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ABSTRACT

The problem of simultaneously clustering columns and rows (co-
clustering) arises in important applications, such as text data min-

ing, microarray analysis, and recommendation system analysis. Corfirgency table.

pared with the classical clustering algorithms, co-clustering algo-
rithms have been shown to be more effective in discovering hidden
clustering structures in the data matrix. The complexity of previous
co-clustering algorithms is usually(m x n), wherem andn are

the numbers of rows and columns in the data matrix respectively.
This limits their applicability to data matrices involving a large
number of columns and rows. Moreover, some huge datasets ca
not be entirely held in main memory during co-clustering which
violates the assumption made by the previous algorithms. In this
paper, we propose a general framework for fast co-clusterige lar
datasetsCRD. By utilizing recently developed sampling-based ma-
trix decomposition method§€RD achieves an execution time lin-
ear inm andn. Also, CRDdoes not require the whole data matrix

be in the main memory. We conducted extensive experiments on

both real and synthetic data. Compared with previous co-clustering
algorithms,CRDachieves competitive accuracy but with much less
computational cost.

Categories and Subject Descriptors

H.2.8 [Database Managemerjt Database Applications-Bata min-
ing

General Terms
Algorithms
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1. INTRODUCTION

Clustering is a fundamental data mining problem with a wide va-
riety of applications. It seeks good partitioning of the data points

the points in different clusters are dissimilar. Many real-life appli-
cations involve large data matrices. For example, in text and web
log analysis, the term-document data can be represented as con-
In biology domain, the gene expression data are
organized in matrices with rows representing genes and columns
representing experimental conditions. Recently there has been a
growing research interest in developing co-clustering algorithms
that simultaneously cluster both columns and rows of the data ma-
trix. Co-clustering takes advantage of the duality between rows and
columns to effectively deal with the high dimensional data. It has

nsuccessful applications in gene expression data analysis [3] and text

mining [5].

Many formulations of the co-clustering problem have been pro-
posed, such as hierarchical model [12], bi-clustering model [3],
pattern-based model [20] and so on. The partitioning-based model,
which was first introduced in [12], has attracted much interest, be-
cause of the simplicity of the formalization and its close relation-
ships to other well studied problems, such as spectral clustering and
matrix decomposition [1, 5, 6, 8, 14, 15]. In this paper, we focus
on the partitioning-based co-clustering formulation. Suppose that
the data matrixD consists ofn rows andn columns. Given input
parameterg and!, the partitioning-based co-clustering algorithms
aim to partition the rows of data matrix intoclusters and columns
into [ clusters to optimize certain objective functions measuring the
quality of clustering results. Please refer to Section 2 for detailed
discussion on recent development of co-clustering algorithms.

Although theoretically well studied and widely applied, existing
co-clustering algorithms usually have time complexity in the order
of m x n. For general data matrices, the information-theoretic
co-clustering algorithm introduced in [5] tak&¥(¢(k + [)mn)
time to find the clustering results, whetdés the number of itera-
tions. Matrix-decomposition (such as nonnegative matrix factoriza-
tion (NMF) [13]) based co-clustering methods [8, 15] have similar
time complexity. In real-life applications, however, the numbers of
rows and columns of the data matrices are usually large. For exam-
ple, the term-document datasets may contain at least tens of thou-
sands of articles and thousands of words [17]. The high throughput
microarray techniques can monitor the expression values of tens of

such that points in the same cluster are similar to each other andthousands of genes under hundreds to thousands of experimental
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conditions [16]. Such high time complexity limits the applicability
of existing algorithms to these large datasets. Furthermore, these
algorithms implicitly make the assumption that the whole data ma-
trix is held in the main memory, since the original data matrix needs
to be accessed constantly during the execution of these algorithms.
To address these limitations of existing work, in this paper, we
propose a general co-clustering framew@RD', for large datasets.
This framework is based on recently developed sampling-based

lCRD stands for @-clustering based on Column andWDecomposition



matrix decomposition method CUR [9, 18]. Unlike NMF based al- matrix to form factor matrices. Because of the random sampling
gorithms, the complexity o€ERD algorithms is linear inm andn. procedure, these methods are non-deterministic. However, they can
Moreover, most of the operations@RDinvolve only the sampled guarantee a provable bound on reconstruction error in probabilis-
columns and rows. Therefore, we do not require the whole data tic sense. CUR has been successfully applied in recommendation
matrix be in main memory. This is crucial for large datas€&RD system [10].

can be implemented using different algorithms such as k-means

or mforma_tlon-theoretlc co-cluste_rlng methods. We conduct extep- 3. PRELIMINARIES

sive experiments on both synthetic and several well-known real-life ) - ) ) )

datasets. The experimental results show @RD can be orders of In this secpon, we prese_nt_ r_lotatlons that will be used in the paper
magnitude faster than previous information-theoretic methods and @nd we provide formal definitions. .

