
ApproxMAP: Approximate Mining of Consensus Sequential Patterns

Hye-Chung (Monica) Kum† Jian Pei‡ Wei Wang† Dean Duncan†

† University of North Carolina at Chapel Hill, {kum, weiwang}@cs.unc.edu, dfduncan@email.unc.edu
‡ State University of New York at Buffalo, jianpei@cse.buffalo.edu

Abstract
Conventional sequential pattern mining methods may
meet inherent difficulties in mining databases with long
sequences and noise. They may generate a huge num-
ber of short and trivial patterns but fail to find in-
teresting patterns approximately shared by many se-
quences. In this paper, we propose the theme of ap-
proximate sequential pattern mining roughly defined as
identifying patterns approximately shared by many se-
quences. We present an efficient and effective algorithm,
ApproxMAP, to mine consensus patterns from large se-
quence databases in two steps. First, sequences are clus-
tered by similarity. Then, consensus patterns are mined
directly from each cluster through multiple alignment.
We use a real case study to illustrate the effectiveness
of ApproxMAP.

1 Introduction
A sequential pattern is a subsequence that appears
frequently in a sequence database. Since it has been
proposed in [1], mining sequential patterns in large
databases has become an important data mining task
with broad applications, such as business analysis, web
mining, security, and bio-sequences analysis.

Although sequential pattern mining has been exten-
sively studied and many methods have been proposed
(e.g., GSP [12], SPADE [13], PrefixSpan [10], FreeSpan
[6], and SPAM [2]), there are two inherent obstacles
within the conventional framework.

First, most methods mine sequential patterns with
exact matching. A pattern is supported by sequences
in the database only if the pattern exactly appears in
the sequences. However, the exact matching approach
often may not find general long patterns in the database.
For example, many customers may share similar buying
habits, but few follow the exact same buying pattern.
Thus, to find non-trivial interesting long patterns, we
must consider mining approximate sequential patterns.

Second, most methods mine the complete set of se-
quential patterns. When long patterns exist, mining the
complete set of patterns is ineffective and inefficient,
since every sub-pattern of a long pattern is also a pat-
tern. In many situations, a user may just want the long
patterns that cover many short ones. Recently, mining

compact expressions for frequent patterns, such as max-
patterns [3] and frequent closed patterns [9], has been
proposed and studied in the context of frequent item-
set mining. However, mining max-sequential patterns
or closed sequential patterns is far from trivial. Fur-
thermore, in a noisy sequence database, the number of
max- or closed sequential patterns still can be huge, and
many of them are trivial for users.

In this paper, we propose an effective and efficient
framework for mining approximate sequential patterns
in databases of long sequences, and make the follow-
ing contributions. We propose the theme of approx-
imate sequential pattern mining. The general idea is
that, instead of finding exact patterns, we identify pat-
terns approximately shared by many sequences. Instead
of mining a huge set of patterns, we propose to mine
consensus patterns from databases of long sequences.
Intuitively, a consensus pattern is shared by many se-
quences and covers many short patterns. Consensus
patterns are more expressive and are more useful in
many applications. We develop an efficient algorithm,
ApproxMAP (for APPROXimate Multiple Alignment
Pattern mining), to mine consensus sequential patterns
from large databases. ApproxMAP finds the underlying
consensus patterns from multiple alignment directly. It
is effective and efficient for mining long sequences and
is robust to noise. We use a real case study to illustrate
the effectiveness of ApproxMAP.

The remainder of the paper is organized as follows.
Section 2 defines the problem. Section 3 and 4 demon-
strate the ApproxMAP method in detail. A successful
case study is reported in Section 5. Section 6 concludes
the paper.

2 Problem Statement
Let I = {i1, . . . , il} be a set of items. An itemset X =
{ij1 , . . . , ijk

} is a subset of I. Conventionally, itemset
X = {ij1 , . . . , ijk

} is also written as (xj1 · · ·xjk). A
sequence S = 〈X1 . . . Xn〉 is an ordered list of itemsets,
where X1, . . . , Xn are all itemsets. A sequence database
SDB is a multi-set of sequences.

