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Abstract. The availability of high density single nucleotide polymorphisms (SNPs)
data has made genome-wide association study computationally challenging. Two-
locus epistasis (gene-gene interaction) detection has attracted great research in-
terest as a promising method for genetic analysis of complex diseases. In this
paper, we propose a general approach, COE, for efficient large scale gene-gene
interaction analysis, which supports a wide range of tests. In particular, we show
that many commonly used statistics are convex functions. From the observed val-
ues of the events in two-locus association test, we can develop an upper bound
of the test value. Such an upper bound only depends on single-locus test and the
genotype of the SNP-pair. We thus group and index SNP-pairs by their geno-
types. This indexing structure can benefit the computation of all convex statistics.
Utilizing the upper bound and the indexing structure, we can prune most of the
SNP-pairs without compromising the optimality of the result. Our approach is es-
pecially efficient for large permutation test. Extensive experiments demonstrate
that our approach provides orders of magnitude performance improvement over
the brute force approach.

1 Introduction

High throughput genotyping technologies produce vast amounts of genetic polymor-
phism data which empowers genome-wide association study, and at the same time,
makes it a computationally challenging task [16, 20, 24]. As the most abundant source
of genetic variations, the number of single nucleotide polymorphisms (SNPs) in public
datasets is up to millions[1, 3]. Through analyzing genetic variation across a population
consisting of disease (case) and healthy (control) individuals, the goal of disease asso-
ciation study is to find the genetic factors underlying the disease phenotypes. Growing
evidence suggests that many diseases are likely caused by the joint effect of multiple
genes [8,29]. The interaction between genes is also referred to as epistasis [10]. In an
epistatic interaction, each gene may only have weak association with the disease. But
when combined, they have strong effect on the disease. A large amount of research has
been devoted to find epistatic interactions between genes [4, 11, 17], among which the
two-locus association mapping has attracted most attention. The goal is to find SNP-
pairs having strong association with the phenotype. Important findings are appearing in
the literature from studying the association between phenotypes and SNP-pairs [26, 27,
33].



Two critical issues need to be addressed in epistasis detection — one from the statisti-
cal side, and one from the computational side. The statistic issue is to develop statistical
tests that have strong power in capturing epistatic interactions. Commonly used statis-
tics in disease association study include: chi-square test, G-test, information-theoretic
association measurements, and trend test [4, 21, 31]. Different tests are good at detecting
different epistatic interactions, and there is no single winner. Another thorny challenge
in epistasis detection is the computational burden posed by the huge amount of SNPs
genotyped in the whole genome. The enormous search space often makes the complete
genome-wide epistasis detection intractable.

The computational issue is further compounded by the well-known multiple test
problem, which can be described as the potential increase in Type I error when tests
are performed multiple times. Let o be the significant level for each independent test.
If n independent comparisons are performed, the family-wise error o’ is given by o’ =
1 — (1 — a)™. For example, if « = 0.05 and n = 20, then o/ = 1 — 0.95%° =
0.64. We have probability 0.64 to get at least one spurious result. Permutation test is
a standard procedure for family-wise error rate controlling. By repeating the test many
times with randomly permuted phenotype, a critical threshold can be established to
assess the statistical significance of the findings. Ideally, permutation test should be
performed in the genome-wide scale. In practice, however, permutation test is usually
reserved for a small number of candidate SNPs. This is because large permutation test
usually entails prohibitively long computation time. For example, if the number of SNPs
is 10,000, and the number of permutations is 1,000. The number of SNP-pairs need to
be tested in a two-locus epistasis detection is about 5 x 101°. In this paper, we focus
on addressing the computational challenges of two-locus epistatic detection when large
permutation test is needed. In the following discussion, we briefly review the related
work from a computational point of view.

Exhaustive algorithms [19, 22] have been developed for small datasets consisting of
tens to hundreds of SNPs. Since they explicitly enumerate all possible SNP combina-
tions, they are not well adapted to genome-wide association studies. Genetic algorithm
[7] has been proposed. However, this heuristic approach does not guarantee to find the
optimal solution. A two-step approach [14,30] is commonly used to reduce the com-
putational burden. The idea is to first select a subset of important SNPs according to
some criteria, which is also known as SNP tagging [9, 15, 28]. Then in the second step,
an exhaustive search is performed to find the interactions among the selected SNPs.
This approach is incomplete since it ignores the interactions among the SNPs that in-
dividually have weak association with the phenotype. A case study on colon cancer
demonstrates that the two-step approach may miss important interacting SNPs.

