
On Demand Phenotype Ranking through Subspace Clustering

Xiang Zhang, Wei Wang
Department of Computer Science

University of North Carolina at Chapel Hill
Chapel Hill, NC 27599, USA
{xiang, weiwang}@cs.unc.edu

Jun Huan
Department of Electrical Engineering

and Computer Science
University of Kansas

Lawrence, KS 66047, USA
jhuan@eecs.ku.edu

Abstract
High throughput biotechnologies have enabled scientists to collect
a large number of genetic and phenotypic attributes for a large
collection of samples. Computational methods are in need to
analyze these data for discovering genotype-phenotype associations
and inferring possible phenotypes from genotypic attributes. In
this paper, we study the problem of on demand phenotype ranking.
Given a query sample, for which only its genetic information is
available, we want to predict the possible phenotypes it may have,
ranked in descending order of their likelihood. This problem is
challenging since genotype-phenotype databases are updated often
and explicitly mine and maintain all patterns is impractical. We
propose an on-demand ranking algorithm that uses a modified
pattern-based subspace clustering algorithm to effectively identify
the subspaces where these relevant clusters may reside. Using
this algorithm, we can compute the clusters and their prediction
significance for any phenotypes on the fly. Our experiments
demonstrate the efficiency and effectiveness of our algorithm.

1 Introduction
Current high-throughput techniques in biological and
biomedical research generate massive heterogenous genetic
and phenotypic data rapidly. The identification of genotype-
phenotype associations is essential in biological research for
understanding complex biological systems. An important
problem studied in this paper is to predict the phenotypes
of a new individual from its genetic information [1, 10, 5, 2].
Traditional classification methods [3, 4, 8] focus on building
a model for a single target attribute (phenotype). However, in
real applications, there are usually a large number of pheno-
types [7, 9], among which we want to identify those that are
likely to be positive for an individual. Due to the large num-
ber of phenotypes, it is impractical for the domain experts to
explicitly exam all possible phenotypes for a new sample. A
reasonable way to solve this problem is to rank the pheno-
types in descending order of which the new sample is likely
to have. Then the domain experts can prioritize their effort
guided by the ranking. Since the traditional classification
methods focus on building a model for a single phenotype,
they are not readily applicable to this problem. In this pa-
per, we address the problem of ranking phenotypes of a new
sample.

Goal: Given the genetic information of a new sample

(such as an undiagnosed patient), our goal is to rank the
possible phenotypes (such as a predefined pool of diseases)
according to the likelihood of each individual phenotype
to appear in the sample. We call this problem on demand
phenotype ranking.

A brute forth approach to rank the phenotypes of a
query sample would consist of two steps. In the first step, it
mines the complete set of prediction rules and calculate their
prediction significance for all phenotypes (rule generation
step). In the second step, whenever a new query sample
comes in, it matches the new sample with the discovered
rules to rank the phenotypes according to the significance
of the rules predicting them (rule matching step). Our
experimental results in Section 4 show that this brute forth
method is intractable in practice.

Contributions: We propose the problem of on demand
phenotype ranking. We employ the concept of bi-clusters
[11, 12] to model expression patterns shared by samples in
the database. Cluster based prediction rules will be used to
rank phenotypes for new query samples. We develop an ef-
ficient algorithm for this problem. Our algorithm focuses on
patterns exhibited by the query sample and the correspond-
ing clusters. Our algorithm also incorporates effective strate-
gies to further prune the search space. The experimental re-
sults demonstrate that our algorithm is efficient and effec-
tive.

2 Problem Definition
Let S = {s1, s2, · · · , sN} be a set of N samples (e.g., each
sample may be a patient), G = {g1, g2, · · · , gM} be a set of
M genes and P = {p1, p2, · · · , pI} be a set of I phenotypes.
The dataset consists of two matrices MG (containing genetic
information) and MP (containing phenotypic information).
MG = S × G = {vnm} (1 ≤ n ≤ N, 1 ≤ m ≤ M) is an
N ×M matrix of real numbers, where vnm is the expression
value of gene gm in sample sn. MP = S × P = {dni}
(1 ≤ n ≤ N, 1 ≤ i ≤ I) is an N × I matrix of binary
numbers, where dni = 1 if sn is positive in phenotype pi,
and dni = 0 otherwise. Table 1 shows an example dataset.

