
PoClustering: Lossless Clustering of Dissimilarity Data

Jinze Liu, Qi Zhang, Wei Wang, Leonard McMillan, Jan Prins
Department of Computer Science

University of North Carolina, Chapel Hill, NC 27599
{liuj, zhangq, weiwang, mcmillan, prins}@cs.unc.edu

Abstract
Given a set of objects V with a dissimilarity measure
between pairs of objects in V , a PoCluster is a col-
lection of sets P ⊂ powerset(V) partially ordered by
the ⊂ relation such that S ⊂ T iff the maximal dis-
similarity among objects in S is less than the maximal
dissimilarity among objects in T . PoClusters capture
categorizations of objects that are not strictly hierar-
chical, such as those found in ontologies. PoClusters
can not, in general, be constructed using hierarchical
clustering algorithms. In this paper, we examine the
relationship between PoClusters and dissimilarity ma-
trices and prove that PoClusters are in one-to-one cor-
respondence with the set of dissimilarity matrices. The
PoClustering problem is NP-Complete, and we present
a heuristic algorithm for it in this paper. Experiments
on both synthetic and real datasets demonstrate the
quality and scalability of the algorithms.

1 Introduction
Categorizations are natural ways to organize a set of
objects. The structure of categorization ranges from
hierarchies(taxonomies), where subclasses are disjoint
partitions of their parent class, to ontologies, which
allow overlapping subclasses as well as multiple par-
ents. Unsupervised clustering is an important classi-
fication approach. Deriving hierarchical classifications
by clustering pair-wise dissimilarity data has been stud-
ied extensively. The problem is referred to as numeri-
cal taxonomy[1]. Numerical taxonomies are useful in a
number of applications, such as estimating evolutionary
branching processes in biology. Since strict taxonomies
form disjoint partitions, these structures are insufficient
for capturing categorizations with richer relationships,
such as ontologies.

In this paper, we consider the problem of automat-
ically constructing numerical ontologies by clustering
dissimilarities between object pairs from a given set.
Numerical ontologies provide a more general categoriza-
tion approach than taxonomies, and their added cate-
gorization power may benefit applications in multiple
disciplines. For example, in biology, a gene may be in-

volved in multiple pathways due to a common biologi-
cal mechanism called trans-regulation. Building a gene
hierarchy from observed pairwise dissimilarities forces
each gene to one specific function. As a result, the hier-
archical classification is largely inconsistent with exist-
ing gene function classifications, such as Gene Ontology,
where gene subclasses may overlap or belong to multiple
parents.

Before proceeding, we clarify the specific classifi-
cation notion assumed in this paper. We consider the
most general classification system, which is a partially
ordered set, or poset. A poset contains the sets(clusters)
of objects as the elements, ordered according to their
subset relationships. Since a given poset can be con-
structed from any combination of subsets taken from
the set’s power set, the set of posets has a cardinality of
22|N|

, where N is the object set. The set of hierarchical
clusters, for example, is a special subset of the set of
posets.

It has been proven that any given ultrametric dis-
similarity matrix corresponds to a unique hierarchy[1].
A dissimilarity matrix D is ultrametric, if for any
three objects A,B and C in the set, D(A,C) ≤
max(D(A,B), D(B,C)). The correspondence means
that the same dissimilarity matrix can be recovered
from the hierarchy. For example, Figure 1 (a.1) shows
an ultrametric dissimilarity matrix. A hierarchy shown
in (a.2) is constructed from it by hierarchical cluster-
ing with a complete linkage criterion. Let the diame-
ter of a cluster be the maximum pair-wise dissimilar-
ity within the cluster. The pair-wise dissimilarity be-
tween any pair of objects shown in (a.1) can be re-
covered by assigning it the minimum diameter of the
clusters containing the pair. On the other hand, the
dissimilarity matrix shown in (b.1) is not an ultramet-
ric dissimilarity matrix, because for objects A,B and
C, D(A,C) > max(D(A,B), D(B,C)). Applying the
same clustering algorithm to this dissimilarity matrix
generates the same hierarchy shown in (a.2). But the
dissimilarities in (b.1) cannot be derived from the hi-
erarchy, which corresponds to the ultrametric dissimi-
larities in (a.1). Therefore, building a hierarchy from a