1.1 A Case Study of Colon Cancer

We perform two-locus chi-square test on genome-wide mouse SNP data. The dataset
is extracted from [32] and [2]. There are 14 cases out of 32 individuals. The number
of SNPs is 132,896. The top-100 SNP-pairs having highest chi-square test values are
recorded. We show that a two-step approach will fail to identify most of the signficant
pairs. We compute the single-locus chi-square test value for every SNP in these pairs.
In Figure 1, the yellow bars show the histogram of their single-locus test values. More



than half of the SNPs have very low test values. However, when combined with other
SNPs, the test values dramatically increases. The green bar in the figure represents
the histogram of the two-locus test values of the pairs. Since the two-step approach
ignores the interactions between SNPs that individually have weak association with the
phenotype, a majority of the top-100 SNP-pairs will not be identified.

Among the SNP pairs identified above, the 150 ww
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mune system may play a protective role on colon-cancer, indicating the potential im-
portance of Ptprj to cancer susceptibility [18]. Ptprj knock-out mice display an im-
paired immune system with decreased B cell number, abnormal B cell differentiation
and shortened life-span. Previous evidence also suggests that Lrigl acts as a feedback
negative regulator of signaling by receptor tyrosine kinases through a mechanism that
involves enhancement of receptor ubiquitination and accelerated intracellular degra-
dation. Rceptor tyrosine kinases including EGFR/ERBBI1 are believed to be a main
player on colon cancer-genesis, and Egfr expression has correlated with poor prognosis
of colon cancer. Therefore, Lrigl is a good candidate for colon cancer susceptibility
[13]. Each of the two genes individually shows very weak association signal. Their
single-locus chi-square test values are 1.81 and 0.79 respectively, depicted by the two
red dotted lines to the left in Figure 1. However, this pair of genes jointly show much
stronger association. The two-locus test value is 28.4, depicted by the blue dotted line to
the right in Figure 1. This implies a strong epistatic interaction between the two genes.
Using a two-step approach, however, these two SNPs will not be selected for interaction
study since they both have very low single-locus test values.

Some recent work [34,35] has taken the initial steps to develop complete algo-
rithms for genome-wide two-locus epistasis detection: FastANOVA [34] for two-locus
ANOVA (analysis of variance) test on quantitative traits and FastChi [35] for two-
locus chi-square test on case-control phenotypes. Both methods rework the formula of
ANOVA test and Chi-square test to estimate an upper bound of the test value for SNP
pairs. These upper bounds are used to identify candidate SNP pairs that may have strong
epistatic effect. Repetitive computation in a permutation test is also identified and per-
formed once whose results are stored for use by all permutations. These two strategies
lead to substantial speedup, especially for large permutation test, without compromis-
ing the accuracy of the test. These approaches guarantee to find the optimal solutions.
However, a common drawback of these methods is that they are designed for specific
tests, i.e., chi-square test and ANOVA test. The upper bounds used in these methods
do not work for other statistical tests, which are also routinely used by researchers. In



addition, new statistics for epistasis detection are continually emerging in the literature
[5,12,36]. Therefore, it is desirable to develop a general model that supports a variety
of statistical tests.

In this paper, we propose a general approach, COE', to scale-up the process of
genome-wide two-locus epistasis detection. Our method guarantees to find the optimal
solution. A significant improvement over previous methods is that our approach can be
applied to a wide range of commonly used statistical tests. We show that a key property
of these statistics is that they are all convex functions of the observed values of certain
events in two-locus tests. This allows us to apply the convex optimization techniques
[6]. Specifically, by examining the contingency tables, we can derive constraints on
these observed values. Utilizing these constraints, an upper bound can be derived for
the two-locus test value. Similar to the approaches in [34, 35], this upper bound only
depends on single-locus test and the genotype of the SNP-pairs. It avoids redundant
computation in permutation test by grouping and indexing the SNP-pairs by their geno-
types. An important difference, however, is that the upper bound presented in this paper
is general and much tighter than those in previous methods such as FastChi. It supports
all tests using convex statistics and can prune the search space more efficiently. As a re-
sult, our method is orders of magnitude faster than the brute force approach, in which all
SNP-pairs need to be evaluated for their test values, and is an order of magnitude faster
than the pruning strategies used in previous methods such as FastChi. In this paper, we
focus on the case where SNPs are binary variables which can be encoded by {0, 1}.
The principle introduced here is also applicable to heterozygous case where SNPs are
encoded using {0, 1, 2}.

2 Problem Formalization

Let {X;, X2, -+, XN} be the set of all biallelic SNPs for M individuals, and Y be
the binary phenotype of interest (e.g., disease or non-disease). We adopt the convention
of using O to represent majority allele and 1 to represent minority allele, and use O for
non-disease and 1 for disease. We use .7 to denote the statistical test. Specifically, we
represent the test value of SNP X; and phenotype Y as 7 (X, Y"), and represent the test
value of SNP-pair (X;X;) and Y as 7 (X;X;,Y). A contingency table, which records
the observed values of all events, is the basis for many statistical tests. Table 1 shows
contingency tables for the single-locus test .7 (X;,Y"), genotype relationship between
SNPs X; and X, and two-locus test 7 (X, X;,Y).

