have highly

significant fingerprints, such as the ribulose-phosphate-

binding barrels(RIB). Thus, fingerprints discriminate be-

tween functional families whose members cannot be dis-

tinguished easily by overall structure similarity.

Function inference for structural genomics targets:

We classified Structural Genomics targets in the PDB as

either proteins with known function, proteins with pu-

tative function suggested by overall structure similarity,

and the orphan structures. We applied our method to

suggest function assignments for proteins in the last two

categories. For example, strong structural similarity to

the metallo-dependent phosphatase superfamily (SCOP:

56300) was found in two hypothetical proteins, 1s3l (14%

sequence identity, DALI z-score 13.1 with member 1hpu)

and 1xm7 (13% identity, z-score 10.6, 1ii7). For these

proteins we inferred metallo-dependent phosphatase func-

tion with 26 and 125 out of 316 fingerprints, i.e. 100%

specificity, corroborating the function inference suggested

by structural similarity. More interesting are two case

studies for proteins in the last category, i.e. structural or-

phans.

Functional Inference of YcdX The YcdX protein (PDB:

1m65, CASP5 target T0147) has a rare (βα)7 barrel fold

called the PHP domain (SCOP: 89551). It had no signifi-

cant sequence or overall structure similarity with proteins

of known function in 2004. We inferred that this protein

has a metallo-dependent hydrolase function, with 30 of 49

fingerprints from SCOP superfamily 51556, a TIM barrel

family. The fingerprints are shown as subgraphs in Fig-

ure 1(c)–(d). The residues included in family-specific fin-

gerprints for this target, depicted in Figure 1(e)–(f), are lo-

calized in space and show similar geometric arrangements

and chemical properties in family and target.

Our inference was corroborated by (1) active site tem-

plate and reverse template matches on the ProFunc server

Laskowski (2005a,2005b), (2) suggestions by the CASP5

target classifiers (Kinch et al., 2003), and (3) suggestions

by the authors of the structure (Teplyakov et al., 2003),
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who proposed active site residues for 1m65 that are in-

cluded in many of our fingerprints, as shown in the sup-

plementary material. The PINTS-weekly service (Stark

et al., 2004) found active site patterns from many metallo-

dependent hydrolases in this protein. Finally, GenProtEC,

the E.Coli genome and proteome database (Serres et al.,

2004) has annotated the YcdX gene product as belonging

to the SCOP metallo-dependent hydrolase structural do-

main family, on the basis of the SUPERFAMILY database

of HMMs for SCOP families (Gough & Chothia, 2002;

Madera et al., 2004).

Functional Inference for Protein Yyce Protein Yyce from

Bacillus Subtilis (PDB: 1twu) is unclassified in both

SCOP 1.65 and 1.67, and was an orphan structure in 2004,

with no significant structural similarity to structures of

known function. We found 46 of 62 fingerprints from

the antibiotic resistance protein family (SCOP ID: 54598)

in 1twu, inferring the antibiotic resistance function with

100% specificity. Figure 1(g)–(h) show the residues cov-

ered by fingerprints in 1twu and in 1ecs, an antibiotic re-

sistance protein in SCOP 1.65. Note the geometric and

electrostatic similarity between the upper region covered

by fingerprints in both 1twu and 1ecs, which suggests that

fingerprints cover functionally important residues. When

the structural similarity of 1twu was re-evaluated in May

2005 using the current DALI database, it was found to be

similar to a protein 1nki that was unclassified in SCOP

1.65 but has been added to the antibiotic resistance pro-

tein family in SCOP 1.67. This discovery of homology to

a newly classified member of the family corroborates our

function inference.

Discussion

Our method of using family-specific fingerprints to infer

function for proteins was designed to be robust: the graph

construction takes into account natural imprecision in co-

ordinates, and using multiple local motifs as fingerprints

accommodates remaining representation errors and flex-

ibility in functional sites. The method is also designed

to give information that is not implied by sequence pat-

terns, structural alignments, and templates of known func-

tional sites. Thus, not only may it succeed as a standalone

method where other methods may fail, but it may also be

profitably used in consensus with other methods.

The successful function inference for new members of

SCOP families validates the predictive power of finger-

prints; the success rate of 65% for choosing the correct

family is high considering that there are functional out-

liers among existing and new members of SCOP families,

and considering that sequence methods could pick the cor-

rect family only 53% of the time.

The function discrimination within the TIM barrel fold,

and the inference of YcdX as belonging to the sequence-

diverse metallo-dependent hydrolase family despite its

different fold, indicate that the packing patterns in finger-

prints do capture information that is specific to a func-

tional family, rather than shared structural information.

We have seen that the fingerprints detected in YcdX

cover its functional regions; this can be attributed to the

fact that SCOP families often share a function, and su-

perfamilies often share aspects of function. Our subgraph

mining finds fingerprints that characterize the shared local

structures exclusive to each family. Our method can also

derive fingerprints for intentionally functional classifica-

tion systems, such as EC (Bairoch, 2000) or GO (Gene

Ontology Consortium, 2004); we will report these results

in the near future.