A sequence S1 = 〈X1 · · ·Xn〉 is called a subsequence
of sequence S2 = 〈Y1 · · ·Ym〉, and S2 a super-sequence of
S1, if n ≤ m and there exist integers 1 ≤ i1 < · · · < in ≤
m such that Xj ⊆ Yij (1 ≤ j ≤ n). Given a sequence



database SDB, the support of a sequence P , denoted
as sup(P ), is the number of sequences in SDB that are
super-sequences of P . Conventionally, a sequence P is
called a sequential pattern if sup(P ) ≥ min sup, where
min sup is a user-specified minimum support threshold.

In many applications, people prefer long sequen-
tial patterns approximately shared by many sequences.
Motivated by this observation, we introduce the no-
tion of mining approximate sequential patterns. Let
dist be a normalized distance measure of two sequences
with domain [0, 1]. For sequences S, S1 and S2, if
dist(S, S1) < dist(S, S2), then S1 is said be more similar
to S than S2 is.

Näıvely, we can extend the conventional sequential
pattern mining framework to an approximate sequential
pattern mining framework as follows. Given a minimum
distance threshold min dist, the approximate support of
a sequence P in a sequence database SDB is defined as
s̃up(P ) = ‖{S|(S ∈ SDB) ∧ (dist(S, P ) ≤ min dist)}‖.
(Alternatively, the approximate support can be defined
as s̃up(P ) =

∑
S∈SDB dist(S, P ). All the following

discussion retains.) Given a minimum support thresh-
old, min sup, all sequential patterns whose approximate
support pass the threshold can be mined. However, the
näıve method could suffer from the following problems.

First, the mining may find many short and probably
trivial patterns, since short patterns tend to be easier
to get similarity counts from the sequences than long
patterns. Second, the complete set of approximate
sequential patterns may be larger than that of exact
sequential patterns and thus difficult to understand. By
approximation, a user may want to get and understand
the general trend and ignore the noise. However, a näıve
output of the complete set of approximate patterns
in the above framework may generate many (trivial)
patterns and thus ruin the mining.

We need to explore a more effective solution. We
propose ApproxMAP, a cluster and multiple alignment-
based approach, which works in two steps. First, se-
quences in a database are clustered based on similarity.
Sequences in the same cluster may approximately fol-
low some similar patterns. Then, the longest approx-
imate sequential pattern for each cluster is generated.
It is called the consensus pattern. To extract consensus
patterns, a weighted sequence is derived for each clus-
ter using multiple alignment to compress the sequential
pattern information in the cluster. And then the longest
consensus pattern best representing the cluster is gen-
erated from the weighted sequence.

3 Clustering Sequences
In general, the hierarchical edit distance is commonly
used as a distance measure for sequences. It is defined
as the minimum cost of editing operations (i.e., inser-
tions, deletions, and replacements) required to change
one sequence to the other. An insertion operation on S1

to change it towards S2 is equivalent to a deletion op-
eration on S2 towards S1. Thus, an insertion operation
and a deletion operation have the same cost. We use
INDEL() to denote an insertion or deletion operation,
and REPL() to denote a replacement operation. Often,
the following inequality is assumed.

REPL(X, Y ) ≤ INDEL(X) + INDEL(Y )

Given two sequences S1 = 〈X1 · · ·Xn〉 and S2 =
〈Y1 · · ·Ym〉, the hierarchical edit distance between S1
and S2 can be computed by dynamic programming
using the following recurrence relation.

D(0, 0)=0
D(i, 0)=D(i − 1, 0) + INDEL(Xi) for (1 ≤ i ≤ n)
D(0, j)=D(0, j − 1) + INDEL(Yj) for (1 ≤ j ≤ m)

D(i, j) =min

{
D(i − 1, j) + INDEL(Xi)
D(i, j − 1) + INDEL(Yj)

D(i − 1, j − 1) + REPL(Xi, Yj)

for (1 ≤ i ≤ n) and (1 ≤ j ≤ m)

(3.1)

To make the edit distances comparable between
sequences with various lengths, we normalize the results
by dividing the hierarchical edit distance by the length
of the longer sequence in the pair, and call it the
normalized edit distance. That is,

dist(S1, S2) =
D(n, m)

max{‖S1‖, ‖S2‖}
(3.2)

To extend the hierarchical edit distance to se-
quences of sets, we need to define the cost of edit op-
erations (i.e., INDEL() and REPL() in Equation 3.1)
properly. Here, we adopt the normalized set difference
as the cost of replacement of sets.

