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ABSTRACT
Clustering is the process of grouping a set of objects into
classes of similar objects. Although definitions of similarity
vary from one clustering model to another, in most of these
models the concept of similarity is based on distances, e.g.,
Euclidean distance or cosine distance. In other words, sim-
ilar objects are required to have close values on at least a
set of dimensions. In this paper, we explore a more general
type of similarity. Under the pCluster model we proposed,
two objects are similar if they exhibit a coherent pattern on
a subset of dimensions. For instance, in DNA microarray
analysis, the expression levels of two genes may rise and fall
synchronously in response to a set of environmental stim-
uli. Although the magnitude of their expression levels may
not be close, the patterns they exhibit can be very much
alike. Discovery of such clusters of genes is essential in re-
vealing significant connections in gene regulatory networks.
E-commerce applications, such as collaborative filtering, can
also benefit from the new model, which captures not only
the closeness of values of certain leading indicators but also
the closeness of (purchasing, browsing, etc.) patterns ex-
hibited by the customers. Our paper introduces an effective
algorithm to detect such clusters, and we perform tests on
several real and synthetic data sets to show its effectiveness.

1. INTRODUCTION
Clustering has been extensively studied in many areas, in-
cluding statistics [14], machine learning [13, 10], pattern
recognition [11], and image processing. Recent efforts in
data mining have focused on methods for efficient and ef-
fective cluster analysis [9, 16, 21] in large databases. Much
active research has been devoted to areas such as the scal-
ability of clustering methods and the techniques for high-
dimensional clustering.

Clustering in high dimensional spaces is often problematic
as theoretical results [5] questioned the meaning of clos-
est matching in high dimensional spaces. Recent research

work [2, 3, 4, 6, 12] has focused on discovering clusters em-
bedded in the subspaces of a high dimensional data set. This
problem is known as subspace clustering. In this paper, we
explore a more general type of subspace clustering which
uses pattern similarity to measure the distance between two
objects.

1.1 Goal
Most clustering models, including those used in subspace
clustering, define similarity among different objects by dis-
tances over either all or only a subset of the dimensions.
Some well-known distance functions include Euclidean dis-
tance, Manhattan distance, and cosine distance. However,
distance functions are not always adequate in capturing cor-
relations among the objects. In fact, strong correlations may
still exist among a set of objects even if they are far apart
from each other as measured by the distance functions. This
is demonstrated with an example in Figure 1 and Figure 2.
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Figure 1: Raw data: 3 objects and 10 columns

Figure 1 shows a data set with 3 objects and 10 columns
(attributes). No patterns among the 3 objects are visibly
explicit. However, if we pick a subset of the attributes,
{b, c, h, j, e}, and plot the values of the 3 objects on these
attributes in Figure 2(a), it is easy to see that they manifest
similar patterns. However, these objects may not be con-
sidered in a cluster by any traditional (subspace) clustering
model because the distance between any two of them is not
close.

The same set of objects can form different patterns on dif-
ferent sets of attributes. In Figure 2(b), we show another
pattern in subspace {f, d, a, g, i}. This time, the three curves



do not have a shifting relationship. Instead, values of ob-
ject 2 are roughly three times larger than those of object 3,
and values of object 1 are roughly three times larger than
those of object 2. If we think of columns f, d, a, g, i as differ-
ent environmental stimuli or conditions, the pattern shows
that the 3 objects respond to these conditions coherently,
although object 1 is more responsive or more sensitive to
the stimuli than the other two. The goal of this paper is to
discover such shifting or scaling patterns from raw data sets
such as Figure 1.
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(a) objects in Figure 1 form a Shifting Pattern
in subspace {b, c, h, j, e}
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(b) objects in Figure 1 form a Scaling Pattern
in subspace {f, d, a, g, i}

Figure 2: Objects form patterns on a set of columns.

1.2 Applications
Discovery of clusters in data sets based on pattern similarity
is of great importance because of its potential for actionable
insights.

• DNA micro-array analysis: Micro-array is one of the
latest breakthroughs in experimental molecular biol-
ogy. It provides a powerful tool by which the expres-
sion patterns of thousands of genes can be monitored
simultaneously and is already producing huge amount
of valuable data. Analysis of such data is becoming one
of the major bottlenecks in the utilization of the tech-
nology. The gene expression data are organized as ma-
trices — tables where rows represent genes, columns
represent various samples such as tissues or experimen-
tal conditions, and numbers in each cell characterize
the expression level of the particular gene in the partic-
ular sample. Investigations show that more often than

not, several genes contribute to a disease, which mo-
tivates researchers to identify a subset of genes whose
expression levels rise and fall coherently under a subset
of conditions, that is, they exhibit fluctuation of a sim-
ilar shape when conditions change. Discovery of such
clusters of genes is essential in revealing the significant
connections in gene regulatory networks [8].

• E-commerce: Recommendation systems and target mar-
keting are important applications in the E-commerce
area. In these applications, sets of customers/clients
with similar behavior need to be identified so that we
can predict customers’ interest and make proper rec-
ommendations. Let’s consider the following example.
Three viewers rate four movies of a particular type
(action, romance, etc.) as (1, 2, 3, 6), (2, 3, 4, 7), and
(4, 5, 6, 9), where 1 is the lowest and 10 is the highest
score. Although the rates given by each individual are
not close, these three viewers have coherent opinions
on the four movies. In the future, if the 1st viewer and
the 3rd viewer rate a new movie of that category as
7 and 9 respectively, then we have certain confidence
that the 2nd viewer will probably like the movie too,
since they have similar tastes in that type of movies.