The goal of permutation test is to find a critical threshold value. A two-locus epis-
tasis detection with permutation test is typically conducted as follows [21, 34,35]. A
permutation Y of Y represents a random reshuffling of the phenotype Y. In each per-
mutation, the phenotype values are randomly reassigned to individuals with no replace-
ment. Let Y’ = {Y1, Y3, -, Yk } be the set of K permutations of Y. For each permu-
tation Y, € Y7, let 5, represent the maximum test value among all SNP-pairs, i.e.,
Dy, = max{.T (X;X;,Y:)|1l <i < j < N} The distribution of { %, |Y € Y’} is
used as the null distribution. Given a Type I error threshold «, the critical value 7, is

! COE stands for Convex Optimization-based Epistasis detection algorithm.



(a) X;and Y (b) X; and X

X; =0|X; = 1|Total X; =0|X; = 1|Total
Y = Olevent A|event B X; = 0O|event S|event T’
Y = 1|event C|event D X; = 1|event P|event )
Total M | | Total | M

(¢c) X;Xjand Y

Xi =0 X; =1 Total
X;=0|X;=1|X,=0|X; =1
Y = O|event a1 |event az|event by |event ba

Y = 1|event c; |event ¢ |event d; |event do
Total M

Table 1. Contingency Tables

the K -th largest value in {9y, |Y;, € Y'}. After determining the critical value .7,, a
SNP-pair (X;X) is considered significant if its test value with the original phenotype
Y exceeds the critical value, i.e., 7 X;X;,Y) > Z,.

Determining the critical value is computationally more demanding than finding sig-
nificant SNP-pairs, since the test procedure needs to be repeated for every permutation
in order to find the maximum values. These two problems can be formalized as follows.

Determining Critical Value: For a given Type I error threshold «;, find the critical
value .7,, which is the o/ -th largest value in { Zy, |V}, € Y'}.

Finding Significant SNP-pairs: For a given critical value .7,, find the significant
SNP-pairs (X;X;) such that 7 (X, X,,Y) > F,.

In the reminder of the paper, we first show the convexity of common statistics. Then
we discuss how to establish an upper bound of two-locus test and use it in the algorithm
to efficiently solve the two problems.

3 Convexity of Common Test Statistics

In this section, we show that many commonly used statistics are convex functions. Since
there are many statistics in the literature, it is impossible to exhaustively enumerate all
of them. We focus on four widely used statistics: chi-square test, G-test, entropy-based
statistic, and Cochran-Armitage trend test.

LetA,B,C,D,S, T, P,Q,a1,a2,b1,bs,c1,co,dr,ds represent the events as shown
in Table 1. Let Epent and Ogyeny denote the expected value and observed value of an
event. Suppose that Eg = {al,ag,b1, bo, c1,C2, dl,dg}, E, = {al, az,C1, CQ}, and
Ey = {by, ba,d1, d2}. The two-locus chi-square tests can be calculated as follows:

Oe'uen - Eeven 2 Oeven - Eeven 2
o, yy= Y Qe =Bt ogn Oevent = Bt
Ee'uent Ee@ent

event€l, event€Ry

X3 (X X;Y) X3(X: X;Y)

Note that we intentionally break the calculation into two components: one for the events
in 1, denoted as x%(X;X,Y), and one for the events in Eo, denoted as x3(X;X,;Y).



The reason for separating these two components is that each of these two components
is a convex function (See Lemma 1).

The G-test, also known as a likelihood ratio test for goodness of fit, is an alternative
to the chi-square test. The formula for two-locus G-test is

Oe'uen Oeven
G(Xszy Y) =2 Z Oevent : ln(Eit) + 2 Z Oevent . ln(Eit) (2)

event event

eventel, event€Eqy

Information-theoretic measurements have been proposed for association study [12,
36]. We examine the mutual information measure, which is the basic form of many
other measurements. The mutual information between SNP-pair (X; X ;) and phenotype
Yis I(V;X;X;) = HY) + H(X;X;) — H(X;X;Y), in which the joint entropy
—H(X;X,;Y) is calculated as

Oevent Oevent Oeuem‘, Oevent
—HXX)Y) = Y T log =+ > T log = ()

event€E; event€Eq

Let 7 (X;X;,Y) represent any one of x*(X;X;,Y), G(X;X;,Y),and —H (X, X;Y).
Let 7 (X;X,Y") denote the component for events in E, and .75 (X;X;Y") denote the
component for events in E,. The following lemma shows the convexity of 77 (X, X;Y")
and % (XlXJY)

Lemma 1. Given the values of O4,0p,0¢,0Op,Op,0q, Z1(X;X,;Y) is a convex
Sfunction of O.,, and F5(X; X;Y) is a convex function of Og,.

Proof. See Appendix.