REPL(X, Y ) =
‖(X−Y )∪(Y −X)‖

‖X‖+‖Y ‖
=

‖X‖+‖Y ‖−2‖X∩Y ‖
‖X‖+‖Y ‖

(3.3)

This measure is a metric [4] and has a nice property
that 0 ≤ REPL() ≤ 1. REPL() is mathematically
equivalent to the Sørensen coefficient, an index similar
to the Jaccard coefficient except that it gives more
weight to the common elements [8]. Thus, it is more
appropriate if the commonalities are more important
than the differences. Following Equation 3.3,

INDEL(X) = REPL(X, ∅) = 1

Using the hierarchical edit distance (Equation 3.2),
we can apply a density-based clustering algorithm to
cluster sequences. Intuitively, a sequence is “dense” if
there are many sequences similar to it in the database.
In particular, for each sequence Si in a database S,
let d1, . . . , dk be the k smallest non-zero values of
dist(Si, Sj), where Sj 6= Si, is a sequence in S. Then,

Density(Si) = n
‖S‖d

where d = max{d1, . . . , dk}
and n = ‖{Sj ∈ S|dist(Si, Sj) ≤ d}‖.

(3.4)

In Equation 3.4, n is the number of sequences in the
k-nearest neighbor space (including all ties). Here k is
a user-specified parameter.

We adopt an algorithm from [11] as follows.

Algorithm 3.1. Uniform kernel k-NN clustering

Input: a set of sequences S = {Si}, # of neighbor sequences k;

Output: a set of clusters {Cj}, where each cluster is a set of
sequences;

Method:

Step 1: Initialize every sequence as a cluster. For each

sequence Si in cluster CSi
, set Density(CSi

) = Density(Si).



Step 2: Merge nearest neighbors based on the den-

sity of sequences. For each sequence Si, let Si1 , . . . , Sin

be the nearest neighbor of Si, where n is defined in Equation
3.4. For each Sj ∈ {Si1 , . . . , Sin}, merge cluster CSi

con-
taining Si with a cluster CSj

containing Sj , if Density(Si) <

Density(Sj) and there exists no S′
j having dist(Si, S

′
j) <

dist(Si, Sj) and Density(Si) < Density(S′
j). Set the density

of the new cluster to max{Density(CSi
), Density(CSj

)}.
Step 3: Merge based on the density of clusters.

For all sequences Si such that Si has no nearest neighbor
with density greater than that of Si, but has some nearest
neighbor, Sj , with density equal to that of Si, merge
the two clusters CSj

and CSi
containing each sequence

if Density(CSj
) > Density(CSi

). This step is to merge

“plateau neighbor regions”.

It is easy to show that the above algorithm has
complexity O(kNseq). The key parameter for the
clustering process in Algorithm 3.1 is k, the number
of nearest neighbors that the algorithm will search.
A larger k value tends to merge more sequences, and
results in a smaller number of large clusters, while a
smaller k value tends to break up clusters. The benefit
of using a small k value is that the algorithm can detect
less frequent patterns. The tradeoff is that it may break
up clusters representing strong patterns to generate
multiple similar patterns. As shown in our performance
study, in many applications, a value of k in the range
from 3 to 10 works well [7].

4 Multiple Alignment and Pattern Generation
Once sequences are clustered, sequences within a cluster
are similar to each other. Now, the problem becomes
how to summarize the general pattern in each cluster
and discover the trend. In this section, we develop a
method using multiple alignment. First, we discuss how
to align sequences in a cluster, then we explore how to
summarize sequences and generate patterns.

4.1 Multiple Alignment of Sequences
In general, for a cluster C with n sequences

S1, . . . , Sn, finding the optimal global alignment that
minimizes

∑n
j=1

∑n
i=1 dist(Si, Sj) is an NP-hard prob-

lem [5], and thus is impractical for mining large sequence
databases with many sequences.

In a cluster, some sequences may be similar to many
other sequences in the cluster. These sequences are most
likely to be closer to the underlying patterns than the
other sequences. It is more likely to get an alignment
close to the optimal one, if we start the alignment
with such “seed” sequences. Intuitively, the density
defined in Equation 3.4 measures the similarity between
a sequence and its nearest neighbors. Thus, a sequence
with a high density means that it has some neighbors
very similar to it, and it is a good candidate for a “seed”
sequence in the alignment.