The above applications focus on finding cluster of objects
that have coherent behaviors rather than objects that are
physically close to each other.

1.3 Challenges
There are two major challenges. First, identifying subspace
clusters in high-dimensional data sets is a difficult task be-
cause of the curse of dimensionality. Real life data sets in
DNA array analysis or collaborative filtering can have hun-
dreds of attributes. Second, a new similarity model is needed
as traditional distance functions can not capture the pat-
tern similarity among the objects. For instance, objects in
Figure 2(a) and (b) are not close if measured by distance
functions such as Euclidean, Manhattan, or Cosine.

Also, the task is not to be confused with pattern discovery
in time series data, such as trending analysis in stock closing
prices. In time series analysis, patterns occur during a con-
tinuous time period. Here, mining is not restricted by any
fixed ordering among the columns of the data set. Patterns
on an arbitrary subset of the columns are usually deeply
buried in the data when the entire set of the attributes are
present, as exemplified in Figure 1 and 2.

Similar reasoning reveals why models treating the entire
set of attributes as a whole do not work. The PearsonR
model [18] studies the coherence among a set of objects.
PearsonR defines the correlation between two objects o1

and o2 as: �
(o1 − ō1)(o2 − ō2)��

(o1 − ō1)2 ×
�

(o2 − ō2)2

where ō1 and ō2 are the mean of all attribute values in o1

and o2, respectively. From this formula, we can see that
the Pearson R correlation measures the correlation between
two objects with respect to all attribute values. A large



positive value indicates a strong positive correlation while a
large negative value indicates a strong negative correlation.
However, some strong coherence may only exist on a subset
of dimensions. For example, in collaborative filtering, six
movies are ranked by viewers. The first three are action
movies and the next three are family movies. Two viewers
rank the movies as (8, 7, 9, 2, 2, 3) and (2, 1, 3, 8, 8, 9). The
viewers’ ranking can be grouped into two clusters, the first
three movies in one cluster and the rest in another. It is
clear that the two viewers have consistent bias within each
cluster. However, the Pearson R correlation of the two
viewers is small because globally no explicit pattern exists.

1.4 Our Contributions
Our objective is to cluster objects that exhibit similar pat-
terns on a subset of dimensions. Traditional subspace clus-
tering is a special case in our task, in the sense that objects
in a subspace cluster have exactly the same behavior, that
there is no coherence need to be related by shifting or scal-
ing. In other words, these objects are physically close –
their similarity can be measured by functions such as the
Euclidean distance, the Cosine distance, and etc.

Our contributions include:

• We propose a new clustering model, namely the pClus-
ter1, to capture not only the closeness of objects but
also the similarity of the patterns exhibited by the ob-
jects.

• The pCluster model is a generalization of subspace
clustering. However, it finds a much broader range
of applications, including DNA array analysis and col-
laborative filtering, where pattern similarities among
a set of objects carry significant meanings.

• We propose an efficient depth-first algorithm to mine
pClusters. Compared with the bicluster approach [7,
20], our method mines multiple clusters simultane-
ously, detects overlapping clusters, and is resilient to
outliers. Our method is deterministic in that it discov-
ers all qualified clusters, while the bicluster approach
is a random algorithm that provides only an approxi-
mate answer.

1.5 Paper Layout
The rest of the paper is structured as follows. In Section 2,
we review some related work, including the bicluster model.
Our pCluster model is presented in Section 3. Section 4
explains our clustering algorithm in detail. Experimental
results are shown in Section 5 and we conclude the paper in
Section 6.

2. RELATED WORK
Clustering in high dimensional spaces is often problematic
as theoretical results [5] questioned the meaning of clos-
est matching in high dimensional spaces. Recent research
work [4, 2, 3, 12, 6, 15] has focused on discovering clusters
embedded in the subspaces of a high dimensional data set.
This problem is known as subspace clustering.

1pCluster stands for Pattern Cluster

A well known clustering algorithm capable of finding clus-
ters in subspaces is CLIQUE [4]. CLIQUE is a density and
grid based clustering method. It discretizes the data space
into non-overlapping rectangular cells by partitioning each
dimension to a fixed number of bins of equal length. A bin
is dense if the fraction of total data points contained in the
bin is greater than a threshold. The algorithm finds dense
cells in lower dimensional spaces and merge them to form
clusters in higher dimensional spaces. Aggarwal et al [2,
3] used an effective techinque for the creation of clusters
for very high dimensional data. The PROCLUS [2] and
the ORCLUS [3] algorithm find projected clusters based on
representative cluster centers in a set of cluster dimensions.
Another interesting approach, Fascicles [12], finds subsets of
data that share similar values in a subset of dimensions.

The above algorithms find clustered objects if the objects
share similar values in a subset of dimensions. In other
words, the similarity among the objects is measured by dis-
tance functions, such as Euclidean. However, this model
captures neither the shifting pattern in Figure 2(a) nor the
scaling pattern in Figure 2(b), since objects therein do not
share similar values in the subspace where they manifest
patterns.