NMF based methods. At the same time, it achieves comparable e denote the two-dimensional matrix(table)ds A/ € R™ ™.

accuracy to other methods. R = {ri,rz,..,rm} represents the set of row vectors bf,
wherer; is thei'™ row vector. C = {c1,cz,...,ca} represents
the set of column vectors, wheegis the j*" column vector. Thus,
2. RELATED WORK §

) . ) we haveM = (ci...cn) = (ri..rm)”. The element at th¢"
Co-clustering has attracted much research interest in recent yearsow and;*" column is denoted byn.;. Note that in this paper, we
It simultaneously clusters columns and rows in the data matrix. In yse pold font, such as;, to represent vector and use normal font,

each iteration of the co-clustering procedure, rows(columns) are sych agn,;, to represent scalar. An example matrix consisting of
clustered based on their similarities in the column(row) clusters. g yows and 8 columns is shown in Figure 1.

A notable early work is presented in [12] which adopts a splitting

procedure to perform hierarchical row and column clustering on the a1l laalea el o | cs

data matrix. Recently, an information-theoretic algorithm specifi- mlT1l1l0lo0[0[ o0 0 0

cally designed for contingency table is presented in [5]. The al- w1l 1l0l0[0] 0 0 0

gorithm monotonically increases the preserved mutual information ~TolTol 2121210 0 0

by intertwining row and column clusterings at successive stages. 3

In [1], the authors further propose a more general co-clustering ] 0]01212]12]0 0 0

framework based on Bregman divergence, which includes squared 751 0]010J]0]0]15]15]15
Euclidean distance, KL-divergence, Itakura-Saito distance, etc., as 6| 0] 0]0]0]0]15[15]15

special cases. Thus it is applicable to a wide range of data matri-
ces. Given a general data matrix withrows andm columns, the
complexity of the information-theoretic co-clustering approaches ) ) )
is O(t(k + l)mn), wheret is the number of iterations. This is be- A co-clustering of matrix\/ consists of a set of row clusters and
cause, in each iteration, the algorithm needs to compare each col-column clusters. Left = {ry,75,...,7%} denote the row cluster
umn or row with respect to the representative point of each cluster set andC' = {¢1, ¢z, ..., ¢} denote the column cluster set. Each
in the current clustering result. For sparse matrices, the algorithm row of M belongs to one of the row clusters. This relationship
can haveO(t(k + )| E|) complexity by efficient implementation, ~ can be considered as a many-to-one mapping from rows to row
where| E| is the number of non-zero elements in the matrices. clusters, i.e.3(ri) = rj, ri € R,7; € R. The relationship be-
Co-clustering is closely related to matrix decomposition. Sin- tween columns and column clusters is similar, i#g:) = ¢,
gular value decomposition (SVD) [11] is perhaps the most well- c¢; € C,¢; € C.
known matrix decomposition method. The lower rank singular ~ Our CRDframework consists of two components.
vector or eigenvector space provides a compact representation of
the original space. Some research work [4, 7] clusters data points 1. Low rank matrix decomposition: The data matrix is decom-
in the transformed space. However, since the factor matrices may posed using a subset of its rows and columns. The decompo-
contain negative values, it is hard to interpret the co-clustering re- sition procedure must be fast and accurate.
sults directly from SVD. Nonnegative matrix factorization (NMF)
[13] imposes the constraint that the factor matrices contain only
nonnegative values and has been successfully applied in document -
clustering [19]. In [15], the authors propose block value decom- labels for the rest rows and columns are a35|gr_1ed base_d on
position (BVD) for co-clustering. BVD generalizes the idea of those selected ones. In general, any co-clustering algorithm
NMF to factorize the original matrix into three nonnegative ma- that optimizes its objective function by alternating the clus-
trices, which provides intuitive interpretation of the co-clustering tering of rows and columns can be useCiRD,
structure in the data matrix. The theoretic relationship between
NMF and co-clustering is studied in [8]. It has been shown that
the objective of k-means co-clustering and nonnegative matrix tri-
factorizations with the orthogonal constraint are the same. A sim-
ilar idea is also exploited in [14]. Similar to information-theoretic
co-clustering, the time complexity of matrix decomposition based
co-clustering methods usually is also in the orderrof n. For
example, the complexity of BVD i©(t(k + [)mn) with ¢ being
the number of iterations. This is because updating the entries of the
factor_matrices usually involves m_ultiplications of the data matrix. M = Wg - Mg, where Wg € Rme'7 Mg € R™ X7 )
Unlike PCA/SVD and NMF which generate new bases for the
data space, recently developed matrix decomposition methods CURW R - My is a qualified low rankrow decomposition of\/ if it
[9] and CMD [18] sample columns and rows from the original data satisfies the following constraints,