As the first step in the clustering (see Algorithm
3.1), the density for each sequence is calculated. We

only need to sort all sequences within a cluster in density
descending order.

To store the alignment results effectively, we pro-
pose a notion of weighted sequence as follows. A
weighted sequence WS=〈X1 : v1, . . . , Xl : vl〉 : n car-
ries the following information:

1. the current alignment has n sequences, and n is called
the global weight of the weighted sequence;

2. in the current alignment, vi sequences have a non-empty
itemset Xi aligned in the ith itemset, where (1 ≤ i ≤ l);

3. an itemset in the alignment is in the form of Xi =

(xj1 : wj1 , . . . , xjm : wjm), which means, in the current

alignment, there are wjk sequences that have item xjk

in the ith position of the alignment, where (1 ≤ i ≤ l)

and (1 ≤ k ≤ m).

We illustrate how to use weighted sequences to do
multiple alignment in the following example.

Example 1. (Multiple alignment) Suppose that,
in a cluster C, there are 5 sequences as shown in Ta-
ble 1. The density descending order of these sequences
is S3-S2-S4-S5-S1. The sequences are aligned as follows.

First, sequences S3 and S2 are aligned as shown
in Figure 1. Here, a weighted sequence WS1 is used
to summarize and compress the information about the
alignment. Since the first itemsets of S3 and S2, (a) and
(ae), are aligned in the same position, the first itemset
in the weighted sequence WS1 is (a : 2, e : 1) : 2. It
means that two sequences are aligned in this position,
and a and e appear twice and once, respectively. The
second itemset in WS1, (h : 1) : 1, means there is only
one sequence with an itemset aligned in this position,
and item h appears once.

S3 〈(a) (b) (de)〉
S2 〈(ae) (h) (b) (d)〉

WS1〈(a : 2, e : 1) : 2(h : 1) : 1(b : 2) : 2(d : 2, e : 1) : 2〉: 2

Figure 1: S3 and S2 are aligned resulting in WS1.

After the first step, we need to iteratively align
other sequences with the current weighted sequence.
The weighted sequence does not explicitly keep informa-
tion about various itemsets in the sequences. Instead,
this information is summarized into the item weights in
the weighted sequence which need to be taken into ac-
count when aligning a sequence to a weighted sequence.
Thus, we adopt a weighted replace cost as follows.

Let X = (x1 : w1, . . . , xm : wm) : v be an itemset in
a weighted sequence, while Y = (y1 · · · yl) is an itemset
in a sequence in the database. Let n be the global weight
of the weighted sequence. The replace cost is defined as

REPL(X, Y ) = eR·v+n−v
n

where eR =

∑m

i=1
wi+‖Y ‖v−2

∑
xi∈Y

wi∑m

i=1
wi+‖Y ‖v

(4.5)



Seq-id Sequence Alignment

S1 〈(ag)(f)(bc)(ae)(h)〉 〈(ag) (f) (bc) (ae) (h)〉
S2 〈(ae)(h)(b)(d)〉 〈(ae) (h) (b) (d) 〉
S3 〈(a)(b)(de)〉 〈(a) (b) (de) 〉
S4 〈(a)(bcg)(d)〉 〈(a) (bcg) (d) 〉
S5 〈(bci)(de)〉 〈 (bci) (de) 〉

Weighted sequence 〈(a : 4, e : 1, g : 1) : 4 (f : 1, h : 1) : 2 (b : 5, c : 3, g : 1, i : 1) : 5 (a : 1, d : 4, e : 3) : 5 (h : 1) : 1〉 : 5

Table 1: Sequences in a cluster and the complete alignment.

Accordingly, we have INDEL(X) = REPL(X, ∅) = 1
and INDEL(Y ) = REPL(Y, ∅) = 1.

In the next step, the weighted sequence WS1 and
the third sequence S4 are aligned as shown in Figure 2.
Similarly, we can align the remaining sequences. The
results are shown in Figure 3.

The alignment result for all sequences are summa-
rized in the weighted sequence WS4 shown in Figure 3.
After the alignment, we only need to store WS4. All
the sequences in the cluster are not needed any more in
the remainder of the mining.