One way to discover the shifting pattern in Figure 2(a) using
the above algorithms is through data transformation. Given
N attributes, a1, ..., aN , we define a derived attribute, Aij =
ai − aj , for every pair of attributes ai and aj . Thus, our
problem is equivalent to mining subspace clusters on the
objects with the derived set of attributes. However, the
converted data set will have N(N − 1)/2 dimensions and it
becomes intractable even for a small N because of the curse
of dimensionality.

Cheng et al introduced the bicluster concept [7] as a measure
of the coherence of the genes and conditions in a sub matrix
of a DNA array. Let X be the set of genes and Y the set of
conditions. Let I ⊂ X and J ⊂ Y be subsets of genes and
conditions. The pair (I, J) specifies a sub matrix AIJ with
the following mean squared residue score:

H(I, J) =
1

|I ||J |
�

i∈I,j∈J

(dij − diJ − dIj + dIJ )2 (1)

where

diJ =
1

|J |
�
j∈J

dij , dIj =
1

|I |
�
i∈I

dij , dIJ =
1

|I ||J |
�

i∈I,j∈J

dij

are the row and column means and the means in the sub-
matrix AIJ . A submatrix AIJ is called a δ-bicluster if
H(I, J) ≤ δ for some δ > 0. A random algorithm is de-
signed to find such clusters in a DNA array.

Yang et al [20] proposed a move-based algorithm to find
biclusters more efficiently. It starts from a random set of
seeds (initial clusters) and iteratively improves the cluster-
ing quality. It avoids the cluster overlapping problem as
multiple clusters are found simultaneously. However, it still
has the outlier problem and it requires the number of clus-
ters as an input parameter.

We noticed several limitations of this pioneering work:
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Figure 3: Replacing entries in the shaded area with
random values obstructs the discovery of the 2nd
cluster.

1. The mean squared residue used in [7, 20] is an aver-
aged measurement of the coherence for a set of ob-
jects. A much undesirable property of Formula 1 is
that a submatrix of a δ-bicluster is not necessarily a δ-
bicluster. This creates difficulties in designing efficient
algorithms. Furthermore, many δ-biclusters found in
a given data set may differ only in one or two out-
liers they contain. For instance, the bicluster shown
in Figure 4(a) contains an obvious outlier but it still
has a fairly small mean squared residue (4.238). The
only way to get rid of such outliers is to reduce the δ
threshold, but that will exclude many biclusters which
do exhibit coherent patterns, e.g., the one shown in
Figure 4(b) with residue 5.722.

2. The algorithms presented in [7] detects a bicluster in a
greedy manner. To find other biclusters after the first
one is identified, it mines on a new matrix derived
by replacing entries in the discovered bicluster with
random data. However, clusters are not necessarily
disjoint, as shown in Figure 3. The random data will
obstruct the discovery of the 2nd cluster.

3. THE pCluster MODEL
This section describes the pCluster model for mining clus-
ters of objects that exhibit coherent patterns on a set of
attributes.

3.1 Notations

D A set of objects
A Attributes of objects in D

(O, T ) A submatrix of the data set, where O ⊆ D, T ⊆ A
x, y, ... Objects in D
a, b, ... Attributes of A
dxa Value of object x on attribute a
δ User-specified clustering threshold
nc User-specified minimum # of columns of a pCluster
nr User-specified minimum # of rows of a pCluster
Txy A maximum dimension set for objects x and y
Oab A maximum dimension set for columns a and b

3.2 Definitions and Problem Statement
Let D be a set of objects, where each object is defined by a
set of attributes A. We are interested in objects that exhibit
a coherent pattern on a subset of attributes of A.

Definition 1. Let O be a subset of objects in the database
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Figure 4: The mean squared residue can not exclude
outliers in a bicluster

(O ⊆ D), and let T be a subset of attributes (T ⊆ A). Pair
(O, T ) specifies a submatrix. Given x, y ∈ O, and a, b ∈ T ,
we define the pScore of the 2× 2 matrix as:

pScore

��
dxa dxb

dya dyb

��
= |(dxa − dxb)− (dya − dyb)| (2)

Pair (O, T ) forms a δ-pCluster if for any 2 × 2 submatrix
X in (O, T ), we have pScore(X) ≤ δ for some δ ≥ 0.

Intuitively, pScore(X) ≤ δ means that the change of values
on the two attributes between the two objects in X is con-
fined by δ, a user-specified threshold. If such confines apply
to every pair of objects in O and every pair of attributes in
T then we have found a δ-pCluster.

In the bicluster model, a submatrix of a δ-bicluster is not
necessarily a δ-bicluster. However, based on the definition
of pScore, the pCluster model has the following property:

Property 1. Compact Property
Let (O, T ) be a δ-pCluster. Any of its submatrix, (O′, T ′),
where O′ ⊆ O, T ′ ⊆ T , is also a δ-pCluster.