Figure 1: Example Matrix

2. Co-clustering on the subset of rows and columns: The se-
lected rows and columns are co-clustered first. The cluster

There may be many low rank decompositions for a given data
matrix. However, not all of them are appropriate for co-clustering.
Therefore, we provide definitions for qualified low rank row/column
decompositions that can be useddRD.

DEFINITION 3.1. Low rank row decomposition: A low rank
row decomposition o/ approximates the original matrix using a
subset of rows.



1. ||[M — M||r < e||M||F, wheres < 1, is a user-specified
approximation rate.|| - || » represents the Frobenius matrix

norm [11].

2. Mgr = ( Ty, Tuy Ty, )T, where{ry,...r,, ,} C
R.

3. GivenMg = ( ru;, Tu, ry, ) the correspond-
ing rows inWg have|w.,,;| > |wu”| for aII ie{l,..,m'}
andj € {1,....m'} — {i}.

Constraint 1 requires that matriX has small approximation er-
ror bounded by a user-specified threshaldrhe number of rows,
m/, that need to be included i can be calculated from and
the rank of M. Constraint 2 ensures that each row vectonin

For both decompositions, we hajj@/ — M||» = 0. Note that
the rows inMg and the columns i/ are all selected fromi/.
And bothIWr andW¢ satisfy Constraint 3 in our definition.

Using the 4 matrices{ Mr, Wg, Mc, Wc}, we want to find
a co-clustering ofM/ which is as good as the result obtained by
running previous co-clustering algorithms & directly.

4. LOW RANKROW/COLUMN DECOMPO-
SITION

In our CRDframework, the row/column decomposition serves as
a pre-processing step. Ontéis decomposed into qualified matri-
ces defined in Definitions 3.1 and 3.2, co-clustering algorithms will
be applied on the decomposition matricéd/c, We, Mg, Wr}.
In this section, we explain the details of the low rank/column

is from M. And Constraint 3 ensures the correct mapping of the decomposition of the original matrix/. Before we start, we list a
row cluster labels between selected rows and the rest rows. Detailsset of matrix notations that will be frequently used in this section
about the decomposition and its usage will be discussed in Sectionsn Figure 2.

4 and 5 respectively.

Let Wr be represented by its row vectors, i.e.,
W )T. SinceM = Wg- Mg, for each
row vector in the approximation matrix/, we have,

!
m

= E Wij * Tu,
=1

Therefore, for each row;, its corresponding row iz can be
considered as a projection f onto the sub-space formed by the
rows in Mg.

The definition of low rankcolumndecomposition of\/ is simi-
lar.

WR:(W1 W2

DEFINITION 3.2. Lowrank column decomposition: A low rank
columndecomposition of\/ approximates the original matrix us-
ing a subset of columns.

M = Mc - We, where Me GRmX"/,Wc GR"IX" )

Mc - We is a qualified low rankcolumndecomposition of/ if it
satisfies the following constraints,

1. [|M — M||r < &||M||r, wheres < 1.

2. Mc = (cu Cuy v, ), Where{c,,...c, ,} C
C.

3. GivenMc¢ = ( €u;, Cuy vy, ), the correspondlng
columns inWe have|wiy, | > |wjy,|, foralli € {1,...,n"}
andj € {1,...,n'} — {i}.