The Cochran-Armitage test for trend is another widely used statistic in genetic as-
sociation study. Let Z = (O., — pOs)(s1 — 5) + (Oc, — pOp)(s2 — 5) + (Oq, —
pO1)(s3 — 8) + (04, — pOg)(sa — §). The Cochran-Armitage two-locus test can be
calculated as

2?2 =2%/[p(1 — p)(Os(s1 — 5)* + Op(s2 — 5)° + Or(s3 — 5)° + Oq(s4 — 5)%)],

where p is the percentage of cases in the case-control population, s; (i € {1,2,3,4}) are

user specified scores for the four possible genotype combinations of (X; X ): {00,01,10,11},
and 5 = (Ogs1 + Opsa + Orsz +0¢gs4)/M is the weighted average score. The fol-
lowing theorem shows the convexity of the trend test.

Lemma 2. Given the values of O4,0p,O¢c,Op,Op,Oq, the Cochran-Armitage test
for trend 2* is a convex function of (O.,, Og,).

Proof. See Appendix.
Suppose that the range of O, is [l.,, uc,], and the range of Oy, is [l4,, u4,]. For

any convex function, its maximum value is attained at one of the vertices of it convex
domain [6]. Thus, from Lemmas 1 and 2, we have the following theorem.



Theorem 1. Given the values of O 4,0p,O¢c,Op,Op, Oq, for chi-square test, G-test,
and entropy-based test, the maximum value of 71(X;X;Y) is attained when O,., =
ley or Ocy = Uc,. The maximum value of J5(X;X;Y) is attained when Ogq, = lg4,
or Ogq, = ug,. The maximum value of Cochran-Armitage test 22 is attained when
(Oc,, Og,) takes one of the four values in {(lcy,ldy)s (leys Udy )y (Ueys ldy )y (Uey, Udy ) }-

Therefore, we can develop an upper bound
of the two-locus test if we identify the range
of O., and Og,. For example, suppose that the
value of vector (O4,0p,0¢,0p,0p,0q)
is (6, 10,10, 6, 7, 6). In Figure 2, we plot func-
tion x3(X;X;,Y). The blue stars represent
the values of x%(X;X;,Y) when O, takes
different values. Clearly, x3(X;X;,Y) is a
convex function of O, , and its upper bound
is determined by the two end points of the
range of O,,. Since O, is always less than
Oc, in this example, the default range of O,
is [0,0¢] = [0,10]. Typically, the actual
range of O,, is tighter, as indicated by the red
dotted lines, which leads to a tighter upper bound of the test value. In the next section,
by examining the contingency tables, we derive a set of constraints that determine the
range of O, and O, .

Fig.2: Convexity Example

4 Constraints on Observed Values

Ou, + 04y, =04 O,

Oy, + Op, = OB 11000000 Oa, Oa
O¢;, + Oc, = O¢ 00001100 Oy, Oc
O4, + 04, = Op — 00110000 O, | | OB
Oay, +O¢, =0Os 00000011 O, Op
Ouy + Ocy =Op 01000100 Oc, Op
Oy, + 04, =07 00010001 Og, Oq
Ob, + Oa, = Oq Oa,

Fig. 3. Linear equation system derived from contingency tables

From the contingency tables shown in Table 1, we can develop a set of equations, as
shown in Figure 3 at the left side of the arrow sign. Although there are 8 equations, the
rank of the linear equation system is 6. We choose 6 linear equations to form a full rank
system. The matrix multiplication form of these 6 equations is shown in Figure 3 at the
right side of the arrow sign. The reason for choosing the 6 equations is two-fold. First,
these 6 equations can be used to derive the range of O., and Og,. Second, the values of



Ou, O —Op -1 Ob, Op — Og ~1
Ou | | Op N On, | | 0q B

Oe, | = | Oc 1| Oeand | 55 = o) 1| O
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Fig. 4. Relations between observed values in the contingency table of two-locus test

04,0p,0¢,Op are determined by the single-locus contingency table in Table 1(a).
The remaining two values, Op and Og, only depend on the SNP-pair’s genotype. It
enables us to index the SNP-pairs by their (Op, Og) values to effectively apply the
upper bound. This will become clear when we present the algorithm in Section 5.

From these 6 equations, we obtain the relationships between the observed values
shown in Figure 4. Since all observed values in the contingency table must be greater
or equal to 0, the ranges of O, and Oy, are stated in Theorem 2.

Theorem 2. Given the values of O4,0p,0¢,0Op,0p,Oq, the ranges of O., and
Oy, are
max{0,0p — 04} < O, <min{Op,O¢};
{maX{O,OQ — O} < 04, <min{0g,O0p}.