Note that the definition of pCluster is symmetric: as shown
in Figure 5(a), the difference can be measured both hor-
izontally or vertically, as the inequality in Definition 1 is
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Figure 5: pCluster Definition

equivalent to:

|(dxa − dxb)− (dya − dyb)|
= |(dxa − dya)− (dxb − dyb)|

= pScore

��
dxa dya

dxb dyb

��
(3)

When only 2 objects and 2 attributes are considered, the
definition of pCluster conforms with that of the bicluster
model [7]. According to Formula 1, and assuming I =
{x, y}, J = {a, b}, the mean squared residue of a 2×2 matrix

X =

�
dxa dxb

dya dyb

�
is:

H(I, J) =
1

|I ||J |
�
i∈I

�
j∈J

(dij − dIj − diJ + dIJ )2

=
((dxa − dxb)− (dya − dyb))

2

4

= (pScore(X)/2)2 (4)

Thus, for a 2-object/2-attribute matrix, a δ-bicluster is a
( δ
2
)2-pCluster. However, since a pCluster requires that every

2 objects and every 2 attributes conform with the inequality,
it models clusters that are more homogeneous. Let’s review
the problem of bicluster in Figure 4. The mean squared
residue of data set A is 4.238, less than that of data set
B, 5.722. Under the pCluster model, the maximum pScore

between the outlier and another object in A is 26, while the
maximum pScore found in data set B is only 14. Thus, any
δ between 14 and 26 will eliminate the outlier in A without
obstructing the discovery of the pCluster in B.

In order to model the cluster in Figure 5(b), where there
is a scaling factor among the objects, it seems we need to
introduce a new inequality:

dxa/dya

dxb/dyb
≤ δ′ (5)

However, this is not necessary because Formula 2 can be
regarded as a logarithmic form of Formula 5. The same
pCluster model can be applied to the dataset after we con-
vert the values therein to the logarithmic form. As a matter
of fact, in DNA micro-array, each array entry dij , represent-
ing the expression level of gene i in sample j, is derived in
the following manner:

dij = log

�
Red Intensity

Green Intensity

�
(6)

where Red Intensity is the intensity of gene i, the gene of
interest, and Green Intensity is the intensity of a reference
(control) gene. Thus, the pCluster model can be used to
monitor the changes in gene expression and to cluster genes
that respond to certain environmental changes in a coherent
manner.
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Figure 6: A pCluster of Yeast Genes

Figure 6(a) shows a micro-array matrix with ten genes (one
for each rows) under five experiment conditions (one for each
column). This example is a portion of micro-array data that
can be found in [19]. A pCluster ({VPS8, EFB1, CYS3},
{CH1I, CH1D, CH2B}) is embedded in the micro-array. Ap-
parently, their similarity can not be revealed by Euclidean
distance or Cosine distance.

Objects form a cluster when a certain level of density is
reached. The volume of a pCluster is defined by the size
of O and the size of T . The task is thus to find all those
pClusters beyond a user-specified volume:

Problem Statement
Given: i) δ, a cluster threshold, ii) nc, a minimal number
of columns, and iii) nr, a minimal number of rows, the task
of mining is to find all pairs (O, T ) such that (O, T ) is a δ-
pCluster according to Definition 1, and |O| ≥ nr, |T | ≥ nc.



4. THE ALGORITHM
Unlike the bicluster algorithm [7], our approach simultane-
ously detects multiple clusters that satisfy the user-specified
δ threshold. Furthermore, since our algorithm is determin-
istic, we will not miss any qualified pCluster, while random
algorithms for the bicluster approach [7, 20] provide only an
approximate answer.

The biggest challenge of our task is in subspace clustering.
Objects can form cluster in any subset of the data columns,
and the number of data columns in real life applications,
such as DNA array analysis and collaborative filtering, are
usually in the hundreds or even thousands.

The second challenge is that we want to build a “depth-
first” [1] clustering algorithm. Unlike many subspace clus-
tering algorithms [4, 2] that find clusters in lower dimen-
sions first and then merge them to derive clusters in higher
dimensions, our approach first generate clusters in the high-
est dimensions, and then find low dimensional clusters not
already covered by the high dimensional clusters. This ap-
proach is beneficial because clusters that span a large num-
ber of columns are usually more of interest, and it avoids
generating clusters which are part of other clusters. It is
also more efficient because the combination of low dimen-
sional clusters to form high dimensional ones are usually
very expensive.

Note that if the objects cluster on columns T , then they
also cluster on any subset of T . In our approach, we are
interested in objects clustered on column set T only if there
does not exist T ′ ⊃ T , such that the objects also cluster on
T ′. To facilitate further discussion, we define the concept of
Maximum Dimension Set (MDS).

Definition 2. Assuming c = (O, T ) is a δ-pCluster. Col-
umn set T is a Maximum Dimension Set (MDS) of c if there
does not exist T ′ ⊃ T such that (O, T ′) is also a δ-pCluster.

Apparently, objects can form pClusters on multiple MDSs.
Our algorithm is depth-first, meaning we only generate pClus-
ters that cluster on MDSs.

4.1 Pairwise Clustering
Given a set of objects O and a set of columns A, it is not
trivial to find all the Maximum Dimension Sets for O, since
O can cluster on any subset of A.

Below, we study a special case where O contains only two
objects. Given objects x and y, and a column set T , we
define S(x, y, T ) as:

S(x, y, T ) = {dxa − dya|a ∈ T }

Based on the definition of δ-cluster, we can make the follow-
ing observation:

Pairwise Clustering Principle
Given objects x and y, and a dimension set T , x and y form
a δ-pCluster on T iff the difference between the largest and
smallest value in S(x, y, T ) is below δ.

Proof. Given objects x and y, we define function f(a, b)
on any two dimensions a,b ∈ T as:

f(a, b) = |(dxa − dya)− (dxb − dyb)|

According to the definition of δ-pCluster, objects x and
y cluster on T if ∀a, b ∈ T , f(a, b) ≤ δ. In other words,
({x, y}, T ) is a pCluster if the following is true:

max
a,b∈T

f(a, b) ≤ δ

According to the Pairwise Clustering Principle, we do not
have to compute f(a, b) for every two dimensions a, b in T , as
long as we know the largest and smallest values in S(x, y,T ).