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

q 8 0 3 1 5 4 2 16 20 13

(a) Expression values of a query sample

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

s1 9 1 4 2 6 3 11 10 1 19
s2 2 3 6 4 8 7 22 5 0 1
s3 12 2 5 3 7 41 4 17 22 52
s4 33 1 4 2 6 74 58 11 89 91
s5 26 5 8 22 19 61 37 58 84 50
s6 78 47 4 36 6 35 71 12 19 35
s7 22 1 53 83 6 45 92 39 31 57
s8 35 4 7 5 9 78 50 25 51 38
s9 30 7 19 8 72 74 29 34 2 -5
s10 56 76 36 61 79 -9 43 3 7 0
s11 86 42 39 78 -7 -8 38 4 8 1
s12 50 59 36 17 52 67 68 8 12 5
s13 -4 49 31 22 31 57 79 4 8 1
s14 76 52 33 28 23 72 -8 6 10 3

(b) Dataset of genetic information

p1 p2 p3

s1 1 1 0
s2 1 1 0
s3 1 1 1
s4 1 0 0
s5 0 0 0
s6 0 0 0
s7 0 1 0
s8 0 0 0
s9 0 1 0
s10 1 1 1
s11 0 1 1
s12 0 1 1
s13 0 0 0
s14 1 0 0

(c) Dataset of phenotypic information

Table 1: Query sample and running dataset

We use the cluster based prediction rules to rank pheno-
types for a new (query) sample in descending order of their
likelihood of presence. In this paper, we adopt the cluster
definition from [11, 12, 13].

Definition 1. (Cluster) A cluster C is a sub-matrix of MG:
C = X × Y , where X ⊆ S and Y ⊆ G, such that

for any 2 × 2 sub-matrix
(

vai vaj

vbi vbj

)

of C, we have

||(vai−vbi)− (vaj −vbj)|| ≤ ε, where ε is the user-specified
cluster threshold. 1

1To make the presentation clear, in this paper, we focus on shifting
patterns [11]. Other pattern definitions, such as scaling [13] or shifting-
and-scaling patterns [12], can be handled in a similar way.

In the remainder of the paper, we refer to the subset of
genes Y as the subspace of cluster C. A cluster represents
an expression pattern shared by the set of samples X in
subspace Y .

For a specific phenotype pi ∈ PI , let S+
i (S−

i) be the set
of positive (negative) samples. For a cluster C, let C+

i (C−
i)

be the set of samples of C that are positive (negative) in pi.
We define the significance of a cluster as follows.

Definition 2. (Significance) For a specific phenotype pi,
the probability that a positive sample is in cluster C is
prob+

i (C) =
∣

∣C+
i

∣

∣ /
∣

∣S+
i

∣

∣. The probability that a negative
sample is in C is prob−i (C) =

∣

∣C−
i

∣

∣ /
∣

∣S−
i

∣

∣. The signifi-
cance of cluster C in pi is sigi(C) = prob+

i (C)/prob−i (C)
if prob−i (C) 6= 0; otherwise sigi(C) = ∞.

The intuition behind the significance definition is that,
for a phenotype pi, if the probability that a positive sample
is in C is much higher than the probability that a negative
sample is in it, then C would be a strong evidence to support
that samples showing similar expression patterns as samples
in C are likely to have positive pi. The reason we use
the probability instead of the absolute number of samples
is that most bio-medical datasets are highly skewed. There
are usually more negative samples than positive samples for
each phenotype.

For a phenotype, we can define a complete order among
all clusters based on their significance and the probability
that a positive sample is in it.

Definition 3. (Order of Clusters) For a specific pheno-
type pi, cluster C1 ≺ C2, if sigi(C1) < sigi(C2), or
(sigi(C1) = sigi(C2)) ∧ (prob+

i (C1) < prob+
i (C2)).

For a query sample, only its genetic information (ex-
pression values) is available. For example, Table 1(a) shows
the expression values of a query sample q. We are interested
in those clusters that share similar expression patterns with q
in their respective subspaces. These clusters are the match-
ing clusters of q and are used to rank q’s phenotypes.

Definition 4. (Matching) A query sample q matches a clus-
ter C = X × Y (or equivalently, C matches q) if C

′

=
(X ∪ {q}) × Y is also a cluster.