Aligning the sequences in different order may result
in slightly different weighted sequences. As verified by
our extensive empirical evaluation, the alignment order
has minor effect on the underlying patterns[7].

4.2 Generation of Consensus Patterns
As shown in Section 4.1, a weighted sequence

records the statistics of the alignment of the sequences
in a cluster. Intuitively, a pattern can be generated by
picking up parts of a weighted sequence shared by most
sequences in the cluster.

For a weighted sequence WS = 〈(x11 : w11, . . . , x1m1 :

w1m1 ) : v1, . . . , (xl1 : wl1, . . . , xlml
: wlml

) : vl〉 : n, the
strength of item xij : wij in the ith itemset is defined as
wij

n ·100%. Clearly, an item with a larger strength value
indicates that the item is shared by more sequences in
the cluster.

Motivated by the above observation, a user can
specify a strength threshold (0 ≤ min strength ≤ 1). A
consensus pattern P can be extracted from a weighted
sequence by removing items in the sequence whose
strength values are lower than the threshold.

Example 2. (Consensus pattern generation)
Suppose a user specifies a strength threshold
min strength = 30%. The consensus pattern ex-
tracted from weighted sequence WS4 is 〈(a)(bc)(de)〉.

Interestingly, if we compare the sequences in the
sequence database (Table 1) and the consensus pattern
mined from the database, the pattern is shared by
the sequences, but it is not exactly contained in any
one of them. In particular, every sequence except S2

approximately contains the pattern by one insertion.
These evidences strongly indicate that the consensus

pattern is the general template behind the data.

5 Case Study:Mining The Welfare Services DB
An extensive performance evaluation of ApproxMAP ver-
ifies that ApproxMAP is both effective and efficient[7].
Limited by space, we omit the details here. Instead, we
report the result on a real data set of welfare services
accumulated over a few years in North Carolina State.
The services have been recorded monthly for children
who had a substantiated report of abuse and neglect,
and were placed in foster care. There were 992 such
sequences. In summary we found 15 interpretable and
useful patterns.

As an example, in total 419 sequences were grouped
together into one cluster which had the following con-
sensus pattern.

〈(RPT )(INV, FC)

11︷ ︸︸ ︷
(FC) · · · (FC)〉

In the pattern, RPT stands for a Report, INV stands
for an Investigation, and FC stands for a Foster Care
Service. The pattern indicates that many children
who are in the foster care system after getting a
substantiated report of abuse and neglect have very
similar service patterns. Within one month of the
report, there is an investigation and the child is put into
foster care. Once children are in the foster care system,
they stay there for a long time. This is consistent with
the policy that all reports of abuse and neglect must be
investigated within 30 days. It is also consistent with
our analysis on the length of stay in foster care.

Interestingly, when a conventional sequential algo-
rithm is applied to this data set, variations of this con-
sensus pattern overwhelm the results, because roughly
half of the sequences in this data set followed the typical
behavior approximately.

The rest of the sequences in this data set split into
clusters of various sizes. One cluster formed around the
57 children who had short spells in foster care. The
consensus pattern was 〈(RPT )(INV, FC)(FC)(FC)〉.

There were several consensus patterns from very
small clusters with about 1% of the sequences. One
such pattern of interest is shown below.

〈(RPT )(INV, FC, T )(FC, T )

8︷ ︸︸ ︷
(FC, HM)(FC)(FC, HM)〉

where HM stands for Home Management Services and
T stands for Transportation. There were 39 sequences



WS1 〈(a : 2, e : 1) : 2 (h : 1) : 1 (b : 2) : 2 (d : 2, e : 1) : 2〉 : 2
S4 〈(a) (bcg) (d)〉

WS2 〈(a : 3, e : 1) : 3 (h : 1) : 1 (b : 3, c : 1, g : 1) : 3 (d : 3, e : 1) : 3〉 : 3

Figure 2: Sequences WS1 and S4 are aligned.