For example, we can find a low rank row/column decomposition
for the matrix in Figure 1. They are

10 0
é (1) 8 11000 0 0 0
Wr-Mr=| 90 1 o|-l0ooz222 0 o o
oy 00000 15 1.5 1.5
00 1
10 o0
(1J g 8 1 1000000
Mc -We = 0 2 0 .l oo 111 0 00
05 00000 1 1 1
0 0 15

M data matrix,// € R™*"

Be,Bu, CUR: M ~ BcBuyBr

Br Be € R™™ By € R¥*™ B € R™*"

MpWg | M ~ WgMg, Mg € R™ " Wg € R™*™

McWe | M~ McWe, Mg € R™*™ We € R™ *™

Uc,2Xc, SVD of Be, Be = UcEcVCT

Ve Uc € R™ ™, 3o € R™™, Vo € RV X"

Cr sub-matrix of B¢, Cr € R™ *"

A diagonal matrixdiag(A1, Az, ..., Adns),As iS the
weight assigned to the selected columpby CUR

v diagonal matrixdiag (i1, 2, ..., Ym )1 is the
weight assigned to the selected reyy by CUR

Figure 2: Notations for frequently used matrices

As defined in Definition 3.1, in low rantow decomposition, the
matrix M is approximated by two decomposition matricdgzp
and Wgr. Mg consists of a set of row vectors selected fram
which establish a row sub-space. AWdr can be considered as a
projection of all the row vectors i/ onto the sub-space formed
by rows inMg.

We can use SVD to calculai&r from Mg. First, we construct
the orthogonal basis af/x using SVD, i.e..Mr = UrXrVr".
Without loss of generality, we can assume thdt < n, and let
V4 be a sub-matrix of/r consisting of the firstn’ row vectors in
Vr(right eigenvectors). Then we can get a low rank approximation
of M as

v
Since we know thatV, = MEURE R,

M=M- V-

M =M - (MRURSE") - (S5'Uk M)

= (MMgr"UrSR*UL) - Mg

Thus,Wr = MMr"UrSR*UL.

In order to improve the efficiency of the entire algorithm, the
approximate decomposition @ff need to be calculated very effi-
ciently. Most of the previous co-clustering algorithms have runtime
complexity equal to or higher thad(¢(k + I)mn) wherek and!
are the number of row/column clusters and the number of iter-
ations. Therefore, the decomposition method we use need to have
complexity lower tharO (¢(k 4 )mn). When using SVD to calcu-
late W, its time complexity iSO (mnm') wherem' is the number



of selected rows. Though’ < m, m’ is greater than or equal to
k. Thus, itis inefficient to use SVD directly to calculdfér, .

In this paper, we use the CUR decomposition method proposed

in [9, 18] to find qualified low rank row/column decompositions.
The runtime complexity of CUR isnn + O((m + n)m/n’), in
which mn is used to calculate the norm of each row/column vec-
tor. In fact, the norm of row and column vectors only need to be
calculated once and can be stored with the matrix for further use.
Besidesmn, CUR has runtime)((m + n)m’n’) which is much
smaller tharO(¢(k + )mn).

The CUR method approximately decompogddsnto three ma-
trices, i.e.,

M ~ B¢ - By - Br

whereBe € R™*™ is a set of weighted columns selected from
M, Br € R™*" is a set of weighted rows selected frav and
By € R"*™ . Rows and columns iBc and B are randomly
selected with probability in proportional to their norm. ARY; is
calculated based oBc and Br.

If matrix M has rank equal t&, it is proven in [9] that

[|[M — Bc - Bu - Brllr <el|M||r

holds with probability(1 — ¢) if the numbers of selected columns
and rows are at least

, (14 +/8log(1/8))* |, k
€ 02¢2

Thus, if we use a small, with high probability, the CUR de-
composition satisfies the first constraint on the approximation error
betweenM and M in Definitions 3.1 and 3.2. Details about the
decomposition algorithm can be found in [9, 18].

Before we can use CUR to generate our low rank row/column
decomposition, we have to make some changes in the method.

e B¢ and Bg consist of weighted column and row vectors of
M. While in our CRD algorithm, we needV/c and Mg
consist of original row and column vectors &f.

e We only need to decompodé into two matrices while CUR
gives us three. A simple multiplication of two of the matrices
in {Bc, Bu, Br} seems to be able to g8tz andW¢, i.e.,

Wgr = B¢ - By andW¢e = By - Bgr. However, we need to
select rows and columns that do not violate Constraint 3 in
Definitions 3.1 and 3.2. We will discuss it in the next section.

4.1 Generate Low Rank Row Decomposition
Using CUR

First, we generatd/r from Br. To approximatel/, the three
matrices used by CUR are,

M = B¢ - By - Br

:( /\1Cv1 wm’rum/ )T

®)

An’c'unl )BU( wlrul

whereB¢ € ]R’"X",, By € RV *™ andBg € R™ X",
By multiplying each row vector irBr with % we get

1/ 0. 0
Mr=U""'Br=| 0. 1/ ..0 Br (4
0... .0 1/

Obviously, M in Equation 4 satisfies Constraint 2 in Definition
3.1.