We have observed annotations that initially appear to

disagree with our inferences, sometimes because the an-

notation was speculative, and sometimes because the level

of classification was too coarse or too fine. An exam-

ple of both is 1m65, which is in the PHP-domain fam-

ily in SCOP. We classify it as a metallo-dependent hydro-
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lase, and the Gene Ontology Annotation (GOA) database

(Camon et al., 2004) annotates it as having DNA-directed

DNA polymerase activity (GO:0003887), a putative func-

tion assignment based on electronic annotation trans-

ferred from the sequence database InterPro. The discov-

erers of the PHP-domain sequence family (Aravind &

Koonin, 1998) indicated that the metallo-dependent hy-

drolases share active site sequence motifs with this family,

and hypothesized that bacterial and archaeal DNA poly-

merases possess intrinsic phosphatase activity. Since sev-

eral metallo-dependent hydrolases can hydrolyze phos-

phoester or phosphate bonds, the assigned GO term may

still support the function inferred by our method.

The designed robustness of our method suggests that it

could be used to predict function from the sequence level

using either good quality predicted structures, or sequence

patterns derived from fingerprints whose sequence order

is preserved within a family. Investigations in this direc-

tion are ongoing.

Our method has limitations, arising from representation

choices, algorithmic issues, and the nature of the prob-

lem itself. In our representation, we use Cα coordinates

to calculate graph edges and lengths; this choice captures

shared topology, but may miss contacts with long side-

chains. Currently we do not allow residue substitutions in

patterns, other than unifying V,A,I,L. Merging commonly

substituted residue types (e.g. D,E) increases the sensitiv-

ity of fingerprints but can decrease their specificity; we

may lose fingerprints that are no longer unique to a fam-

ily. Finally, the distance edge matching criteria may be too

restrictive to find patterns with widely varying geometry

or containing edges that happen to lie on bin boundaries.

We are developing a new distance edge representation to

remedy this last problem.

Algorithmically, subgraph mining involves the NP-

complete problem of subgraph isomorphism. The FFSM

algorithm (Huan et al., 2004) stores graph embeddings,

so it does well with small isomorphic subgraphs, but can

bog down with the large ones that can arise in families

with very similar or identical structures.

It is part of the nature of the problem that classifications

that are too fine can produce too many fingerprints due to

high local similarity or small sample sizes, i.e. families

with 3 or fewer members. Conversely, too coarse a clas-

sification can produce no fingerprints that are specific to

a family — this happens with 35% of our SCOP families

and superfamilies, especially the latter because of their

heterogeneity. Because the number, specificity, and sensi-

tivity of fingerprints depends on size and heterogeneity of

the family, the support and background occurrence param-

eters must be varied to find meaningful sets of fingerprints

for the maximum number of families.

In conclusion, the method identifies fingerprints for

functional families with four or more representatives by

finding packing patterns characteristic to each family, and

uses them to infer function. Structure errors, missing frag-

ments or mutations may lead to failure of fingerprint min-

ing or function inference. Careful manual selection of

families and fixing errors in structure files should improve

the results further. Since our method infers function for

many orphan proteins, the ultimate proof will come from

experimental validation of its predictions.

Materials and Methods

Our method initially finds and calibrates fingerprints (steps 1–

4) using the FFSM subgraph mining program from (http:

//www.cs.unc.edu/~huan/FFSM/). Then there are two

steps (5–6) for each function inference. These are implemented

in MATLAB.

1. Family and background selection: We selected 120 fam-

ilies and superfamilies from SCOP version 1.65. Though SCOP

1.67 was released in February 2005, we have retained the fin-

gerprints derived from SCOP 1.65 to allow unbiased function

prediction of structural orphans using information known at the
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time they were selected, and use new members added in SCOP

1.67 to validate the method. In addition to requiring better

than 3
◦
A resolution and R-factor at most 1.0, we reduced re-

dundancy by using PISCES (Wang & Dunbrack, 2003) to se-

lect family members having at most 90% sequence identity.

The same criteria when applied to the entire PDB produced a

representative set of 6,749 protein chains in May 2005, which

we used as the background for identifying fingerprints. The

lists of families, family members, and background selected are

in online supplementary materials at http://www.cs.unc.

edu/~debug/papers/FuncInf

2. Graph Representation: We represent protein structures

as graphs, with nodes at each residue labeled with the amino

acid type, with V,A,I,L condensed to a single type since they

frequently substitute for one another. Edges represent contact

between residues defined by almost-Delaunay edges (Bandy-

opadhyay & Snoeyink, 2004), or distance constraints between

non-contacting residues. Edges are labeled with length ranges

(0–4, 4–6, 6–8.5, 8.5–10.5, 10.5–12.5 and 12.5–15
◦
A). Fin-

gerprints mined using this graph representation are called dis-

tance edge fingerprints. We do some experiments (e.g., in the

metallo-dependent hydrolase family) using simple edge finger-

prints, which omit the distance labels.

3. Frequent Subgraph Mining: We mine frequent sub-

graphs from the graph representation of all proteins in a family

using Fast Frequent Subgraph Mining (Huan et al., 2005). We

use a support value of 80% to define frequency. Frequent sub-

graphs are constrained to have high density by having no more

than one edge missing from a clique.