Figure 1: (a.1) An ultrametric dissimilarity matrix; (a.2)

Hierarchy constructed from (a.1) by either hierarchical clus-

tering or PoClustering; (b.1) A non-metric dissimilarity ma-

trix. (b.2) PoCluster constructed from (b.1) by PoCluster-

ing. Note: (a.1) can be derived from the hierarchy in (a.2)

by assigning each pair the minimum diameter of the sets con-

taining it; (b.2) can be used to derive dissimilarities of (b.1)

in the same way; Applying hierarchical clustering to (b.1)

can also construct the hierarchy in (a.2), but (b.1) cannot

be derived from (a.2)

dissimilarity matrix that does not satisfy the ultramet-
ric property potentially loses information. The problem
of interest in this paper is whether there exists a clus-
tering approach that preserves the information of any
given dissimilarity data?

PoClustering has been proposed by Liu et.al. in [11].
A PoCluster is a collection of clique clusters arrived
at by smoothly varying the threshold from 0 to the
maximum pair-wise dissimilarity in the set. It adopts a
definition of the cluster as a maximal clique from graph
theory. A clique cluster is a maximal subset of objects
whose maximum pair-wise dissimilarity does not exceed
a given threshold. An example of PoCluster is shown
in Figure 1 (b.2), which is generated from dissimilarity
matrix (b.1) by PoClustering. PoClusters differ from
hierarchies by incorporating all clique clusters rather
than only disjoint clusters. As a result, it allows overlaps
between clusters that are not strict subsets, as shown in
Figure 1 (b.2). In addition, it preserves the information
provided in the dissimilarity data. The dissimilarity
matrix shown in Figure 1 (b.1), which could not be
recovered from the hierarchy in (a.2), can be derived
from the PoCluster in (b.2). In this paper, we formally
prove that, there exists a one-to-one correspondence
between the set of PoClusters and the set of dissimilarity
matrices. The set of PoClusters is, therefore, the most

general notion of clustering that can be derived from
dissimilarities alone. In addition, we prove that the
set of PoClusters contains all possible pyramidal[6] and
hierarchical clusters as special instances.

PoClustering algorithm was presented in [11]. How-
ever, the PoClustering problem is NP-complete. In this
paper, we present a greedy approximation algorithm for
PoClustering which replaces maximum clique finding in
the original algorithm by solving a minimum edge clique
cover problem. Our experiments on both synthetic and
real data show the effectiveness and efficiency of this
approximation algorithm in comparison to the conven-
tional hierarchical and pyramidal clustering algorithms.

The remainder of this paper is organized as follows.
Section 2 addresses related work in clustering, auto-
mated taxonomy construction, and dissimilarity mea-
sures appropriate for ontologies. Section 3 presents
the preliminary definitions of PoClusters, followed by
Section 4 which examines their properties and the re-
lationships with existing clustering algorithms. Sec-
tion 5 provides an approximation algorithm for con-
structing PoClusters from dissimilarity data. A per-
formance study is reported in Section 6. Section 7 con-
cludes the paper and discusses future work.

2 Related Work
Many clustering algorithms take a dissimilarity matrix
as input. However, relatively few investigations have
been conducted to establish the relationship between
the dissimilarity matrix input and the clustering results.
In this section, we review previous studies on clustering
algorithms that have known relationships to special
classes of dissimilarity matrices.

Both hierarchical[3, 7] and pyramidal clustering
[4, 6] generate clusters that have bijections to special
sub-classes of dissimilarity matrices.

Hierarchical clustering[3, 7] refers to the formation
of a nested disjoint partition of data objects. It is
often represented by a dendrogram, that is, a tree with
the objects at its leaves and a root corresponding to
the universal set (of all objects). The heights of the
internal nodes represent the maximum dissimilarities
between the descendant leaves. It has been proven that
a bijection exists between hierarchical clustering and the
set of ultrametric[6] dissimilarity matrices which satisfy
the ultrametric triangle inequality, i.e., for any set of
three objects {a, b, c}, D(a, c) ≤ max{D(a, b), D(b, c)}.
An equivalent statement of the ultrametric condition is
that there exists a linear order of all objects such that
their dissimilarities are the distances between them.