Given O4,0p,0¢,0p,Op,Oq, the values of O, ,O,,,O,, are determined by
O.,, the values of Oy, ,Oy,,O4, are determined by Og4,. So all values in the contin-
gency table for two-locus test in Table 1(c) depend only on O., and Og4,. The maxi-
mum value, ub(.7 (X, X;,Y)), is attained when O,, and Oy, take the boundary values
shown in Theorems 1 and 22. Continuing with the example in Figure 2, the value of
(04,0B,0¢,0p,0p,0q)is (6,10, 10,6, 7, 6). From Theorem 2, the range of O, is
[1,7], as indicated by the red lines. The upper bound of x%(X;X;,Y) is reached when
O, =1

Note that the upper bound value only depends on O 4,0p,O¢c,Op,Op,Oq. This
property allows us to group and index SNP-pairs by their genotypes so that the upper
bound can effectively estimated and applied to prune the search space.

S Applying the Upper Bound

Theorems 1 and 2 show that the upper bound value of the two-locus test 7 (X;X;,Y)
(for any one of the four tests discussed in Section 3) is determined by the values of
04,08B,0¢,0p,0p,0g. As shown in Table 1, these values only depend on the con-
tingency table for the single-locus test .7 (X;,Y") and the contingency table for the
SNP-pair (X;X;)’s genotype. This allows us to group the SNP-pairs and index them by
their genotypes. The idea of building such indexing structure has also been explored in
[34,35]. For self-containment, in this section, we first discuss how to apply the upper

2 For entropy-based statistic, so far we have focused on the joint entropy —H (X;X;Y"). Note
that, given the values of O4,Op,O¢c,Op,Op, Ogq, the upper bound for the mutual informa-
tion I (X;X;,Y) can also be easily derived.



bound to find the significant SNP-pairs. Then we show that a similar idea can be used
to find the critical values .7, using permutation test.

For every X; (1 < i < N),let AP(X;) = {(X;Xj)[i +1 < j < N} be the
SNP-pairs with X; being the SNP of lower index value. We can index the SNP-pairs in
AP(X;) by their (Op,Oq) values in a 2D array, referred to as Array(X;). Note that
Op is the number of 1’s in X; when X; takes value 0. Og is the number of 1’s in X;
when X takes value 1.

For example, suppose that there are 13 individ-
vals in the dataset. SNP X; consists of 8 0’s and 5
I’s. Thus for the SNP-pairs in AP(X;), the possi-

A list of SNP-pairs
whose (0., O,) = (5, 4)

sent the possible values of (Op,Og) for the SNP-
pairs (X;X;) in AP(X;). Each entry of the array is
a pointer to the SNP-pairs (X;X,) having the cor-
responding (Op, Og) values. For example, all SNP-
P pairs in AP(X;) whose (Op,Og) value is (5,4) are
indexed by the entry (5,4) in Figure 5.

It is obvious that for any SNP-pair (X;X;) €
AP(X;), if the upper bound value of the two-locus test is less than the critical value,
ie., ub(J(X,;X;,Y)) < ,, then this SNP-pair cannot be significant since its actual
test value will also be less than the threshold. Only the SNP-pairs whose upper bound
values are greater than the threshold need to be evaluated for their test values. We refer
to such SNP-pairs as candidates.

5 U ble values of Op are {0,1,2,---,8}. The possible

4 - values of O¢g are {0,1,2,---,5}. Figure 5 shows

o 3 the 6 x 9 array, Array(X;), whose entries repre-
Q 2
1
0

0123456738
o)

Fig.5: Indexing SNP-pairs

Recall that from Theorems 1 and 2, the upper bound of two-locus test value is a
constant for given O4,0p,Oc¢c,Op,Op,Oq. Given SNP X; and phenotype Y, the
values of O4,Op,O¢, Op are fixed. For SNP-pairs (X;X;) € AP(X;), once we in-
dex them by their (Op, Og) values as shown in Figure 5, we can identify the candidate
SNP-pairs by accessing the indexing structure: For each entry of the indexing structure,
we calculate the upper bound value. If the upper bound value is greater than or equal
to the critical value .7, then all SNP-pairs indexed by this entry are candidates and
subject to two-locus tests. The SNP-pairs whose upper bound values are less than the
critical value are pruned without any additional test.

Suppose that there are m 1’s and (M — m) 0’s in SNP X;. The maximum size of
the indexing structure Array(X;) is m(M — m). Usually, the number of individuals
M is much smaller than the number of SNPs N. Therefore, the number of entries in the
indexing structure is also much smaller than N. Thus there must be a group of SNP-
pairs indexed by the same entry. Since all SNP-pairs indexed by the same entry have the
same upper bound value, the indexing structure enables us to calculate the upper bound
value for this group of SNP-pairs together.

So far, we have discussed how to use the indexing structure and the upper bound to
prune the search space to find significant SNP-pairs for a given critical value .7,. The
problem of finding this critical value .7, is much more time consuming than finding the
significant SNP-pairs since it involves large scale permutation test. The indexing struc-



ture Array(X;) can be easily incorporated in the algorithm for permutation test. The
key property is that the indexing structure Array(X;) is independent of the phenotype.
Once Array(X;) is built, it can be reused in all permutations. Therefore, building the
indexing structure Array(X;) is only a one time cost. The permutation procedure is
similar to that of finding significant SNP-pairs. The only difference is that the thresh-
old used to prune the search space is a dynamically updated critical value found by the
algorithm so far. The overall procedure of our algorithm COE is similar to that in [34,
35]. An important difference is that COE utilizes the convexity of statistical tests and is
applicable to all four statistics. We omit the pseudo code of the algorithm in the main
body of the paper. Please refer to the Appendix for further details.