4. Fingerprint Identification: Fingerprints are defined as

those subgraphs found in at least 80% of the family (support),

and at most 5% of the background (background occurrence).

The aim for families in our dataset is to have 10–1000 finger-

prints; the support and background occurrence are adjusted for

small or heterogeneous families until the number of fingerprints

is in this range.

5. Search for Fingerprints in Query: We use a graph sim-

ilarity index to speed up the subgraph isomorphism algorithm

of Ullman (1976). For each node of the fingerprints and of a

query structure, we create an index vector that stores the labels

of neighboring nodes and edges connected to them, and con-

sider a query embedding a node in a fingerprint only if the index

vectors match. This reduces billions of potential embeddings of

fingerprints to a handful in most cases. Ullman’s algorithm then

finds all embeddings of the fingerprint in the query that match

node and edge labels.

6. Assigning Significance: We assign significance to the

function inference by comparing the number of fingerprints

found against the distribution of fingerprints in background pro-

teins and in family members. Because these distributions are not

normal, we calculate p-values empirically. By picking different

numbers of fingerprints at which to infer family membership,

we can determine the rates of true and false positives and nega-

tives, calculate specificity and sensitivity, and draw ROC curves

as shown in the inset of Figure 1(a)–(b). We choose two cutoff

points for each family: a sensitivity cutoff to maximize sensi-

tivity with at least 95% specificity, and a higher 99%-specificity

cutoff with no constraints on sensitivity.

Electronic Supplementary Material: Table I describes the

SCOP families for which we obtained fingerprints. Tables II– IV

give results from the SCOP validation experiment. Other sup-

plementary data, including kinemages showing the graph rep-

resentations of fingerprints for the proteins in Figure 1(c)–(f),

may be viewed at http://www.cs.unc.edu/~debug/

papers/FuncInf.
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a. b.

c. d.

e. f.

g. h.

Figure 1: Distribution of (a) Metallo-dependent hydrolase (SCOP:
51556) and (b) Antibiotic resistance (SCOP: 54598) fingerprints in the
background (light bars), and within the family (dark). Inset: ROC
curve showing specificity vs. sensitivity of function inference at dif-
ferent numbers of fingerprints. (c)–(d) Example of function inference:
metallo-dependent hydrolase fingerprints (shown as graphs) in (c) the
metallo-dependent hydrolase 1nfg, and (d) 1m65 (Ycdx, unknown func-
tion). (e)–(f) the same proteins shown as residues covered by metallo-
dependent hydrolase fingerprints, color-coded by chemical properties
(g)–(h) Another example of function inference: residues covered by an-
tibiotic resistance fingerprints in (e) the family protein 1ecs, and (f) 1twu
(Yyce, unknown function). Figures (c)–(f) are snapshots from VMD
(Humphrey et al., 1996).

(a)

abrv SCOP (sup)fam #mem #fp #fpTIMfold
max

ALD Aldolase (Class I) 17 74 41 (1gteA=FMN)
AKN Aldo-keto reductase 9 72 4 (1hvxA=AMY)
AMY Amylase 39 42 23 (1mucA=DGL)
BLU Bacterial luciferase 6 86 20 (1ofdA=FMN)
BGL Beta-glycanase 27 28 19 (1cgt=AMY)
B12 Cobalamin (B12) depen-

dent enzyme
5 66 8 (1a3wA=PYK)

DGL D-glucarate dehydratase-
like

9 29 6 (1gkrA=MDH)

DHP Dihydropteroate
synthase-like

4 41 5 (1eepA=IMP)

ENC Enolase C-terminal do-
main like

14 111 60 (1ofdA=FMN)

FMN FMN-linked oxidoreduc-
tase

14 55 31 (1me8A=IMP)

GH1 Glycosyl hydrolase fam-
ily 1

9 887 12 (1bqcA=BGL)

HIS Histidine biosynthesis en-
zyme

5 290 47 (1ofdA=FMN)

MDH Metallo-dependent hy-
drolase

17 49 37 (1lwjA=AMY)

PYK Pyruvate kinase 5 819 25 (1ea0A=FMN)
RIB Ribulose-phosphate bind-

ing barrel
17 20 19 (1jr1A=IMP)

RBC RuBisCo 7 315 14 (1ea0A=FMN)
TIM Triosephosphate iso-

merase
12 366 9 (1ea0A=FMN)

TRP Tryptophan biosynthesis
enzyme

6 22 15 (1pvnA=IMP)

XIM Xylose isomerase 7 758 10 (1n8iA=MAL)
XIL Xylose-isomerase-like 11 17 5 (1e0tA=PYK)

(b)

Figure 2: Discriminating the TIM barrels using fingerprints. (a) The
20 families selected, with columns listing a 3-letter abbreviation for each
family, number of members and fingerprints, and maximum number of
fingerprints found in a non-family protein of the TIM fold. Families
mentioned in the last column for which fingerprints were not identified:
IMP (inosine monophosphate dehydrogenase) and MAL (malate syn-
thase). (b) Pseudo-color matrix plot showing the percentage of finger-
prints of the TIM barrel family in each row found in an average member
of the family in each column. High values on the diagonal (red) and low
off-diagonal (blue) indicate high discrimination. Exceptions to this trend
are documented in the text.