We use �S(x, y, T ) to denote a sorted sequence of values in
S(x, y,T ):

�S(x, y, T ) = s1, ..., sk

si ∈ S(x, y,T ) and si ≤ sj where i < j

Thus, x and y forms a δ-pCluster on T if sk − s1 ≤ δ.
Given a set a attributes, A, it is also not difficult to find the
maximum dimension sets for object x and y.

Lemma 2. MDS Principle
Given a set of dimensions A, Ts ⊆ A is a maximum dimen-
sion set of x and y iff:

i) �S(x, y,Ts) = si · · · sj is a (contiguous) subsequence

of �S(x, y, T ) = s1 · · · si · · · sj · · · sk, and
ii) sj− si ≤ δ, whereas sj+1− si > δ and sj − si−1 > δ.

Proof. Given �S(x, y, Ts) = si · · · sj and sj − si ≤ δ,
according to the pairwise clustering principle, Ts is a δ-
pCluster. Furthermore, ∀a ∈ T − Ts, we have dxa − dya ≥
sj+1 or dxa−dya ≤ si−1, otherwise a ∈ Ts since �S(x, y,Ts) =
si · · · sj . If dxa − dya ≥ sj+1, from sj+1 − si > δ we get
(dxa − dya) − si > δ, thus {a} ∪ Ts is not a δ-pCluster. On
the other hand, if dxa − dya ≤ si−1, from sj − si−1 > δ we
get sj − (dxa − dya) > δ, thus {a} ∪ Ts is not a δ-pCluster
either. Since Ts can not be enlarged, Ts is an MDS.

Based on the MDS principle, we can find the MDSs for ob-
jects x and y in the following manner: we start with both
the left-end and the right-end placed on the first element of
the sorted sequence, and we move the right-end rightward
one position at a time. For every move, we compute the
difference of the values at the two ends, until the difference
is greater than δ. At that time, the elements between the
two ends form a maximum dimension set. To find the next
maximum dimension set, we move the left-end rightward one
position, and repeat the above process. It stops when the
right-end reaches the last element of the sorted sequence.

Figure 7 gives an example of the above process. We want
to find the maximum dimension sets for two objects whose
values on 8 dimensions are shown in Figure 7(a). The pat-
terns are hidden until we sort the dimensions by the dif-
ference of x and y on each dimension. The sorted sequence
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Figure 7: Finding MDS for two objects

S = −3,−2,−1, 6, 6, 7, 8, 10 is shown in Figure 7(c). Assum-
ing δ = 2, we start at the left end of S. We move rightward
until we stop at the first 6, since 6− (−3) > 2. The columns
between the left end and 6, {e, g, c}, is an MDS. We move
the left end to −2 and repeat the process until we find all 3
maximum dimension sets for x and y: {e, g, c}, {a, d, b, h},
and {h, f}. Note that maximum dimension sets might over-
lap.

A formal description of the above process is given in Algo-
rithm 1. We use the following procedure to find MDSs for
objects x and y:

pairCluster(x, y,A, nc)

where nc is the (user-specified) minimal number of columns
in a pCluster. According to the definition of the pCluster
model, the columns and the rows of the data matrix carry
the same significance. Thus, the same method can be used
to find MDSs for each column pair, a and b:

pairCluster(a, b,O, nr)

The above procedure returns a set of MDSs for column a
and b, except that here the maximum dimension set is made
up of objects instead of columns. As an example, we study
the data set shown in Figure 8(a). We find 2 object-pair
MDSs and 4 column-pair MDSs.

4.2 MDS Pruning
The number of pairwise maximum dimension sets depends
on the clustering threshold δ and the user-specified mini-

Input: x, y: two objects, T : set of columns, nc: minimal
number of columns, δ: cluster threshold

Output: All δ-pClusters with more than nc columns

s← dx − dy; /* i.e., si ← dxi − dyi for each i in T */
sort array s;
start← 0 ; end← 1 ;
new ← TRUE; /* a boolean variable, if TRUE, indicates

an untested column in [start, end] */
repeat

v ← send − sstart;
if |v| ≤ δ then

/* expands δ-pCluster to include one more columns
*/
end← end + 1;
new ← TRUE;

else
Return δ-pCluster if end − start ≥ nc and new =
TRUE;
start← start + 1;
new ← FALSE;

until end ≥ |T |;
Return δ-pCluster if end− start ≥ nc and new = TRUE;

Algorithm 1: Find two-object pClusters:
pairCluster(x, y, T , nc)

mum number of columns, nc. However, if nr > 2, then only
some of the pairwise MDSs are valid, i.e., they actually occur
in δ-pClusters with a size larger than nr × nc. In this sec-
tion, we describe how the MDSs can be pruned to eliminate
invalid pairwise clusters.

Given a clustering threshold δ, and minimum cluster size
nr × nc, we use Txy to denote an MDS for objects x and y,
and Oab to denote an MDS for columns a and b. We prove
the following lemma:

Lemma 3. MDS Pruning Principle
Let Txy be an MDS for objects x, y, and a ∈ Txy. For any O
and T , a necessary condition of ({x, y} ∪ O, {a} ∪ T ) being
a δ-pCluster is ∀b ∈ T , ∃Oab ⊇ {x, y}.