Property 1. The indexing structure Array(X;) can be applied in computing the upper
bound value for all four statistical tests, i.e., chi-square test, G-test, mutual information,
and trend test.

The correctness of Property 1 relies on the fact that the upper bound is always
a function of O4,0p,0¢, Op,Op, O, regardless of the choice of test. All SNP-
pairs having the same (Op, Og) value will always share a common upper bound. This
property shows that there is no need to rebuild the indexing structure if the users want
to switch between different tests. It only needs to be built once and retrieved for later
use.

The time complexity of COE for permutation test is O(N2M + KNM? + CM),
where N is the number of SNPs, M is the number of individuals, K is the number
of permutations, and C' is the number of candidates reported by the algorithm. Experi-
mental results show that C' is only a very small portion of all SNP-pairs. A brute force
approach has time complexity O(K N2M). Note that N is the dominant factor, since
M < N. The space complexity of COE is linear to the size of the dataset. The deriva-
tion of the complexity is similar to that in [34, 35] and can be found in the Appendix.

6 Experimental Results

In this section, we present extensive experimental results on evaluating the perfor-
mance of the COE algorithm. COE is implemented in C++. We use COE_Chi, COE_G,
COE_MI, COE_T to represent the COE implementation for the chi-square test, G-test,
mutual information, and trend test respectively. The experiments are performed on a 2.4
GHz PC with 1G memory running WindowsXP system.

Dataset and Experimental Settings: The SNP dataset is extracted from a set of
combined SNPs from the 140k Broad/MIT mouse dataset [32] and 10k GNF [2] mouse
dataset. This merged dataset has 156,525 SNPs for 71 mouse strains. The missing values
in the dataset are imputed using NPUTE [23]. The phenotypes used in the experiments
are simulated binary variables which contain half cases and half controls. This is com-
mon in practice, where the numbers of cases and controls tend to be balanced. If not
otherwise specified, the default settings of the experiments are as follows: #individuals
= 32, #SNPs=10,000, #permutations=100. There are 62,876 unique SNPs for these 32
strains.
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Fig. 7. Performance comparison of the brute force approach, COE_G, COE MI, and COE_T

6.1 Performance Comparison

Figure 6 shows the runtime comparison of the brute force two-locus chi-square test, the
FastChi algorithm [35], and the COE implementation of chi-square test, COE_Chi, in
permutation test under various settings. Note that the runtime reported in this section
are based on the complete executions of all methods including the one time cost for
building the indexing structures. Figure 6(a) shows the comparison when the Type I er-
ror threshold varies. The y-axis is in logarithm scale. COE_Chi improves the efficiency
of two-locus epistasis detection by one order of magnitude over FastChi (which was
specifically designed for two-locus chi-square test), and two orders of magnitude over
the brute force approach. Figure 6 (b), (c), and (d) demonstrate similar performance im-
provements of COE_Chi over the other two approaches when varying number of SNPs,
number of permutations, and number of individuals respectively. This is consistent with
the pruning effect of the upper bounds which will be presented later.

Figure 7(a) shows the runtime comparison between the brute force two-locus G-test
and COE_G when varying the type I error threshold. The runtime of COE_G dramati-
cally reduces as the type I error threshold decreases. COE_G is one to two orders mag-
nitudes faster than the brute force approach. Similar performance improvement can also
be observed for COE_MI and COE_T in Figures 7(b) and 7(c). Note that for these three



| | [ FastChi|[COE_Chi|COE_G|COE_MI|COE_T|

0.05] 87.59% | 95.70% [95.84%| 95.80% [99.90%
0.04|87.98% | 96.11% [96.23%| 96.23% (99.92%
o 10.03]88.12% | 96.32% |96.40%| 96.43% [99.93%
0.02] 89.43% | 98.18% [98.31%| 98.28% [99.96%
0.01/90.03% | 98.59% [98.65%| 98.62% [99.98%
10k | 90.03% | 98.59% |98.65%| 98.62% [99.98%
23k [ 91.52% | 99.08% |99.50% | 99.13% |99.99%
# SNPs | 36k | 91.39% | 99.03% {99.43%| 99.09% (99.99%
49k | 91.39% | 99.04% (99.43%| 99.09% [99.99%
62k|91.22% | 99.04% |99.43%| 99.09% [99.99%
100{90.03% | 98.59% |98.65%| 98.62% [99.98%
200]91.79% | 99.03% |99.42%| 99.08% |99.99%
# Perm.|300| 91.90% | 99.04% |99.43%| 99.09% (99.99%
400{91.91% | 99.04% (99.43%| 99.09% [99.99%
500{91.99% | 99.04% |99.43%| 99.09% [99.99%
28 191.05% | 98.77% [99.83%| 99.06% [99.99%
30 [91.23% | 98.83% [98.94%| 99.06% [99.98%
#Indiv.| 32 | 90.03% | 98.59% [99.65%| 98.62% (99.98%
34 191.54% | 98.80% [99.74%| 98.84% [99.97%
36 | 89.08% | 97.94% |95.74%)| 93.55% [99.94%