8



Fingerprints for SCOP families using distance edge representation
SCOP node family # non-std. # sensitivity 99% specificity
ID type name prot param fp cut pt sens. cut pt sens.
48179 sf 6-phosphogluconate dehydrogenase 12 b0.1 16 10 0.85 10 0.85

C-terminal domain-like
53384 fa AAT-like 14 b0.1d2 36 10 1.00 10 1.00
52686 fa ABC transporter ATPase domain-like 12 b0.1 17 4 0.87 9 0.67
55753 sf Actin depolymerizing 9 f0.7b0.15d2 94 29 0.80 38 0.80
52402 sf Adenine nucleotide α-hydrolase-like 16 b0.1d2 13 7 0.74 10 0.53
52397 fa Adenylyltransferase 9 b0.1 216 47 0.91 47 0.91
51883 fa Aminoacid dehydrogenase-like, 18 f0.7b0.1d2 376 145 1.00 153 0.94

C-terminal domain
51570 fa Aldolase, Class I 17 b0.1d2 74 27 1.00 27 1.00
51431 fa Aldo-keto reductases (NADP) 9 f0.9b0.02 72 3 1.00 3 1.00
53649 sf Alkaline phosphatase-like 7 75 12 1.00 12 1.00
75217 sf α/β knot 6 b0.02 22 3 0.42 5 0.42
51446 fa Amylase, catalytic domain 39 b0.1 42 14 0.95 16 0.87
54598 fa Antibiotic resistance proteins 4 f1.0 62 11 0.86 13 0.71

Antibiotic resistance (SCOP 1.67) 7 18 5 0.86 5 0.86
48942 fa Antibody constant (C1) domain 259 b0.1d0 12 2 1.00 9 0.84
48727 fa Antibody variable (V) domain 310 b0.1 92 7 0.98 15 0.98
48371 sf ARM repeat 18 f0.7b0.1d2 294 86 0.83 124 0.78
53570 fa Bacterial lipase 5 f1.0b0.02d0 132 4 1.00 6 1.00
51679 sf Bacterial luciferase-like 6 d0 86 8 0.75 11 0.75
53057 fa β-carbonic anhydrase 4 f1.0b0.02d0 62 2 1.00 3 1.00
51487 fa β-glycanases 27 f0.7b0.15d2 152 54 0.92 78 0.75

f0.7b0.1d2 28 9 0.85 14 0.81
56602 fa β-Lactamase/D-ala carboxypeptidase 20 f0.7b0.1d2 73 21 0.95 21 0.95
56655 sf Carbohydrate phosphatase 12 b0.1 69 21 0.92 21 0.92
49384 sf Carbohydrate-binding domain 7 b0.02 17 4 1.00 4 1.00
56317 sf Carbon-nitrogen hydrolase 3 f1.0d0 97 9 1.00 9 1.00
53487 fa Carboxylesterase 5 d0 59 9 1.00 9 1.00
51990 fa Cellulase 4 f1.0b0.02d0 295 4 1.00 6 1.00
52172 sf CheY-like (SCOP 1.67) 20 f0.7b0.15d2 141 65 0.85 89 0.65
52173 fa CheY-related (SCOP 1.67) 17 f0.7b0.02d2 17 2 0.82 5 0.65
49348 sf Clathrin adaptor appendage domain 5 77 15 1.00 15 1.00
52243 fa Cobalamin (vitamin B12)-binding 4 f1.0 35 6 1.00 9 1.00
51703 sf Cobalamin (vitamin B12)-dep. enzyme 5 b0.02d0 66 6 1.00 6 1.00
49330 fa Cu,Zn superoxide dismutase-like 10 b0.02d0 183 5 0.91 5 0.91
49550 fa Cupredoxin, multidomain 11 b0.02 222 17 1.00 17 1.00
75434 fa CutA divalent ion tolerance protein 3 f1.0d0 58 5 1.00 5 1.00
75434 fa CutA divalent ion tolerance (augmented) 6 f0.9b0.1d0 132 12 0.88 12 0.88
53402 fa Cystathionine synthase-like 15 f0.7d2 17 6 0.72 6 0.72
50353 sf Cytokine 9 b0.1 45 9 1.00 11 0.92
51609 fa D-glucarate dehydratase-like 9 29 6 0.92 6 0.92
52467 sf DHS-like NAD/FAD-binding domain 14 b0.1 31 11 0.89 17 0.79
51717 sf Dihydropteroate synthetase-like 4 f1.0b0.02d0 41 4 1.00 4 1.00
53118 fa DnaQ-like 3’-5’ exonuclease 11 15 5 0.93 5 0.93
54768 sf dsRNA-binding domain-like 5 39 10 1.00 10 1.00