Next, we generate a qualifidiiz. By replacingBr in Equation
3 with ¥ - Mg, we get

M = (B¢ - By - W) - Mg (5)
In CUR, givenB¢ andBg,
By = VeXo*VE CF (6)

whereV andX ¢ are singular vectors and singular values3,
i.e., Bc = UcXcVe™. C consists of thqus, ..., u,, }" rows
of Be (the set of selected rows iBr) and each row irC% is
weighted by the corresponding. To remove the weight; from
each row ofC%, let

Cr=V"1.Ch

Using Equations 6 and 7, we have

@)

Bc - By - ¥ = BoVeX 2 Ve Chw? (8)

Without loss of generality, we assume thét< m. Let U/ be
a sub-matrix o/ which consists of the first’ column vectors in
Uc. We have

Us=Bc VoS ©)

By combing Equations 8 and 9, we have

Be By -V =UL - Uy - ©2 (10)

whereU¢  consists of thu, ..., u, }*" rows of U5 which cor-
respond to the selected rowsiy.
Let Wr = Be - By - U2, we have
Wr = B¢ -By -0 =U,-Ulg - U3 (12)

Constraint 3 in Definition 3.1 only involves those rowsliriz
which correspond to the selected rowshifir(Br). Let this sub-

matrix of Wx be Wg (Wg € R™ *™'), we have
Wi =Ulr -Ulg - 9° 12

Let UICR = ( ull
and only if

u',, )T, W} satisfies Constraint 3 if

Vi,j € {Lom'}i # G, i ul| > i) (13)

Ut R is generated fron/; according to the set of rows selected
in Bgr. In order to generate a qualifidéz, Equation 13 must be
verified every time a new row is selected to be include®jn

The algorithm to generate low ramkw decomposition using
CUR is shown in Figure 3.

In Figure 3, the steps labelled wi@lUR are the steps in the orig-
inal CUR decomposition method. The remaining steps in Figure 3
are added to enforce the constraints definedighand Mg. The
qualification of Wg is ensured by the test in Step 8. A new row
is added toBp if and only if it does not violate Equation 13. The
qualification of Mg is ensured in Step 12.

Note that the SVD operation in Step 2 is calculated by eigenvalue
decomposition orBE Be which is a smallh’ x n’ matrix. Uf is
not calculated until Step 3.

4.2 Generate Low Rank Column Decomposi-
tion Using CUR

The algorithm in Figure 3 only ensures the qualificatioriio
and Mg. Since the columns are randomly selected without any
restriction in Step 1 in Figure 3, we cannot guarantee qualified
andWe by simply lettingM¢c = BocA™" andW¢ = ABy Br.



Input: column clustersC' = {¢i,...¢éx}. The co-clustering structure af-
e matrix M € R™*™ ter thet*” iteration is represented b§* and@® which map each
e number of rows/columns to seleet’ andn’ row/column in the data matrix to a row/column cluster.

. i mxm’ m’ xn .
Output: QualifiedWr € R Mp € R vi € {1, ...,m},ﬁt(ri) =1}, where 7¥; € R

Method:
1. CUR:generatc, Bc = ( Micy, ... Apcy, ) Vi e {1,...,n},0%(c;) = ¢, where é; € C
2. CUR: use SVD to find’c and¥¢ of Bc. An illustration of the Iterative Single Side Clustering approach is
3. CUR: calculatel/, = ( v’y .. u', )T according to ~ shownin Figure 4.
Equation 9
4, i=0,ULr =10 Input : Data matrix M, Output: Co-clustering for
5. whilei < m’ Number of rows/columns to select, m'’ ?"A‘,'IWE;W;;‘"dCMU’"“S
ber of row/column clusters k| W, o
6. CUR:randomly selected a rawy, calculatey;. e rowcouTncus o
7. letU" =(Ufg ui)"
o ( JCR u- ) (1)Random\yinitia\izeﬁﬂ.ﬁﬂforeach
8. if U” satisfies Equation 13 row and column in M.
9. CUR:add row; to By (weighted byy;). Converge?