For a particular phenotype pi, a user may be interested
in the clusters that have at least certain numbers of positive
samples mins+ and genes ming . A cluster is a valid clus-
ter if it satisfies these constraints. Please note that we only
specify mins+ , instead of setting a threshold for the mini-
mum number of samples. The reason is that in real appli-
cations, we are interested in predicting positive phenotypes
(such as positive diabetes patients). Therefore a cluster that
can make strong prediction should have as few negative sam-
ples as possible. Setting the mins+ threshold also makes the

model robust to noises. To keep the presentation clear, in
this paper we assume a uniform threshold for the minimum
number of positive samples required in a cluster for all phe-
notypes. We rank the phenotypes of a query sample in the
following way.

Definition 5. (Score of Phenotypes) Let Hi denote the com-
plete set of valid clusters for a specific phenotype pi. For a
query sample q, the score of pi, scoreq(pi), is the highest
significance of the clusters in Hi which match q, that is,

scoreq(pi) = max
C∈Hi, C matches q

sigi(C).

For example, let’s consider the running dataset shown
in Table 1. Let mins+ = 3, ming = 3, and
ε = 0. Suppose that, for phenotype p2, we have the
complete set of valid clusters H2 = {C1, C2}, where
C1 = ({s1, s2, s3, s4, s8} × {g2, g3, g4, g5}) and C2 =
({s10, s11, s12, s13} × {g8, g9, g10}). The query sample q
matches both clusters. After calculating their significance,
we get sig2(C1) = 1.125 and sig2(C2) = 2.25. So C2
is the cluster that matches query sample q, and has high-
est significance. Therefore, for query q, the score of p2 is
scoreq(p2) = sig2(C2) = 2.25.

Given the genetic information of a query sample, our
goal is to rank the phenotypes in descending order of their
scores for this new sample.

3 The Algorithm
Our algorithm systematically searches through clusters that
matches the query sample for those ones that give highest
significance score for each phenotype. Note that the set of
clusters we look at is a small subset of the set of all clusters
that produced by an unsupervised subspace clustering algo-
rithms [11, 12, 13]. In addition, our algorithm incorporates
effective pruning strategies by utilizing phenotype informa-
tion.

3.1 Mining Process

3.1.1 Step 0: Finding Gene Pair MDSs as a Pre-
processing Step In this step, the algorithm generates gene
pair MDS for each pair of genes in the database2. This step
can be done as a pre-processing step since it does not depend
on the query sample. Table 2 shows all gene pair MDSs of
the dataset in Table 1 when ε = 0 and mins+ = 3. The
gene pair MDSs will be used for finding clusters in some
subspaces and calculating their significance, which will be
discussed in following steps. To facilitate the discussion, we
also show the positive samples in the gene pair MDSs for
each phenotype in Table 2.

2Please refer to [11] for the details of finding gene (or sample) pair
MDSs.

p1 p2 p3

{g2g3}:{s1s2s3s4s5s8} s1s2s3s4 s1s2s3 ∅

{g2g4}:{s1s2s3s4s8s9} s1s2s3s4 s1s2s3s9 ∅

{g2g5}:{s1s2s3s4s7s8} s1s2s3s4 s1s2s3s7 ∅

{g3g4}:{s1s2s3s4s8} s1s2s3s4 s1s2s3 ∅

{g3g5}:{s1s2s3s4s6s8} s1s2s3s4 s1s2s3 ∅

{g4g5}:{s1s2s3s4s8} s1s2s3s4 s1s2s3 ∅

{g8g9}:{s6s10s11s12s13s14} ∅ s10s11s12 s10s11s12

{g8g10}:{s10s11s12s13s14} ∅ s10s11s12 s10s11s12

{g9g10}:{s10s11s12s13s14} ∅ s10s11s12 s10s11s12

Table 2: Gene pair MDSs and their positive samples

MDSs p1 p2 p3

s1 {g1g2g3g4g5} 1 1 0
s2 {g2g3g4g5g6} 1 1 0
s3 {g2g3g4g5g7} 1 1 1
s4 {g2g3g4g5g8} 1 0 0
s8 {g2g3g4g5} 0 0 0
s10 {g6g8g9g10} 1 1 1
s11 {g5g6g8g9g10} 0 1 1
s12 {g8g9g10} 0 1 1
s13 {g1g8g9g10} 0 0 0
s14 {g7g8g9g10} 1 0 0