Table 2. Pruning effects of FastChi and COE on four different statistics

tests, we also have similar results when varying other settings. Due to space limitation,
we omit these results here.

6.2 Pruning Power of the Upper Bound

1 Table 2 shows the percentage of SNP-
095 pairs pruned under different experimental set-
tings for the four statistical tests. We also
include the pruning ratio of FastChi in the
table for comparison. From the table, most
of the SNP-pairs are pruned by COE. Note
that COE_Chi has more pruning power than
FastChi. The upper bound used in FastChi is
derived by loosening the observed values for
the events in two-locus test without using the
Fig.8: FastChi v.s. COE_Chi convexity property. The tighter upper bound
of COE_Chi demonstrates the strength of convex optimization in finding the maximum
values. In addition, the upper bound derived by applying convex optimization is not
only more effective, but also more robust for unbalanced datasets.
Figure 8 shows the pruning effectiveness of FastChi and COE_Chi when the ratio
of case/control varies. It is clear that the pruning power of FastChi is weakened when
the case/control ratio becomes unbalanced. Therefore, FastChi is not very effective for
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unbalanced case-control datasets. In contrast, COE_Chi maintains a steady pruning per-
centage under different case/control ratios. Thus it remains effective for the unbalanced
datasets. Similar behaviors of COE are also observed in the other three statistical tests.

7 Discussion

Genome-wide epistasis detection is computationally demanding due to the large num-
ber of SNPs. As a golden standard for proper family-wise error controlling, the permu-
tation test dramatically increases the computation burden. In this paper, we present a
general approach COE that support genome-wide disease association study with a wide
range of statistics composing of convex terms. We use four commonly used statistics
as prototypes: chi-square test, G-test, entropy-based test, and Cochran-Armitage trend
test. COE guarantees optimal solution and performs two orders of magnitude faster than
brute force approaches.

The performance gain is attributed to two main contributions of COE. The first is
a tight upper bound estimated using convex optimization. It has much higher pruning
power than any upper bounds used in previous methods such as FastChi. As a result,
COE_Chi is an order of magnitude faster than FastChi. Moreover, COE serves as a gen-
eral platform for two-locus epistasis detection, which eliminates the need of designing
specific pruning methods for different statistical tests. Recall that any observed value in
a two-locus test is a function of O, and Oy, for given O4,0p,O0¢c,0p,Op,Oqg. Let
x = O, and y = Og,. A wide spectrum of functions of x and y are convex [6], which
include all linear and affine functions on x and/or y, exponential terms e®® (a € R),
powers z% (@ > 1 or a < 0), negative logarithm — log z, maximum max{x, y}. In addi-
tion, many operations preserve convexity. For example, if f(z,y) is a convex function,
and g(x,y) is an affine mapping, then f(g(x,y)) is also a convex function. Please refer
to [6] for further details.

The second source of performance improvement is from indexing SNP-pairs by
their genotypes. Applying this indexing structure, we can compute a common upper
bound value for each group. The indexing structure is independent of the phenotype
permutations and the choice of statistical test . We can eliminate redundant computation
in permutation test and provide the flexibility of supporting multiple statistical tests on
the fly.

In this paper, we focus on binary SNPs and case-control phenotypes. The principle
is also applicable to the heterozygous case, where SNPs are encoded using {0, 1,2},
and to evaluate quantitative phenotypes, where phenotypes are continuous variables.
We will investigate these two cases in our future work.
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Appendix

Proof of Lemma 1 and Lemma 2

Proof. We first show that x%(X;X;,Y) is a convex function of O,, . Recall that

(Oe’uen - Ee'uen )2
XX X,,Y) = > i 2

E
event€{ay,az,c1,c2} cvent

For fixed O4,0pB,0¢,0p,0Op,Oq, we know that the expected values of the four
events are constants:

g~ 95(0a+05) _ (Oa+Oc—0p)(Oa+0s)
@ M B M

> OP(OA +Op)

B OS(OC +Op) (0Oa+Oc —0p)(Oc +Op)
C1 - M

B OP(OC + Op)
Cc2 M

From the relations between the observed values of the events in two-locus test (as shown

in Figure 4), we have that O, , O,,, O, are linear functions of O,,>. So x%(X;X;,Y)

is a positive quadratic function of O.,. Thus x3(X;X;,Y) is a convex function of OC2
Next, we show that