Proof. Assume ({x, y} ∪ O, {a} ∪ T ) is a δ-pCluster.
Since a submatrix of a δ-pCluster is also a δ-pCluster, we
know ∀b ∈ T , ({x, y} ∪ O, {a, b}) is a δ-pCluster. Accord-
ing to the definition of MDS, there exists at least one MDS
Oab ⊇ {x, y}∪O ⊇ {x, y}. Thus, there are at least |T | such
MDSs.

Since we are only interested in δ-pClusters ({x, y}∪O, {a}∪
T ) with size ≥ nr×nc, the minimum number of such column
MDSs is nc − 1. Thus, the pruning criterion can be stated
as follows:

For any dimension a in a MDS Txy, we count the number
of Oab that contain {x, y}. If the number of such Oab is
less than nc− 1, we remove a from Txy. Furthermore, if the
removal of a makes |Txy| < nc, we remove Txy as well.



c0 c1 c2

o0 1 4 2
o1 2 5 5
o2 3 6 5
o3 4 200 7
o4 300 7 6

(a) A 5× 3 Data Matrix

(o0, o2)→ {c0, c1, c2}
(o1, o2)→ {c0, c1, c2}

(b) MDS for object pairs

(c0, c1)→ {o0, o1, o2}
(c0, c2)→ {o1, o2, o3}
(c1, c2)→ {o1, o2, o4}
(c1, c2)→ {o0, o2, o4}

(c) MDS for column pairs

Figure 8: Maximum Dimension Sets for Column- and Object-pairs (δ = 1, nc = 3, and nr = 3)

(c0, c1)→ {o0, o1, o2}
(c0, c2)→ {o1, o2, o3}
(c1, c2)→ {o1, o2, o4}
(c1, c2)→ {o0, o2, o4}

(a) Generating MDSc from data.

(o0, o2)→ {c0, c1, c2} ×
(o1, o2)→ {c0, c1, c2}

(b) Generating MDSo from data,
using MDSc in (a) for pruning

(c0, c1)→ {o0, o1, o2} ×
(c0, c2)→ {o1, o2, o3} ×
(c1, c2)→ {o1, o2, o4} ×
(c1, c2)→ {o0, o2, o4} ×

(c) Pruning MDSc in (a) using
MDSo in (b)

Figure 9: Generating and Pruning MDS iteratively (δ = 1, nc = 3, and nr = 3)

Apparently, the same reasoning applies to pruning column-
pair MDSs. Indeed, we can prune the column-pair MDSs
and object-pair MDSs by turns. We first generate column-
pair MDSs from the data set. Next, when we generate
object-pair MDSs, we use column-pair MDSs for pruning.
Then, we prune column-pair MDSs using the pruned object-
pair MDSs. This procedure can go on until no more MDSs
can be eliminated.

We continue with our example in Figure 8. First, we choose
to generate column-pair MDSs, and they are shown in Fig-
ure 9(a). Second, we generate object-pair MDSs. MDS
(o0, o2)→ {c0, c1, c2} is to be eliminated because the column-
pair MDS of (c0, c2) does not contain o0. Third, we review
the column-pair MDSs based on the remaining object-pair
MDSs, and we find each of them is to be eliminated. Thus,
the original data set in Figure 8(a) does not contain any
3× 3 pCluster.

4.3 The Main Algorithm
Algorithm 2 outlines the main routine of the mining pro-
cess. It can be summarized in three steps. In the first step,
we scan the dataset to find column-pair MDSs for every
column-pair, and object-pair MDSs for every object-pair.
This step is realized by calling procedure pairCluster() in
Algorithm 1. Our implementation uses bitmaps to manage
column sets and object sets in MDSs. We store these MDSs
on disk.

In the second step, we prune object-pair MDSs and column-
pair MDSs by turns until no pruning can be made. The
pruning process is described in Section 4.2.

In the third step, we insert the remaining object-pair MDSs
into a prefix tree. Each node of the prefix tree uniquely
represents a maximum dimension set. Let’s assume there
exists a total order among the columns in A, for instance,

a ≺ b ≺ c ≺ · · · . An example of a prefix tree is shown in
Figure 10. To insert a 2-object pCluster (O, T ) into the pre-
fix tree, we first sort the columns in T into its ordered form,
T ′. Then we descend from the root of the tree following
the path of the columns in T ′ and add the two objects in O
to the node we reached in the end. For instance, if objects
{x, y} clusters on columns T = {f, c, a}, then x and y are
inserted into the tree by following the path acf . Since any
qualified MDS has more than nc dimensions, no objects will
be inserted into nodes whose depth is less than nc.

After all the objects are inserted, each node of the tree can
be regarded as a candidate cluster, (O, T ). The next step
is to prune objects in O so that (O, T ) becomes a pCluster.
This is realized by calling the pairCluster() routine again.
The fact that objects in O cluster on column set T also
means that they cluster on T ′, where T ′ is any subset of
T . Let’s assume T ′ is represented by another node, m. To
prune objects in node m we have to consider the objects in
O as well. Based on this observation, we start with the leaf
nodes. Let n be a leaf node, and it represents a candidate
cluster (O, T ). Apparently, there does not exist any node
in the prefix tree whose column set contains T , so we can
safely prune the objects in O to find all the pClusters. After
it is done, we add the objects in O to nodes whose column
set T ′ ⊂ T and |T ′| = |T | − 1.