Table 3: Sample MDSs and corresponding phenotypic infor-
mation

3.1.2 Step 1: Finding MDSs of Query Sample and
Database Samples In this step, we pair the query sample
q with each sample in the database and compute the sample
pair MDSs. Using the dataset in Table 1, the sample pair
MDSs of the query sample and database samples are shown
in Table 3 when ε = 0 and ming = 3. Since one sample
in each sample pair is always the query sample, we only
show the other sample si in the pair in Table 3. We use the
term ”sample MDS of si” as the abbreviation of ”the sample
pair MDS of the query sample and si” in the remainder of
this paper. We also show the phenotype information of each
sample in Table 3 for convenience.

The following proposition shows the completeness and
correctness of our algorithm. The proof is straightforward
and thus omitted here.

Proposition 3.1. Any cluster generated from combinations
of the sample MDSs in step 1 matches the query sample. And
all clusters that match the query sample can be generated by
combinations of these MDSs.

3.1.3 Step 2: Generating Significant Clusters for each
Phenotype by Enumerating Combinations of Sample
MDSs In this step, the algorithm starts to enumerate combi-
nations of the sample MDSs (as shown in Table 3) to gener-
ate clusters. Figure 1(a) shows the search space of the com-

...

1 s2 s3

s s1 2 1 3s s s s1 8

s s s1 2 9

s s1 9

s s s1 2 3 s s s1 2 4

s10 s14

s s10 11

s s s10 11 12

{}

...

...
...

...

...

... ...

...

...

...

s

(a) Search space of combinations of sample MDSs

p1 {s2, s3, s4, s10, s14}

p2 {s2, s3, s7, s9, s10, s11, s12}

p3 ∅

(b) F (s1)

p1 {s4, s10, s14}

p2 {s7, s9, s10, s11, s12}

p3 ∅

(c) F (s1s3)

p1 {s10, s14}

p2 ∅

p3 ∅

(d) F (s1s4)

Figure 1: Enumerating the combinations of sample MDSs

binations of sample MDSs for the dataset in Table 1. We
explore the search space in a depth first manner.

In our algorithm, we only need enumerate the combina-
tions of positive sample MDSs. We will formally prove cor-
rectness of this search strategy in Theorem 3.2. Using only
positive samples greatly improves the efficiency because, in
bio-medical dataset, the number of positive samples (e.g.,
disease patients) is usually much smaller than the number of
negative samples (e.g., healthy people).

Attachable Sample Sets: Our algorithm systematically
explores subspaces (of genes) in which, for some phenotype,
positive samples fall into a cluster. In principle, these sub-
spaces can be identified by examining combinations of pos-
itive samples for each phenotype. In practice, many sam-
ples may have multiple positive phenotypes and hence a
sample combination may need to be visited multiple times,
once for each phenotype. To make this process more effi-
cient, in our algorithm, we construct a single tree structure
that processes all phenotypes simultaneously when examin-
ing a sample combination. Please note that we use the tree
as guide for the search without materializing the whole tree.

In order to ensure no duplicate generation of sample
combination, we assume all samples are naturally ordered
by their IDs s1, s2, . . . , sN . As illustrated in Figure 1(a), the
root node corresponds to the empty set and each descendant
node corresponds to a sample set. Each node na also has
a table F (na) storing the set of positive samples yet to be
considered for each phenotype. We refer to this sample set
as the attachable sample set (denoted by Ai(na)) for the

corresponding phenotype pi. At the root node, the attachable
sample set for phenotype pi is the set S+

i of all positive
samples for pi. The remaining nodes are generated in a
depth first order. A child node nb corresponds to a sample
set that has exact one more sample than its parent na. This
additional sample (denoted by sx) is from the attachable
sample sets F (na). The number of children of node na

is equal to the number of distinct samples in F (na). The
attachable sample set for phenotype pi at the child node
nb is a subset of the attachable sample set at the parent na

by excluding samples whose IDs are smaller than or equal
to x. There are two scenarios where Ai(nb) = ∅: (1)
Ai(na) does not contain sx; and (2) sx is the sample of the
highest ID in Ai(na). For example, Figures 1(b), 1(c) and
1(d) show the attachable sample sets of each phenotype at
nodes (s1), (s1s3) and (s1s4) respectively using the dataset
in Table 1. The attachable sample sets shrink monotonically
at descendant nodes. At a leaf node, the attachable sample
set is empty for every phenotype.