Pyramidal clustering[4, 6] allows for a more general
model than hierarchical clustering. A child cluster
may have up to two parent clusters. Two clusters
may overlap by sharing a common child cluster. The

(a) Dissimilarity (b) Weighted graph (c) Clique Clusters (d) PoCluster.

Figure 2: A running example. (a) shows a dissimilarity matrix of 5 objects {A, B, C, D, E}; (b) shows an undirected

weighted graph implied by (c); Table (c) contains the list of clique clusters with all diameters; (d) shows a PoCluster which

contains 13 clusters and their subset relationships (Each cluster in the PoCluster represents a clique cluster with its

diameter in (c). The PoCluster is organized in DAG with subset relationship between the nodes. There is a directed path

from node S1 to S2 if S1 ⊂ S2). Note: Applying PoClustering algorithm can construct PoCluster shown in (d) given

dissimilarity matrix (a).

structure can be represented by a directed acyclic graph.
It is known that a bijection exists between pyramidal
clustering and the set of dissimilarity matrices that are
Robinson matrices. A matrix is a Robinson matrix if
there exists an ordering among all objects such that the
dissimilarities in the rows and columns do not decrease
when moving horizontally or vertically away from the
main diagonal. An ultrametric matrix is a special case of
Robinson matrix and hierarchical clustering is a special
case of pyramidal clustering. Note that a dissimilarity
matrix may not always be a Robinson matrix, and in
such cases, neither hierarchical clustering nor pyramidal
clustering is able to generate clustering from which the
original dissimilarity matrix can be re-derived. That is,
no bijection exists.

We prove in this paper, that PoClustering preserves
the bijection between PoCluster and a given dissimilar-
ity matrix. It also includes both hierarchical clustering
and pyramidal clustering as special cases.

3 Preliminaries on Pocluster
In the following discussion, we assume a universal set of
objects denoted by N . A pair in N refers to an object
pair {x, y}, where x, y ∈ N . Given a set S ⊆ N , the
set of all pairs in S is denoted by S×S. A dissimilarity
matrix describes the pair-wise relationships between
objects. A dissimilarity matrix can be directly mapped
to an undirected weighted graph G = 〈V,E,W 〉, where
each node in V corresponds to an object in N , and
each edge e = 〈x, y〉 with weight w denotes that the
dissimilarity D(x, y) between the two objects x and y is
w. The graph implied by the dissimilarity D is denoted
as G(D).

A fully connected subgraph in the weighted graph
G is called a clique. The diameter of a clique is the
maximum edge weight of the clique. Given G(D), a
clique cluster C = 〈S, d〉 is defined as a maximal clique

S with diameter d. When there are multiple cliques
within the graph with the same diameter d, we denote
this set of clique clusters as cliquesetδ(d).

Next, we present a brief overview of the definition
of PoCluster proposed by Liu et.al. in paper [11]. Let
D be a dissimilarity matrix, and let W (D) be the set
of diameters indicated by D. A PoCluster P of D is
defined as

(3.1) P =
⋃

∀d∈W (D)

cliquesetδ(d).

which is the collection of clique clusters of all possible
diameters in W of G(D).

For example, the dissimilarity matrix in Figure 2(a)
consists of 4 different dissimilarities and therefore, 4
possible diameters, {1, 2, 3, 4}. The set of the clique
clusters generated for each diameter threshold is shown
in Figure 2(c). The PoCluster (subset) relationships
between these clique clusters are shown in Figure 2(d).

4 Properties of PoCluster
The basic properties of PoClusters appear in [11]. Simi-
lar to hierarchical clustering, PoClustering also includes
the universal set, that has the maximum dissimilarity
in D as its diameter, and singletons, which have the
minimum dissimilarity(0). PoClustering does not ig-
nore dissimilarity measures like hierarchical clustering,
since each pair-wise dissimilarity is covered by at least
one clique cluster whose diameter equals the pair-wise
dissimilarity. In addition, the maximal clique cluster
insures that if one cluster is a subset of another, its
diameter is strictly lower.

We further examine the properties of PoClus-
ter with regard to dissimilarity matrices. Although it
is possible to run classical hierarchal clustering or pyra-
midal clustering on any dissimilarity matrix, this map-
ping is not, in general, invertible. However, PoClus-

tering goes beyond them by generating a PoCluster,
which provides a one-to-one correspondence with the
input dissimilarity matrix. This property is presented
and proven in Theorem 4.1.