WS2 〈(a : 3, e : 1) : 3 (h : 1) : 1 (b : 3, c : 1, g : 1) : 3 (d : 3, e : 1) : 3〉 : 3
S5 〈 (bci) (de)〉

WS3 〈(a : 3, e : 1) : 3 (h : 1) : 1 (b : 4, c : 2, g : 1, i : 1) : 4 (d : 4, e : 2) : 4〉 : 4
S1 〈(ag) (f) (bc) (ae) (h)〉

WS4 〈(a : 4, e : 1, g : 1) : 4 (f : 1, h : 1) : 2 (b : 5, c : 3, g : 1, i : 1) : 5 (a : 1, d : 4, e : 3) : 5 (h : 1) : 1〉 : 5

Figure 3: The alignment of remaining sequences.

in the cluster. Our clients were interested in this pattern
because foster care services and home management
services were expected to be given as an ”either/or”
service, but not together to one child at the same time.
Thus, this led us to go back to the original data to see
if indeed many of the children received both services in
the same month. Our investigation found that this was
true, and lead our client to investigate this further in
real practice. Was this a systematic data entry error
or was there some components to home management
services (originally designed for those staying at home
with their guardian) that were used in conjunction with
foster care services on a regular basis? Which counties
were giving these services in this manner? Such an
important investigation would not have been triggered
without our analysis because no one ever suspected
there was such a pattern. It is difficult to achieve the
same results using the conventional sequential analysis
methods because with min support set to 20%, there
is more than 100, 000 sequential patterns and the users
just cannot identify the needle from the straws.

6 Discussion and Conclusions
In this paper, we introduce ApproxMAP, a new ap-
proach to approximate sequential pattern mining. Its
goal is to organize and summarize sequence of sets to
uncover the underlying consensus patterns in the data.
ApproxMAP uses clustering as a preprocessing step to
group similar sequences, and then mines the underlying
consensus patterns in each cluster directly through mul-
tiple alignment. A novel structure, weighted sequences,
is proposed to summarize and compress the alignment
information.

To the best of our knowledge, this is the first
study on mining consensus patterns from sequence
databases. It distinguishes itself from the previous
studies in the following two aspects. First, it proposes
the theme of approximate sequential pattern mining,
which reduces number of patterns substantially and
provides much more accurate and informative insights
into sequential data. Second, it generalizes the multiple
alignment techniques to handle sequences of itemsets.

Mining sequences of itemsets extends the application
domain substantially. The method is applicable to many
interesting problems, such as business analysis, security,
and complex bio-sequences analysis.

Our study illustrates that approximate sequential
pattern mining can find general, useful, concise and
understandable knowledge and thus is an interesting
and promising direction.

References

[1] R. Agrawal and R. Srikant. Mining sequential patterns.
In ICDE 95, pages 3–14, Taipei, Taiwan, Mar. 1995.

[2] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential
pattern mining using a bitmap representation. In
SIGKDD, pages 429–435, July 2002.

[3] R. J. Bayardo. Efficiently mining long patterns from
databases. In SIGMOD, pages 85–93, June 1998.

[4] J. Coggins. Dissimilarity measures for clustering
strings. In Time warps, string edits, and macro-
molecules: the theory and practice of sequence com-
parison. D. Snakoff, & J. Kruskal, (Eds.), pp 253-310.
Addison-Wesley Pub. Co. MA. 1983.

[5] D. Gusfield. Algorithms on strings, trees, & sequences:
Computer Science and Computational Biology. Cam-
bridge Univ. Press, Cambridge, England. 1997.

[6] J. Han, J. Pei, et al. FreeSpan: Frequent pattern-
projected sequential pattern mining. In SIGKDD,
pages 355–359, Aug. 2000.

[7] H.C. Kum, J. Pei, W. Wang, and D. Duncan. Approx-
MAP : Approximate Mining of Consensus Sequential
Patterns. Technical Report TR02-031, UNC-CH, 2002.

[8] G. R. McPherson and S. DeStefano. Applied Ecology
and Natural Resource Management. Cambridge Uni-
versity Press, Cambridge, England. 2002.

[9] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. In ICDT, pages 398–416, Jan. 1999.

[10] J. Pei, J. Han, et al. PrefixSpan: Mining sequential
patterns efficiently by prefix-projected pattern growth.
In ICDE, pages 215–224, April 2001.

[11] Sas Institute. Proc Modeclust. In SAS/STAT User
Guide. Sas online Document. 2000

[12] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In
EDBT, pages 3–17, Mar. 1996.

[13] M. J. Zaki, S. Parthasarathy, et al. Parallel algorithm
for discovery of association rules. Data Mining and
Knowledge Discovery, 1:343–374, 1997.