Cluster Generation and Significance Calculation:
Suppose that the current node na corresponds to sample set
(sa1

sa2
· · · sam

). First, we compute the intersection of the
m sample MDSs of sa1

, sa2
, · · · sam

to get the subspace Y .
For example, using the sample MDSs shown in Table 3, for
node (s1s2), we get the subspace {g2, g3, g4, g5} after taking
the intersection of the two sample MDSs of s1 and s2. There
are

(

|Y |
2

)

gene pairs that are subsets of Y . We take the inter-
section of their gene pair MDSs to get a set of samples X .
X × Y is a cluster defined in Definition 1, since each pair of
samples in X form a cluster in subspace Y . Continuing with
the previous example, for the 6 gene pairs that are subsets of
{g2, g3, g4, g5}, we intersect their MDSs in Table 2. The re-
sulting cluster is C = ({s1, s2, s3, s4, s8}×{g2, g3, g4, g5}).
Finally, we calculate the significance of the cluster in each
phenotype according to Definition 2.

Now we formally prove that for any phenotype, only the
positive sample MDSs are necessary for the generation of
significant clusters.

Theorem 3.2. Suppose that, for some phenotype pi, C1 =
T × Z = ({sa1

, sa2
, · · · , sax

, sb1 , sb2 , · · · , sby
} × Z) is a

cluster which includes both positive and negative samples.
C1+

i = {sa1
, sa2

, · · · , sax
}, C1−i = {sb1 , sb2 , · · · , sby

},
and Z is the subspace of C1. Then there exists a clus-
ter C2 in the subspace obtained by intersecting sample
MDSs of only positive samples {sa1

, sa2
· · · sax

} such that
sigi(C2) ≥ sigi(C1).

Proof. Suppose by intersecting the sample MDSs of
sa1

, sa2
, · · · , and sax

, we get subspace Z ′. It is easy to
see that Z ⊆ Z ′. Thus by intersecting

(

|Z′|
2

)

gene pairs
MDSs of Z ′, we will generate a cluster C2 = T ′ × Z ′, with
T ′ ⊆ T . Moreover, we have C2+

i ⊇ C1+
i since C2 contains

at least {sa1
, sa2

, · · · , sax
} as positive samples. So we have

C2−i ⊆ C1−i since C2+
i ∪ C2−i = T ′ ⊆ T = C1+

i ∪ C1−i .
Therefore, sigi(C2) ≥ sigi(C1).

Updating Phenotype Ranking: In the process of searching,
we maintain the current ranking of phenotypes and their
corresponding clusters in a list Lp. At any time, if we find
that for any phenotype pi, a newly generated cluster has
higher order (as defined in Definition 3) than the cluster in
Lp, then we update Lp.

The algorithm is outlined in Algorithm 1. The pro-
cedure of enumerating the clusters is detailed in Procedure
ClusEnum.

3.2 Pruning Strategies Various pruning strategies are de-
veloped to improve the efficiency of the algorithm. Pruning
strategies 1 and 3 are extensions of that for building associa-
tion rule based classifier for a single phenotype [6].

3.2.1 Pruning Strategy 1 As discussed in Section 3.1, at
each node, we take the intersection of the gene pair MDSs to
find the cluster and calculate its significance. This search
strategy allows us to skip some descendant nodes of the
current node.

Suppose that at node na = (sa1
sa2

· · · sam
), we find a

cluster C = X
′

× Y , with {na} ⊂ X
′

. Then all samples
in X ′ − {na} can be removed from the attachable sample
sets F (na). This is because including samples in X ′ −{na}
would reach the same subspace Y as that of na. As a result,
the same set of gene pair MDSs are used which generate the
same cluster.

3.2.2 Pruning Strategy 2 In the process of searching, not
every sample in the attachable sample sets is eligible to
create a child node. The following proposition shows how
to decide if it is necessary to create a child node for a sample
in the attachable sample sets.