0O
Gi (Xina Y) = Z Ocvent - 1n —ement
evente{ay,az,c1,c2} event
is a convex function of O, . From previous result, for fixed O4, O, Oc,Op,Op, Oq,
the expected values of the four events {a1, as, ¢, ¢} are constants, and O,,, O,,, O,
are linear functions of O,. Thus G (X;X;,Y) is a function of O,,. To prove the con-
vexity of G1(X;X;,Y), it suffices to show that the second derivative V2G1(X;X;,Y) =
%G1 (X;X;,Y
% is nonnegative. We show this is the case for the component of event
C2

as:

Op — O, 1

= > 0.
E., )

@)
2 B -1 az
V(O,, - 1n Op—0. >

E,,

) = V2(0p ~ Oc,) - In

Similarly, we can prove that the second derivative of other components are nonnegative.
Therefore, G1(X;X;,Y") is a convex function of O, .

Following the similar idea, i.e., by showing the second derivative of —H (X, X,Y")
is nonnegative, we can prove that —Hq (X; X jY) is a convex function of O, .

Thus we have shown the .73 (X;X,Y) is a convex function of O,,. The convexity
J5(X;X;Y) can be proven in a similar way.

3 Note that, although these relations are presented after shown the convexity of the statistics, it
is easy to see that the derived relations are independent of whether the statistics are convex.



We now prove that the Cochran-Armitage trend test is a convex function of (O, , Oy, ).
Observe that the O, is a linear function of O,, and Oy, is a linear function of Og,.
The values of p, s; (i € {1,2,3,4}), and 5 are fixed. Thus the trend statistic 22 is a
quadratic function of the two variables (O, , Oq4, ). This completes the proof. O

Pseudo code of COE for permutation test

Algorithm 1: COE for permutation test

Input: SNPs X’ = { X1, X>,--- , Xn }, phenotype permutations
Y' = {Y1,Ys, -+, Yk}, and the Type I error .
Output: the critical value .7,.

1 Tlist < aK dummy phenotype permutations with test value O ;
2 J0=0;
3 for every X; € X', do

4 index (X;X;) € AP(X;) by Array(X,);

5 for every Y, € Y/, do

6 access Array(X;) to find the candidate SNP-pairs and store them in
Cand(Xi, Yk);

7 for every (X;X;) € Cand(X;,Yx) do

8 if ﬂ(XZX],Yk) > ﬂa then

9 update T'list;

10 T = the smallest test value in Tist;

11 end

12 end

13 end

14 end

15 return .

Algorithm 1 describes our COE algorithm for finding critical values in two-locus
epistasis detection using permutation test. The algorithm for finding significant SNP-
pairs is similar. The overall process is similar to that in [34,35]. The goal is to find the
critical value .7, which is the a.K-th largest value in {Fy, |Y;, € Y'}. We use Tlist
to keep the a K phenotype permutations having the largest test values found by the al-
gorithm so far. Initially, T'list contains a/X dummy permutations with test values 0.
The smallest test value in T'list, initially 0, is used as the threshold to prune the SNP-
pairs. For each X, the algorithm first builds the indexing structure Array(X;) for the
SNP-pairs (X;X;) € AP(X;). Then it accesses Array(X;) to find the set of candi-
dates Cand(X;,Y}) for every phenotype permutation. Two-locus tests are performed
on these candidates to get their test values. If a candidate’s test value is greater than the
current threshold, then T'list is updated: If the candidate’s phenotype Y}, is not in the
Tlist, then the phenotype in T'list having the smallest test value is replaced by Y. If



the candidate’s phenotype Y}, is already in Tlist, we only need to update its correspond-
ing test value to be the maximum value found for the phenotype so far. The threshold is
also updated to be the smallest test value in T7ist.

Time complexity: For each X;, the algorithm needs to index (X;X;) in AP(X;).
The complexity to build the indexing structure for all SNPs is O(N (N — 1)M/2). The
worst case for accessing all Array(X;) for all permutations is O(K NM?). Let C' =
>ix |Cand(X;,Yy)| represent the total number of candidates. The overall time com-
plexity of our algorithm is O(N (N —1)M/2) + O(KNM?)+O(CM) = O(N*M +
KNM?*+ CM).

Space complexity: The total number of variables in the dataset, including the SNPs
and the phenotype permutations, is N + K. The maximum space of the indexing struc-
ture Array(X;) is O(M? + N). For each SNP X, our algorithm only needs to ac-
cess one indexing structure, Array(X;), for all permutations. Once the evaluation pro-
cess for X; is done for all permutations, Array(X;) can be cleared from the mem-
ory. Therefore, the space complexity of COE is O((N + K)M) + O(M? + N) =
O((N+ K+ M)M + N). Since M < N, the space complexity is linear to the dataset
size.