b0.02d2 43 7 1.00 7 1.00
57196 sf EGF/Laminin 21 b0.1d0 24 11 1.00 15 0.88
50090 sf Electron transport accessory protein 5 b0.1 28 13 1.00 13 1.00
54060 sf Endonuclease, His-Me finger 5 b0.1d2 57 18 1.00 18 1.00
55608 sf Endonuclease, homing 4 f1.0b0.1 25 7 1.00 10 1.00
51604 sf Enolase C-terminal domain-like 14 b0.1d0 111 29 0.94 38 0.82
52432 fa ETFP subunit 6 f0.9d0 85 20 1.00 20 1.00
50514 fa Eukaryotic serine protease 56 b0.02d0 155 5 0.97 5 0.97
81269 fa Extended AAA-ATPase domain 17 b0.1d2 13 10 0.82 10 0.82
54602 fa Extradiol dioxygenase 6 f0.9 150 18 1.00 18 1.00
46610 fa Fe,Mn superoxide dismutase (SOD), 14 b0.02d0 113 3 1.00 3 1.00

N-terminal domain
51396 fa FMN-linked oxidoreductase 14 b0.1 55 26 1.00 26 1.00
50354 fa Fibroblast growth factor (FGF) 6 f0.9d0 143 6 1.00 6 1.00
53558 fa Fungal lipase 8 b0.02 85 9 1.00 9 1.00
52592 fa G protein 42 b0.1d2 39 14 0.98 17 0.96
51187 fa Germin/Seed storage 7S protein 10 f0.7b0.1d2 24 9 0.90 9 0.90
52318 fa Glutamine amidotransferase class I 10 b0.1 55 11 1.00 16 0.83

Continued on next page
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SCOP node family # non-std. # sensitivity 99% specificity
ID type name prot param fp cut pt sens. cut pt sens.
56236 fa Glutamine amidotransferase class II 7 d0 299 37 0.88 37 0.88

b0.02d0 83 6 0.88 6 0.88
55931 sf Glutamine synthetase/guanido kinase 8 f1.0d0 16 4 1.00 4 1.00

f0.9b0.01d0 941 9 0.89 9 0.89
51011 sf Glycosyl hydrolase domain 37 b0.1d0 81 16 0.88 25 0.86
51521 fa Glycosyl hydrolase family 1 9 f0.9b0.01d0 887 6 1.00 6 1.00
56784 sf Haloacid dehalogenase (HAD) like 9 d2 45 7 0.95 11 0.84
56784 sf HAD-like (SCOP 1.67) 19 f0.7b0.1 50 13 0.84 20 0.84
53531 fa Haloperoxidase 4 f1.0b0.01d0 372 5 1.00 5 1.00
51367 fa Histidine biosynthesis enzymes 5 d0 290 26 1.00 26 1.00
51413 fa Inosine monophosphate 6 f0.9b0.01d0 391 9 1.00 9 1.00

dehydrogenase (IMPDH)
53301 fa Integrin A (or I) domain 6 f0.9b0.02 214 17 1.00 22 0.89
53659 sf Isocitrate/Isopropylmalate 8 d0 208 17 1.00 17 1.00

dehydrogenase-like
49944 fa Laminin G-like module 4 f1.0b0.1 119 23 1.00 33 1.00
63379 fa MarR-like transcriptional regulator 5 b0.1d2 36 16 0.71 16 0.71
51556 sf Metallo-dependent hydrolase 17 b0.1 49 28 0.95 33 0.76
56300 sf Metallo-dependent phosphatase 10 b0.02 316 6 0.91 6 0.91
56281 sf Metallo-hydrolase/oxidoreductase 7 30 6 0.89 6 0.89
55486 sf Metalloprotease ("zincin") 42 b0.1d2 34 10 0.94 15 0.85

catalytic domain
53218 sf Molybdenum cofactor biosynthesis 5 b0.02d0 73 6 0.83 6 0.83
52641 fa Motor protein 11 b0.02 25 4 0.87 4 0.87
52403 fa N-type ATP pyrophosphatase 6 b0.02 118 10 0.88 10 0.88
55468 cf NADH oxidase/flavin reductase 6 f0.9b0.1 60 16 1.00 16 1.00
54431 fa NTF2-like 5 b0.1 17 6 0.86 7 0.71
48509 fa Nuclear receptor ligand-binding 23 b0.1 67 17 1.00 17 1.00

b0.1d2 261 63 1.00 63 1.00
b0.02d2 83 8 1.00 8 1.00

81301 sf Nucleotidyltransferase 6 b0.1d0 110 29 1.00 29 1.00
55811 sf Nudix hydrolase 5 d2 211 24 1.00 24 1.00
49417 sf p53-like transcription factors 11 f0.7b0.1d2 57 17 0.91 17 0.91
54002 fa Papain-like cysteine protease 19 b0.02 178 4 0.86 8 0.86