Proposition 3.3. Suppose that, at node na =
(sa1

sa2
· · · sam

), Y is the subspace of na. There are
in total

(

|Y |
2

)

gene pairs that are subsets of Y . Let Z

represents the set of all
(

|Y |
2

)

gene pair MDSs. A sample sx

in attachable sample sets is eligible to generate a child node
of na if sx occurs in at least

(

ming

2

)

gene pair MDSs in Z.

3.2.3 Pruning Strategy 3 Suppose that, at node na =
(sa1

sa2
· · · sam

), the attachable sample set of phenotype pi is
Ai(na) = {sx1

, sx2
· · · sxn

} and the cluster is C = X × Y .
Then for phenotype pi, any node in the subtree of na could
generate clusters of at most |{na}| + |Ai(na)| = m + n
positive samples and at least |C−

i | negative samples. Hence,
for phenotype pi, the significance of any such cluster is at

most (|{na}|+|Ai(na)|)/|S+

i
|

|C−

i
|/|S−

i
|

. Therefore, we can prune the
samples from the attachable sample sets if this significance

Algorithm 1: Rank phenotypes of query sample
Input: Query sample q, dataset MG and MP , cluster

thresholds ε, mins+ , and ming

Output: A list Lp of ranked phenotypes for q

GPMDS ← gene pair MDSs;1
Initialize the list of ranked phenotypes: Lp ← ∅;2
SMDS ← sample MDSs;3
for each child node na of the root, do4

Compute F (na);5
ClusEnum(na, F (na), SMDS, GPMDS, Lp);6

end7
Return Lp.8

Procedure ClusEnum
Input: current node na = (sa1

sa2
· · · sam), its attachable

sample sets F (na), sample MDSs SMDS, Gene
pair MDSs GPMDS, list of ranked phenotypes Lp

Find subspace Y of na by intersecting the sample MDSs of1
sa1

, sa2
, · · · , and sam ;

if |Y | < ming then return;2

For all the
(

|Y |
2

)

gene pairs that are subsets of Y , intersect3
their gene pair MDSs to get cluster C;
Calculate sigi(C) for each phenotype pi;4
Update Lp;5
Prune F (na);6
if ∪Ai(na) 6= ∅ (for Ai(na) ∈ F (na)) then7

for each sx ∈ ∪Ai(na) do8
Generate a child node nb = (sa1

sa2
· · · samsx);9

Compute F (nb);10
ClusEnum(nb, F (nb), SMDS, GPMDS, Lp)11

end12

end13
Return Lp.14

upperbound is lower than the current significance score in Lp

for phenotype pi.

4 Experiments
To evaluate our algorithm, we perform experiments on both
synthetic dataset and real-life genetic-phenotypic data. The
experiments were performed on a 2.4 GHz PC with 1G
memory running WindowsXP system.

4.1 Efficiency In our experimental study, we compare our
algorithm to the following brute forth method. Given a
dataset and thresholds mins+ , ming , and ε, in the pre-
processing step, we compute all valid clusters in the dataset
and store them. In the matching step, when a query sample
comes in, we search for the best matching cluster in the set
of clusters we obtain from the pre-processing step.

The synthetic datasets are used in this study. We
generate the genetic data matrix MG and phenotype data

 0

 2000

 4000

 6000

 8000

 10000

 1500 1600 1700 1800 1900 2000

r
u

n
n

in
g

 t
im

e
 (

s
e
c
.)

number of genes

brute forth method
on demand prediction

(a) Varying #genes

 0

 2000

 4000

 6000

 8000

 10000

 20 22 24 26 28 30

r
u

n
n

in
g

 t
im

e
 (

s
e
c
.)

number of samples

brute forth method
on demand prediction

(b) Varying #samples

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 5 6 7 8 9 10

r
u

n
n

in
g

 t
im

e
 (

s
e
c
.)

number of phenotypes

runtime w.r.t number of phenotypes

(c) Varying #phenotypes

Figure 2: Efficiency evaluation

matrix MP in the following way. For MG, we first generate
a random matrix with size N ×M . We then embed a certain
number of clusters in MG. By default in our subsequent
experimental study, MG contains N = 30 samples and
M = 2000 genes with 30 embedded clusters. On average, a
cluster contains 20%×N = 6 samples and 2.5%×N = 50
genes. Similarly, the synthetic phenotypic data matrix MP

is generated randomly with a default of 10 phenotypes and
30% positive samples on average for each phenotype. Query
samples are randomly generated and the default values for
matching parameters are mins+ = 2, ming = 3, ε = 1.