Theorem 4.1. There exists a bijection between the set
of PoClusters P and the set of dissimilarity matrices D.

Proof of Theorem 4.1 can be found in technical
report[12].

Hierarchical and pyramidal clusterings are known to
have one-to-one correspondences with ultrametric and
Robinson matrices respectively. In addition, hierarchi-
cal clustering is a special case of the pyramidal clus-
tering as shown in [6]. We answer a similar question,
i.e., Does PoCluster recover the same hierarchy or pyra-
mid as pyramidal clustering given an ultrametric or a
Robinson matrix?

X i
Xj

Dij

X 1

X1Xn

Xn

X i
Xj

X i Xj

0 0 0 0 0 0 0 0 0 0
1 1 2 1 2 1 2 3

2 2 3 3 3 4 3 4
3 4 4 5 6 5 7

5 6 6 7 7 9
7 7 8 8 11

8 9 10 13

10 12 15
14 18

20

1

Figure 3: The structure of Robinson matrix. There exists

a linear ordering of the objects, such that the dissimilarities

never decrease as they move away from diagonal along both

row and column.

Lemma 4.1. The set of pyramids is included in the set
of PoCluster.

Proof. (Sketch of proof) As shown by Diday[6], there
exists a bijection between a pyramid and a Robinson
matrix. A matrix is a Robinson matrix if there exists
an ordering θ of the objects, such that the rows and
columns are in non-decreasing order as they are moving
away from the diagonal. Any given pyramid cluster is an
interval of such an ordering. Now let {x1, x2, ..., xn} be
an ordered list of objects according to θ. Let D be the
Robinson dissimilarity matrix shown in Figure 3. Let
P be a PoCluster. For any entry {xi, xj} in a Robinson
matrix D, the sub-triangle below {xi, xj} above the
main diagonal corresponding to the rows 〈xi, ..., xj〉 and
the columns 〈xi, ..., xj〉 will contain lesser dissimilarity
values than D(xi, xj), hence, {xi, ..., xj} will be a cluster
in P , which is an interval of θ. Therefore, starting from
the entries from the upper right corner, then recursively
traversing the two lower sub-triangles 〈xi, ..., xj−1〉 and
〈xi+1, ..., xj〉 returns the whole pyramid, which is also a
PoCluster.

5 PoClustering Algorithm
Given a dissimilarity matrix D, the corresponding
PoCluster P (i.e., P = {cliquesetδ(d)|∀d ∈ W (D)})
can be found by repeating a simple procedure. In the
naive algorithm, one needs only to find all cliques in a
subgraph of G(D) that includes only those edges cor-
responding to the pair-wise dissimilarities less than or
equal to a threshold d as the threshold varies from the
smallest to the largest dissimilarity in D.

An incremental and exact PoClustering algorithm
was proposed by Liu et.al. in [11]. The algorithm
only computes clique clusters that are affected by the
introduction of new edges. The algorithm maintains a
pool of all clusters in the previous graph. Given the
next graph with more edges, the pool of cliques can be
updated as follows: First, all the cliques in the pool that
share a vertex with the new edges are found. Second, if
a clique in the pool can be extended by adding one or
more of the new edges, the extended clique is added to
the pool, and the cliques that are subgraphs of the new
clique are removed. The parent-child relationships can
be established between new cliques and removed cliques.

Though more efficient, the exact algorithm still
bears the NP-Complete complexity of the PoClustering
problem. Although theoretically the number of clusters
in a PoCluster can be exponential in the number of ob-
jects1, most real classifications contain only polynomial
number of clusters with respect to the number of ob-
jects. In this section, we present a heuristic algorithm
for the construction of approximate PoClusters. This
approach addresses both the NP-completeness of find-
ing all cliques and the huge number of clique clusters
generated.

Instead of searching for all clique clusters in a graph,
we approximate them with a minimum set of cliques
that covers all the edges in the graph, i.e, a minimum
edge clique cover(ECC). The minimum number of clique
clusters covering all edges are a subset of all clique
clusters.

Definition 5.1. Given a graph G =< V,E >, an
edge clique cover(ECC) R of G is defined as a set of
maximal cliques induced by G, such that for any e ∈ E,
there exists a maximal clique c ∈ R, where e is an edge
in c.