f0.9b0.02 327 7 0.89 14 0.89
49354 sf PapD-like 7 b0.1 123 27 0.88 27 0.88
50157 fa PDZ domain 9 b0.1 132 32 1.00 32 1.00
63550 fa Penta-EF-hand proteins 4 f1.0b0.1 107 11 1.00 17 1.00
50646 fa Pepsin-like acid protease 24 b0.02 145 11 0.88 11 0.88
53822 sf Periplasmic binding protein-like I 8 23 9 1.00 9 1.00
51998 sf PFL-like glycyl radical enzymes 4 f1.0d0 21 4 1.00 5 1.00
48537 sf Phospholipase C/P1 nuclease 4 f1.0d0 32 5 1.00 5 1.00
88723 sf PIN domain-like 6 f0.9b0.1 78 24 0.86 24 0.86
55771 fa Profilin (actin-binding protein) 7 b0.02d0 76 4 1.00 4 1.00
50495 fa Prokaryotic serine protease 10 b0.1d0 11 6 0.86 6 0.86
54815 fa Prokaryotic type KH domain (type II) 5 b0.02 76 12 1.00 12 1.00
88854 fa Protein kinase, catalytic subunit 32 b0.1 92 20 0.98 20 0.98
53167 sf Purine and uridine phosphorylases 7 b0.1d0 129 29 0.67 41 0.67
53182 sf Pyrrolidone carboxyl peptidase 4 f1.0b0.01d0 558 4 1.00 7 1.00
51622 fa Pyruvate kinase 5 f1.0b0.02d0 819 15 1.00 15 1.00
52475 fa Pyruvate oxidase and decarboxylase, 5 b0.02d0 177 8 1.00 8 1.00

middle domain
52670 fa RecA protein-like (ATPase-domain) 11 b0.1 15 6 0.91 8 0.73
53099 fa Ribonuclease H 7 155 24 1.00 24 1.00
51366 sf Ribulose-phosphate binding barrel 17 b0.1 20 8 0.88 14 0.76
50371 fa Ricin B-like 7 f0.9b0.02d0 412 10 1.00 10 1.00

f0.9d0 521 23 1.00 23 1.00
51650 fa RuBisCo, C-terminal domain 7 f0.9b0.02d0 315 10 1.00 10 1.00
46928 cf RuvA C-terminal domain-like 7 b0.1d2 59 23 0.71 23 0.71
48426 fa Sec7 domain 3 f1.0b0.01d0 679 5 1.00 8 1.00
56575 fa Serpins 12 b0.02d2 689 22 1.00 22 1.00

b0.1 287 30 1.00 30 1.00
52266 sf SGNH hydrolase 5 b0.1d0 42 9 1.00 9 1.00
50045 fa SH3-domain 17 f0.7b0.1d2 17 4 0.88 5 0.82
53697 sf SIS domain 6 453 61 1.00 61 1.00

Continued on next page
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SCOP node family # non-std. # sensitivity 99% specificity
ID type name prot param fp cut pt sens. cut pt sens.
50386 sf STI-like 7 b0.02 91 8 1.00 8 1.00

265 30 1.00 30 1.00
52744 fa Subtilases 7 f1.0b0.01d0 53 2 1.00 3 1.00
52210 sf Succinyl-CoA synthetase domains 5 f1.0b0.1d0 45 11 1.00 16 1.00
55620 sf Tetrahydrobiopterin biosynthesis-like 4 f1.0b0.1 27 9 1.00 14 1.00
48453 fa Tetratricopeptide repeat (TPR) 9 b0.1 14 6 1.00 6 1.00
54637 sf Thioesterase/thiol ester 7 b0.1d2 35 15 1.00 15 1.00

dehydrase-isomerase
52834 fa Thioltransferase 11 42 4 0.76 4 0.76
51352 fa Triosephosphate isomerase (TIM) 12 f0.9b0.02d0 366 7 1.00 7 1.00
50495 fa Trypsin-like serine proteases 66 d0 45 3 0.97 5 0.94
50514 fa (prokaryotic and eukaryotic)
51381 fa Tryptophan biosynthesis enzyme 6 f0.9d0 22 5 1.00 7 0.83
54496 fa Ubiquitin conjugating enzyme 14 d0 19 3 0.94 3 0.94
48468 fa VHS domain 4 f1.0 84 9 1.00 15 1.00
50603 fa Viral cysteine protease, trypsin fold 7 d0 17 4 1.00 4 1.00
50979 fa WD40-repeat 8 b0.02 1763 60 1.00 60 1.00

d0 366 29 1.00 29 1.00
51658 sf Xylose isomerase-like 11 d0 17 3 0.91 4 0.82
51665 fa Xylose isomerase 7 f0.9b0.01d0 758 6 1.00 6 1.00
55299 fa YjgF/L-PSP 4 f1.0b0.02d0 131 15 1.00 24 1.00
57668 fa Zinc finger, classic C2H2 5 17 4 1.00 4 1.00
53187 sf Zn-dependent exopeptidases 11 b0.1 14 5 0.58 7 0.50