Based on the above discussion, we perform a post-order
traversal of the prefix tree. For each node, we detect the
pClusters contained within. Then we distribute the objects
in the node to other nodes which represent a sub column set
of the current node. We repeat this process until no nodes
of depth ≥ nc are left.

Algorithm Complexity
The initial generation of MDSs in Algorithm 2 has time com-
plexity O(M2NlogN +N2MlogM), where M is the number
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Figure 10: A Prefix Tree. Each node represents
a candidate cluster, (O, T ), where O is the set of
objects inserted into this node, and T is the set of
columns (represented by the arcs leading from the
root to this node).

Input: D: data set, δ: pCluster threshold
nc: minimal number of columns, nr: minimal num-
ber of rows

Output: All pClusters with size ≥ nr × nc

for each a, b ∈ A, a �= b do
find column-pair MDSs: pairCluster(a, b,D, nr);

for each x, y ∈ D, x �= y do
find object-pair MDSs: pairCluster(x, y,A, nc);

repeat
for each object-pair pCluster ({x, y}, T )) do

use column-pair MDSs to prune columns in T ;
eliminate MDS ({x, y}, T ) if |T | < nc;

for each column-pair pCluster ({a, b}, O)) do
use object-pair MDSs to prune objects in O;
eliminate MDS ({a, b}, O) if |O| < nr;

until no pruning takes place;
insert all object-pair MDSs ({x, y}, T ) into the prefix tree:
insertT ree(x, y, T );
make a post-order traversal of the tree;
for each node n encountered in the post-order traversal do
O := objects in node n;
T := columns represented by node n;
for each a, b ∈ T do

find column-pair MDSs: C =
pairCluster(a, b,O, nr);
remove from O those objects not contained in any
MDS c ∈ C;

Output (O, T ) ;
Add objects in n to nodes which has one less column
than n;

Algorithm 2: Main Algorithm for Mining pClusters:
pCluster()

of columns and N is the number of objects. The worst case
for pruning is O(kM2N2), although on average it is much
less, since the average size of a column-pair MDS (number
of objects in a MDS) is usually much smaller than M . The
worst case of prefix-tree depth-first clustering complexity is
exponential with regard to the number of columns. How-
ever, since most invalid MDSs are eliminated in the pruning
phase, the complexity of this final step is greatly reduced.

5. EXPERIMENTS
We experimented our pCluster algorithm with both syn-
thetic and real life data sets. The algorithm is implemented
on a Linux machine with a 700 MHz CPU and 256 MB main
memory. Traditional subspace clustering algorithms can not
find clusters based on pattern similarity. We implemented
an alternative algorithm that first transforms the matrix by
creating a new column Aij for every two columns ai and
aj , provided i > j. The value of the new column Aij is
derived by Aij = ai − aj . Thus, the new data set will have
N(N − 1)/2 columns, where N is the number of columns in
the original data set. Then, we apply a subspace clustering
algorithm on the transformed matrix, and discover subspace
clusters from the data. There are several subspace cluster-
ing algorithms to choose from and we used CLIQUE [4] in
our experiments.

5.1 Data Sets
We experiment our pCluster algorithm with synthetic data
and two real life data sets: one is the MovieLens data set
and the other is a DNA microarray of gene expression of a
certain type of yeast under various conditions.

Synthetic Data
We generate synthetic data sets in matrix forms. Intially,
the matrix is filled with random values ranged from 0–500,
and then we embed a fixed number of pClusters in the raw
data. Besides the size of the matrix, the data generator
takes several other parameters: nr, the average number of
rows of the embedded pClusters; nc, the average number
of columns; and k, the number of pClusters embeded in the
matrix. To make the generator algorithm easy to implement,
and without loss of generality, we embed perfect pClusters in
the matrix, i.e., each embedded pCluster satisfies a cluster
threshold δ = 0. We investigate both the correctness and the
performance of our pCluster algorithm using the synthetic
data.

Gene Expression Data
Gene expression data are being generated by DNA chips and
other microarray techniques. The yeast microarray contains
expression levels of 2,884 genes under 17 conditions [19]. The
data set is presented as a matrix. Each row corresponds to
a gene and each column represents a condition under which
the gene is developed. Each entry represents the relative
abundance of the mRNA of a gene under a specific con-
dition. The entry value, derived by scaling and logarithm
from the original relative abundance, is in the range of 0
and 600. Biologists are interested in the finding of a subset
of genes showing strikingly similar up-regulation and down-
regulation under a subset of conditions [7].



MovieLens Data Set
The MovieLens data set [17] was made available by the
GroupLens Research Project at the University of Minnesota.
The data set contains 100,000 ratings, 943 users and 1682
movies. Each user has rated at lease 20 movies. A user
is considered as an object while a movie is regarded as an
attribute. In the data set, many entries are empty since a
user only rated less than 10% movies on average.

5.2 Performance Analysis
We evaluate the performance of the pCluster algorithm as we
increase the number of objects and columns in the dataset.
The results presented in Figure 11 are average response
times obtained from a set of 10 synthetic data. As we know,
the columns and the rows of the matrix carry the same sig-
nificance in the pCluster model, which is symmetrically de-
fined in Formula 2. Although the algorithm is not entirely
symmetric as it chooses to generate MDSs for column-pairs
first, the curves in Figure 11 demonstrate similar superlinear
patterns.
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Figure 11: Performance Study: response time vs.
data size.