We describe an incremental greedy algorithm to
approximate the minimum edge clique cover in order
to construct the poset. Algorithm 1 is similar to the
original algorithm proposed in [11] in detecting the new
cliques. The difference is that at each step, it only
keeps a minimum number of cliques that cover all the

1The number of clique clusters in an undirected graph with n
nodes is o(31/3∗n).

Algorithm 1 Rnew = gen ECC(G, R, e)
Input: G: graph; R: an edge clique cover does not
cover e, e = {x, y}: a new edge
Output: Rnew: a new clique cover covering E(G)∪{e}
1: Cx,y ← maximal{c1 ∩ c2|c1 ∈ π(x), c2 ∈ π(y)}.
2: R← {R ∪ Cx,y}
3: Rnew ← argmin|R′|{R′|R′ ⊆ R,R covers E(G) ∪
{e}}

4: return Rnew

edges. Given an input clique cover from time t and an
inserted edge {x, y}, the algorithm first goes through
each clique in the clique cover that is connected with
one of the edges, let’s say, x, and let π(x) be the set of
maximal cliques containing x. The algorithm then looks
for the maximum sets of points in π(x) that are also
connected to y. The subgraph, though complete, might
not be maximal. The algorithm then further extends
it into a maximal clique. In the end, the algorithm
goes through the current list of cliques sequentially, and
removes redundant cliques whose edges have already
been covered.

The total number of clique covers in the graph is
bounded by the number of edges since, at most, only
one clique will be added into the cover, at each step an
edge is inserted into the graph. In practice, the number
is considerably smaller than the number of edges.

The number of outer loop iterations of the algorithm
is determined by the number of edges, which is O(n2).
For a new clique, the greedy algorithm goes through the
cliques in the existing clique cover, and find the maximal
clique cover. Assume the number of cliques in the cover
is k, creating a maximal clique takes O(kn). Checking
the coverage of edges by the cliques also takes O(kn2)
time.

6 Experiments
We have experimented with both synthetic comparing
hierarchical clustering (Hierarchy), pyramidal clustering
(Pyramid), and edge clique cover (ECC). We do not
present the results of the exact algorithm because of
its prohibitively long running time. The results of real
dataset experiments are reported in [12].

6.1 Evaluation Criteria The match score is used
to measure the approximation of the recovered poset to
the original poset. We take each poset as a set of sets.
Given two PoClusters P1 and P2, the match score of P2

to P1 is computed as:

match(P1, P2) = means1∈P1(maxs2∈P2(
|s1 ∩ s2|
|s1 ∪ s2|

))

For each set in P1, only the best match in P2 is

taken account of by Jaccard coefficient. The overall
match score is determined by the mean match score of
the whole sets.

A D

B E

C F

G H

Figure 4: Experimentation on synthetic data

6.2 Synthetic Data We created a synthetic poset
generator that is controlled by three parameters. They
are the number of objects of the universal set N ,
the total number of clusters (sets), and the overlap
probability between clusters. The overlap probability
follows a normal distribution with a user-specified mean
value and a default standard deviation of

√
(0.2). It

defines the likelihood that an element in a parent
cluster appears in more than one child cluster. The
synthetic generator of the poset then works as follows:
starting from the root node of the poset with n objects,
the program recursively generates the child sets that
respect the overlap probability distribution. For each

parent set, whether an object should appear in multiple
child sets is determined by coin-flipping with overlap
probability poverlap. After the poset is generated, we
computed the rank and assigned the pair-wise distances
based on the algorithm presented in [12] We then take
the distance matrix as the input to the three clustering
algorithms.

We first examined how the overlap probability
affects the performance. In this setting, the total
number of objects in N is set to 500, and the maximum
number of clusters in P is 200. Figure 4(A) shows
that overlap probability affects match score of all three
algorithms. Starting from 0 overlap, all of the three
algorithms have almost 100% match score. However,
ECC does a much better job than the other two.
The reason is that the number of overlapping clusters
increases as the overlap probability increases. The
match score drops significantly for hierarchical and
pyramidal clustering because of their inability to allow
arbitrary overlaps between clusters. Figure 4(B) and
(C) show the total number of clusters generated and the
running time comparison. Both hierarchical clustering
and pyramidal clustering have shorter running time
than ECC. It is due to the fact that both algorithms
fail to recover most clusters in the original poset. This
can be observed from Figure 4(B) where, among the
three algorithms, ECC is the only one that is able to
recover most clusters in the original poset (its number
of clusters is shown as the top curve in Figure 4(B)) .