Table I: Left: The SCOP families used to define distance edge fingerprints, shown as SCOP
ID, node type (fa=family, sf=superfamily), family description and number of 90% non-
redundant structures in the family. Exception: Simple edge fingerprints are shown for
Metallo-dependent Hydrolases, as discussed in the paper. Middle: Fingerprints were ob-

tained with default mining parameters – distance threshold 8.5
◦
A, AD(0.1) graph repre-

sentation with 17 amino acid labels (V,A,I,L merged); by default family support(f ) was
0.8, background occurrence(b) was 0.05 and density(d) was at most 1 edge missing from
a clique. Non-default values of these parameters are shown, along with the number of
fingerprints obtained after mining. Right: Using the ROC curve from the distribution of
fingerprints in the background, cutoff points were determined for each family based on
sensitivity and on 99% specificity; they are listed along with the coverage (sensitivity) for
the family at that number of fingerprints.
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SCOP SCOP (super)family # # new family members inferred other fns. inferred # inf from
ID prot fp # sens spec other >spec spec sens sequence
53384 AAT-like 14 36 2 2 2 0 1 5 1
52686 ABC transporter ATPase domain-like 12 17 3 3 1 2 6 10 2
55753 Actin depolymerizing protein 9 94 1 1 1 0 2 3 1
52402 Adenine nucleotide α-hydrolase 16 13 3 2 0 1 1 3 0
51431 Aldo-keto reductases (NADP) 9 72 8 8 8 0 2 9 3
53649 Alkaline phosphatase-like 7 75 2 1 1 0 2 6 0
51446 Amylase, catalytic domain 39 42 3 2 2 0 3 8 1
54598 Antibiotic resistance protein 4 62 3 2 1 1 1 1 2
48727 Antibody variable (V) domain 310 92 63 63 63 1 1 3 60
48371 ARM repeat 18 294 6 2 1 1 1 2 1
51487 β-glycanase 27 28 9 6 5 0 2 5 2
56602 β-Lactamase/D-ala carboxypeptidase 20 73 7 5 5 1 4 10 5
53487 Carboxylesterase 5 59 1 1 1 0 2 8 0
75434 CutA divalent ion tolerance protein 3 58 4 4 4 0 1 2 2
49330 Cu,Zn superoxide dismutase-like 10 183 1 1 1 0 1 1 1
50353 Cytokine 9 45 4 4 3 0 1 1 2
51609 D-glucarate dehydratase-like 9 29 3 3 3 0 6 12 1
52467 DHS-like NAD/FAD-binding domain 14 31 5 3 2 3 27 38 2
51717 Dihydropteroate synthetase-like 4 41 1 1 1 0 10 17 0
53118 DnaQ-like 3’-5’ exonuclease 11 15 3 2 2 1 10 23 1
57196 EGF/Laminin 21 24 3 3 3 0 3 4 1
51604 Enolase C-terminal domain-like 14 111 3 2 1 1 5 8 1
50514 Eukaryotic serine protease 56 155 5 4 4 0 3 5 2
81269 Extended AAA-ATPase domain 17 13 4 2 2 2 18 27 1
46610 Fe,Mn superoxide dismutase (SOD) 14 113 2 2 2 0 2 3 2
50354 Fibroblast growth factor (FGF) 6 143 3 3 3 0 1 1 1
51396 FMN-linked oxidoreductase 14 55 8 4 4 1 21 35 3
53558 Fungal lipase 8 85 1 1 1 0 1 2 0
52592 G protein 42 39 8 8 8 0 10 17 8
52318 Glutamine amidotransferase Class I 10 55 2 2 0 1 1 2 0
55931 Glutamine synthetase/guanido kinase 8 16 1 1 1 0 1 3 1
51011 Glycosyl hydrolase domain 37 81 6 2 2 0 3 10 0
56784 HAD-like 9 45 10 9 7 1 8 13 1
49944 Laminin G-like module 4 119 1 1 0 1 1 1 0
51556 Metallo-dependent hydrolases 17 49 4 4 3 1 9 25 1
56281 Metallo-hydrolase/oxidoreductase 7 30 2 1 1 0 0 1 0
55486 Metalloprotease ("zincin") 42 34 5 5 3 1 3 4 4
52641 Motor protein 11 25 4 3 3 0 1 6 1
49550 Multidomain cupredoxin 11 222 1 1 1 0 2 4 1
52403 N-type ATP pyrophosphatase 6 118 2 1 1 0 3 4 0
48509 Nuclear receptor ligand-binding domain 23 83 7 7 7 0 3 5 3
55811 Nudix 5 211 7 5 5 0 1 3 0
49417 p53-like transcription factor 11 57 3 1 1 0 0 0 1
54002 Papain-like 19 178 9 7 7 0 1 3 7
50646 Pepsin-like acid protease 24 145 3 3 3 0 3 5 2
48537 Phospholipase C/P1 nuclease 4 32 1 1 1 0 1 2 1
50495 Prokaryotic serine protease 10 11 4 3 3 2 2 4 0
88854 Protein kinases, catalytic subunit 32 92 17 17 17 1 5 10 9
53167 Purine and uridine phosphorylase 7 129 5 1 1 0 0 2 3
52475 Pyruvate oxidase and decarboxylase 5 177 3 3 3 1 33 45 0
52670 RecA protein-like (ATPase-domain) 11 15 2 1 1 1 1 3 1
50371 Ricin B-like 7 412 3 3 3 0 2 6 2
56575 Serpins 12 287 6 1 1 0 0 0 3
53697 SIS domain 6 453 2 1 1 0 0 2 0
52744 Subtilase 7 53 4 4 4 1 21 35 3
51381 Tryptophan biosynthesis enzyme 6 22 3 2 0 1 2 10 1
53187 Zn-dependent exopeptidase 11 14 13 3 1 2 3 4 4