In Figures 2(a) to 2(c), we show the running time of
our algorithm and the brute forth method as a function of
various parameters. In contrast to our slow-growing running
time as shown in Figures 2(a) and Figure 2(b), the brute forth
method is intractable in practice due to the huge number
of clusters in the dataset. Figure 2(c) shows a sub-linear
relationship between the runtime of our algorithm and the
number of phenotypes. If we explore the search space for
each phenotype separately, the running time would be linear
to the number of phenotypes. The sub-linear performance
demonstrates the advantage of simultaneously enumerating
the clusters for all phenotypes.

4.2 Effectiveness We apply our algorithm on real-life
genetic-phenotypic data. The dataset is collected in the
School of Public Health at UNC-Chapel Hill. Among all pa-
tients, there are in total 19 patients who have been diagnosed
with either asthma or cardiovascular diseases or both. Mi-
croarray experiments are performed on all patients to mea-
sure the expression values of 5000 genes. For our method,
we perform leave-one-out analysis: each time we take one
sample as the query sample and the remaining samples as
database samples. We set ming = 3, mins+ = 3, and
ε = 0.2. Our algorithm correctly ranks 95% of the query
patients, that is, the positive disease is ranked higher than
other diseases for the query patients.

For comparison, we also run the k-nearest-neighbor
(KNN) method on the same dataset. For each patient,

the k patients with the closest expression patterns for the
5000 genes are selected. The diseases are then ordered
by the number of patients having them in the k neighbors.
This KNN method performs the best when k = 5 in our
experiment, where it correctly ranks the phenotypes for 73%
of the query patients.

5 Conclusions
In this paper, we investigate the problem of on demand phe-
notype ranking. We utilize pattern based subspace clusters
to construct prediction rules for phenotype ranking. Given a
sample, our algorithm only examines samples that share sim-
ilar patterns with the query sample. It utilizes sample MDSs
to identify the subspaces where these patterns resides and
uses gene-pair MDSs to generate clusters representing these
patterns. Only the clusters with high prediction power of any
phenotypes are used to rank the phenotypes. The experimen-
tal results demonstrate the efficiency and effectiveness of our
algorithm and show infeasibility of the brute forth method.

References
[1] M. Allen and et al. Positional cloning of novel gene influencing

asthma from chromosome 2q14. Nature Genet., 35:258–263, 2003.

[2] D. Bandyopadhyay and et al. Structure-based function inference using
protein family-specific fingerprints. Protein Science, 15:1537–1543,
2006.

[3] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. Classification
and regression trees. Wadsworth, 1984.

[4] C. J. C. Burges. A tutorial on support vector machines for pattern
recognition. Data Mining and Knowledge Discovery, 2:121 – 167,
1998.

[5] P. Carmona-Saez and et al. Integrated analysis of gene expression by
associatoin rule discoery. BMC Bioinformatics, 7:54, 2006.

[6] G. Cong, K. Tan, K. Tung, and X. Xu. Mining top-k covering rule
groups for gene expression data. SIGMOD, 2005.

[7] G. O. Consortium. The gene ontology (go) database and informatics
resource. Nucl. Acids. Res., 32(90001):D258–261, 2004.

[8] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association
rule mining. KDD, 1998.

[9] A. Murzin, S. Brenner, T. Hubbard, and C. Chothia. SCOP: a
structural classification of proteins database for the investigation of
sequences and structures. Journal of Molecular Biology, 247:536–
540, 1995.

[10] M. J. van de Vijver and et al. Gene-expression signature as a predictor
of survival in breast cancer. N. Engl. J. Med., 347:1999–2009, 2002.

[11] H. Wang, W. Wang, J. Yang, and Y. Yu. Clustering by pattern
similarity in large data sets. SIGMOD, 2002.

[12] X. Xu, Y. Lu, A. Tung, and W. Wang. Mining shifting-and-scaling
co-regulation patterns on gene expression profiles. ICDE, 2006.

[13] L. Zhang and M. Zaki. An effecitve algorithm for mining coherent
clusters in 3d microarray data. SIGMOD, 2005.