Our second experiment demonstrated how the num-
ber of objects affects the performance. The overlap
probability is set to 0.2 and maximum number of clus-
ters is 120. The results are shown in Figure 4 (D), (E),
and (F). The match score is close to 1 for ECC but drops
below 0.5 for the other two algorithms. Again, the dif-
ference in the running time (Figure 4 (F)) between ECC
and others is because both hierarchical clustering and
pyramidal clustering recover only a small fraction of the
sets(clusters) in the original poset (the top curve shown
in Figure 4 (E)).

In the last experiment, we fixed the number of ob-
jects to 500 and the overlap probability to 0.2, and var-
ied the number of clusters in the poset. The result are
shown in Figure 4 (G) and (H). A side effect of increas-
ing the number of clusters defined on a fixed set of ob-
jects is an increase in the degree of overlap. Therefore,
the match scores of hierarchical clustering and pyrami-
dal clustering fall as the number of clusters increases,
whereas ECC maintains a high match score. As shown
in Figure 4 (H), ECC is able to recover almost all clus-
ters in the original poset. However, pyramidal clustering
and hierarchical clustering generate considerably fewer
clusters.

7 Conclusions
PoClusters are a generalization of both hierarchical clus-
tering and pyramid clustering. PoClusters provide both
homogeneity within a cluster, as measured by the clus-
ter’s diameter as well as separation between clusters.
They also handle overlaps in a meaningful way. The for-
mal definition of PoClusters is primarily of theoretical
interest, since the problem of computing them exactly
is likely to be intractable for large problems. To ad-
dress this shortcoming we have introduced a polynomi-
ally bounded approximation algorithm to automatically
generate classification hierarchies.

References

[1] N. Ailon, M. Charikar, Fitting tree metrics: Hierarcical
clustering and phylogeny. Proceedings of 46th IEEE
Symposium on Fundation of Computer Science, 2005.

[2] Applications of the pyramidal clustering method to bi-
ological objects. Comput Chem, 23(3-4):303-15, Jun15,
1999.

[3] P. Berkhin. Survey of clustering data mining techniques
https://umdrive.memphis.edu/vphan/public/berkhin-
survey.pdf, Accrue Software, 2002.

[4] P. Bertrand and M. F. Janowitz. Pyramids and weak
hierarchies in the ordinal model for clustering. Discrete
Applied Mathematics, Volume 122, Issues 1-3,Pages
55-81, 15 October 2002

[5] C. Bron and J. Kerbosch, Algorithm 457: Finding all
cliques of an undirected graph, Commun. ACM, vol.
16, no. 9, pp. 575-577, 1973.

[6] E. Diday, Orders and overlapping clusters in pyramids.
In: J. De Leeuw et al. Multidimensional Data Analysis,
DSWO Press, Leiden (1986), pp. 201-234.

[7] A. JAIN and R. Dubes. Algorithms for clustering data.
Prentice-Hall, 1988.

[8] R.M. Karp Reducibility among combinatorial prob-
lems. Complexity of computer computations, Plenum
Press, New YOrk, pp.85-103, 1972.

[9] L. T. Kou , L. J. Stockmeyer , C. K. Wong, Covering
edges by cliques with regard to keyword conflicts and
intersection graphs, Communications of the ACM, v.21
n.2, p.135-139, Feb. 1978

[10] Y. Linde, A. Buzo, R. Gray. An algorithm for vector
quantization design. Proc. IEEE Transactions on Com-
munications, Vol. 28, pp. 84 95, January 1980.

[11] J. Liu, Q. Zhang, W. Wang, L. Mcmillan, J. Prins.
Clustering dissimilarity data into partially ordered set.
Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
to appear, 2006.

[12] J. Liu, Q. Zhang, W. Wang, L. Mcmillan, J. Prins.
Pocluster: loseless clustering of similarity data. UNC-
Technical Report, 2007.

	Introduction
	Related Work
	Preliminaries on Pocluster
	Properties of PoCluster
	PoClustering Algorithm
	Experiments
	Evaluation Criteria
	Synthetic Data

	Conclusions