Table II: Function inference of new members in SCOP 1.67 using distance edge fingerprints (only metallo-dependent hydrolase shown with simple
edge fingerprints). The left part of the table describes the family used for mining fingerprints; the middle part lists the number of new members
added, the number inferred at the sensitivity and 99% specificity cutoffs and the number inferred more strongly by another family’s fingerprints;
the right part list the number of other functions inferred for the new members at 99%-specificity and sensitivity cutoffs. The rightmost column
gives the number of proteins for which the desired family can be inferred above 40% sequence identity, which is the threshold Wilson et al. (2000)
use to infer function from sequence alone. Family members from SCOP 1.65 are sometimes missed when their sequence representative in the
90%-non-redundant dataset is not classified in SCOP 1.65, and appear to be new members. For such members, we ignore sequence hits above 90%
identity to family members when evaluating the inference from sequence, since such hits would map to the same non-redundant protein.
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SCOP SCOP (super)family # # # new # fingerprints sens. # inf from
ID prot fp members in new members cutoff sequence
48179 6-phosphogluconate dehydrogenase C-terminal domain-like 12 16 1 5 9 0
51570 Aldolase, class I 17 74 6 20 19 17 15 11 7 27 2
75217 α/β knot 6 22 6 2 2 2 1 1 0 3 0
51883 Aminoacid dehydrogenase-like, C-terminal domain 18 376 3 111 100 64 145 2
51679 Bacterial luciferase-like 6 86 2 6 5 8 0
56655 Carbohydrate phosphatase 12 69 1 16 21 1
49384 Carbohydrate-binding domain 7 17 1 3 4 1
49348 Clathrin adaptor appendage domain 5 77 1 4 15 0
53402 Cystathionine synthase-like 15 17 3 3 3 0 6 1
56236 Glutamine amidotransferase Class II 7 83 1 9 37 0
54060 His-Me finger endonucleases 5 57 1 11 18 0
55608 Homing endonucleases 4 25 1 6 7 0
53659 Isocitrate/Isopropylmalate dehydrogenase-like 8 208 3 16 15 7 17 0
63379 MarR-like transcriptional regulators 5 36 2 5 0 16 0
53218 Molybdenum cofactor biosynthesis proteins 5 73 1 1 6 0
81301 Nucleotidyltransferase 6 110 5 24 17 17 16 6 29 0
49354 PapD-like 7 123 1 9 27 0
53822 Periplasmic binding protein-like I 8 23 6 6 3 2 2 1 0 9 1
88723 PIN domain-like 6 78 1 19 24 1
53099 Ribonuclease H 7 155 1 8 24 1
51366 Ribulose-phoshate binding barrel 17 20 4 5 3 1 1 8 1
46928 RuvA C-terminal domain-like 7 59 2 6 5 23 0
55620 Tetrahydrobiopterin biosynthesis enzymes 4 27 3 5 1 0 9 0
48453 Tetratricopeptide repeat (TPR) 9 14 1 2 6 1
54637 Thioesterase/thiol ester dehydrase-isomerase 7 35 8 7 6 5 5 4 3 3 3 15 0

Table III: The families from Table II for which none of the new members were inferred; the number of fingerprints in each new member and the
sensitivity cutoff points are also shown. The rightmost column gives the number of proteins whose function can reliably be inferred from sequence
alone; this is usually low for these families.

SCOP SCOP (super)family # # new family members inferred other fns. inferred # inf from
ID prot fp # sens spec other >spec spec sens sequence
50157 PDZ domain 9 132 5 5 5 0 0 0 2
52266 SGNH hydrolase 5 42 1 1 1 0 0 0 0
54496 Ubiquitin conjugating enzyme 14 19 1 1 1 0 0 0 1
48468 VHS domain 4 84 1 1 1 0 0 0 1
57668 Zinc finger, classic C2H2 5 17 1 1 1 0 0 0 0
48942 Antibody constant (C1) domains 259 12 57 57 49 0 0 2 57
56317 Carbon-nitrogen hydrolase 3 97 1 1 1 0 0 2 0
53301 Integrin A (or I) domain 6 214 3 3 2 0 0 2 1
56300 Metallo-dependent phosphatase 10 316 1 1 1 0 0 3 0
50045 SH3-domain 17 17 4 4 4 0 0 1 3
55299 YjgF/L-PSP 4 131 3 3 3 0 0 2 2

Table IV: The families from Table II for which all new members added in SCOP 1.67 were inferred using fingerprints of the SCOP 1.65 family,
and there were either no other functions inferred (top half of tables) or there were no other functions inferred with 99% specificity or with higher
specificity than the family fingerprints (bottom half, italics). The rightmost column gives the number of proteins whose function can reliably be
inferred from sequence alone.
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