Data sets used for Figure 11(a) are generated with number
of columns fixed at 30. There is a total of 30 embedded
pClusters in the data. The minimal number of columns of
the embedded pCluster is 6, and the minimal number of
rows is set to 0.01N , where N is the number of rows of the
synthetic data. The mining algorithm is invoked with δ = 3,
nc = 5, and nr = 0.01N . Data sets used in Figure 11(b) are
generated in the same manner, except that the number of
rows is fixed at 3,000, and each embedded pClusters has at
least 0.02C columns, where C is the number of columns of

the data set. The mining algorithm is invoked with δ = 3,
nc = 0.02C, and nr = 30.
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Figure 12: Sensitiveness to Mining Parameters: δ,
nc, and nr

Next we study the impact of the mining parameters (δ, nc,
and nr) on the response time. The results are shown in
Figure 12. The synthetic data sets in use have 3,000 objects,
30 columns, and the volume of each of the 30 embedded
pClusters is 30× 5 on average.

We now evaluate the pruning method used in the algorithm.
The data sets in use are 3, 000 × 100 in size, each of the 30
embeded pClusters having a minimal volume 30 × 15. The
statistics collected in Table 1 and Table 2 show that the
pruning method reduces the number of MDS dramatically.
In Table 2, the time spent in the first round is roughly the
same, because the data set has fixed size. The time spent
in round 2 and afterwards decreases as the number of valid
MDS goes down.

The pruning process is essential in the pCluster algorithm.
This is demonstrated by Figure 13(a), where the data set
in use is the same as in Figure 11(a). Without pruning,
the clustering algorithm can not go beyond 3, 000 objects,
as the number of the MDSs become too large to put into a
prefix tree. It also shows that roughly 5 rounds of pruning
are enough to get rid of most of the invalid MDSs.

Finally, we compare the pCluster algorithm with an alter-
native approach based on the subspace clustering algorithm
CLIQUE [4]. The data set has 3, 000 objects and the sub-
space algorithm does not scale when the number of columns



Parameters # of MDSs for object pairs after pruning # of found
δ nc nr 1st round 2nd round 3rd round 4th round 5th round clusters

3 16 50 8,184 2,132 102 0 0 0
3 14 40 46,360 19,142 10,241 5,710 3,123 1
4 14 35 78,183 41,435 26,625 16,710 9,104 8
4 12 30 415,031 119,342 62,231 39,101 21,176 30
5 12 30 726,145 345.432 182,127 110,452 77,352 30

Table 1: Pruning MDS for object pairs (first 5 rounds)

Parameters Time spent in the first 5 rounds of pruning Total time
δ nc nr 1st round 2nd round 3rd round 4th round 5th round (including all rounds)

3 16 50 73 16 10 0 0 99
3 14 40 73 18 14 9 3 117
4 14 35 75 28 18 10 4 161
4 12 30 76 49 27 19 9 222
5 12 30 77 63 39 23 10 253

Table 2: Time (sec.) spent in each round of pruning

goes beyond 100.

We apply the pCluster algorithm on the yeast gene microar-
ray [19]. We present some performance statistics in Fig-
ure 14. It shows that a majority of maximum dimension
sets are eliminated after the 1st and 2nd round. The over-
all running time is around 200-300 seconds, depending on
the user parameters. Our algorithm has performance ad-
vantage over the bicluster algorithm [7], as it takes roughly
300-400 seconds for the bicluster algorithm to find a single
cluster. We also discovered some interesting pClusters in the
MovieLens dataset. For example, there is a cluster whose at-
tributes consists of two types of movies, family movies (e.g.,
First Wives Club, Adam Family Values, etc.) and the ac-
tion movies (e.g., , Golden Eye, Rumble in the Bronx, etc.).
Also the rating given by the viewers in this cluster is quite
different, however, they share a common phenomenon: the
rating of the action movies is about 2 points higher than
that of the family movies. This cluster can be discovered
in the pCluster model. For example, two viewers rate four
movies as (3, 3, 4, 5) and (1, 1, 2, 3). Although the abso-
lute distance between the two rankings are large, i.e., 4, but
the pCluster model groups them together because they are
coherent.

6. CONCLUSION AND FUTURE WORK
Recently, there has been considerable amount of research
in subspace clustering. Most of the approaches define sim-
ilarity among objects based on their distances (measured
by distance functions, e.g. Euclidean) in some subspace.
In this paper, we proposed a new model called pCluster to
capture the similarity of the patterns exhibited by a cluster
of objects in a subset of dimensions. Traditional subspace
clustering, which focuses on value similarity instead of pat-
tern similarity, is a special case of our generalized model.
We devised a depth-first algorithm that can efficiently and
effectively discover all the pClusters with a size larger than
a user-specified threshold.

The pCluster model finds a wide range of applications in-
cluding management of scientific data, such as the DNA

microarray, and ecommerce applications, such as collabo-
rative filitering. In these datasets, although the distance
among the objects may not be close in any subspace, they
can still manifest shifting or scaling patterns, which are not
captured by tradition (subspace) clustering algorithms. We
have demonsrtated that these patterns are often of great in-
terest in DNA microarray analysis, collaborative filtering,
and other applications.

As for future work, we believe the concept of similarity in
pattern distance spaces has opened the door to quite a few
research topics. For instance, currently, the similarity model
used in data retrieval and nearest neighbor search is based on
value similarity. By extending the model to reflect pattern
similarity will benefit a lot of applications.
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