10. Ubp=U"i=1i+1.
11. CUR: calculateBy using Equation 6.

Start iteration, t=0

1 . ¢
12. Mn =¥ Bz, Equation 4. (2) Single side ruwc:uslerin on Mbased An pdeted cohumn
13. Wr = B¢ By Y, Equation 11. o ng, 0 clustering, g™, for

F each column in M

Figure 3: Generate Low RankRow Decomposition Using CUR

An updated row
clustering, B for
gach rowin M

(3) Single side column clustering on M
based on ¢,

|

However, if we transpose the original mati{, exchangen’
andn’, and use them as input to the algorithm in Figure 3, we can
get qualifiedM ¢ andW¢ by letting

T T Figure 4: Co-clustering using lterative Single Side Clustering
Mo = Mg, We = Wg (14) Approach

Therefore, in order to get a qualified low rardw/columnde-
composition, we need to run the algorithm in Figure 3 twice. In
general, if the norms of row and column vectors of a data matrix
have been calculated, our decomposition method will @ken +
n)m’n’) time to find a set of qualified matricéd/r, Wgr, Mc, W}
wherem’ andn’ are the numbers of selected rows and columns
respectively. As we will show in the experiment section, the time
used on finding the decomposition is minimal and can be neglected.

In this paper, we use this general approach as the co-clustering
component in oulCRD framework. In each iteration, instead of
re-clustering all rows (or columns), we only re-cluster the selected
rows in Mg, or the selected columns . Then we assign cluster
label to each row (or column) i/ based oriVx (or W) and the
cluster labels of the selected rows (columns).

Let the single-side clustering structure on the rowsii and
the columns inV¢ after thet'” iteration be

Vi€ {1,...,m'}, Br(ri) = 7, where 7; € R
5. A GENERAL FRAMEWORK FOR CO-

CLUSTERING USING ROW/COLUMNDE- :?”6 ?’tﬁ’"/i}c’igﬁci)h: éj’?”h:,” ‘3356 ¢
) etailed illustration o is shown in Figure 5.
COMPOSITION: CRD As we can see from Figures 5 and 4, Steps (1,2) in Figure 5 cor-

In order to perform co-clustering on large data matrix efficiently, respond to Step (1) in Figure 4, Steps (3,4) in Figure 5 correspond
in our CRD framework, the co-clustering is performed on the de- to Step (2) in Figure 4 and Steps (6,7) in Figure 5 correspond to
composition matrices instead of the original matti It provides Step (3) in Figure 4. Also, for those steps in the iteration loop, the
significant improvements in both space and time utilization. steps in Figure 5 have much smaller time complexity than the cor-

As we discussed in Section 2, one type of co-clustering algo- responding steps in Figure 4. The comparison is shown in Table
rithms cluster the rows and columns of a data matrix alternatively 1.

in successive iterations. These algorithms include the Information

Theoretic Co-clustering algorithm [5], the Bregman Co-clustering runtime runtime
algorithm [1] and the Fully Automatic Cross-association algorithm | Figure 5| Steps(3,4)] O(km'n+ | Steps(6,7)| O(in'm~+
in [2]. In each iteration, they either keep the row side clusters fixed m'm) n'n)
and re-cluster the columns or keep the column side clusters fixed | Figure 4| Step(2) O(kmn) Step(3) O(lmn)

and re-cluster the rows. It is proved that this single side clustering

(row or column) can guarantee the objective function on the co- Table 1: Complexity of Corresponding Steps in Co-clustering

clustering structure converge to a local minimum (maximum). We

call it the Iterative Single Side Clusteringapproach. In general, co-clustering using lterative Single Side Clustering
Suppose that there aferow clusters,R = {r1,..."%}, andl approach can have runtime complexity equal to (or larger than)



Input - Data matrix M, cluster label for each row o/, we can uséVx to calculate the

Number of rows/calumns to select, m' cluster label for each row af/.
number of row/column clusters k| Suppose that for each row of Mg, we haveBg(ri) = 7,
! j € {1,...,k}. For each rowr; of M, we calculate its label vector
si = [si1, Si2, ..., Sik), IN Which
! (0) Low rank row/column decomposition |¢— Output: Co-clustering for
' / ~
all the rows and columns sij = maz{|wiz| |Br(rz) = 75} (15)
! inM, 5,6

Then we have,
B(ri) = {z]si- = max(si1, ..., Sik) } (16)

Intuitively, s;; is the correlation between row and row cluster
;. In Equation 16,r; is assigned to the row cluster having the
highest correlation.

Now we prove the following property.

Me, W, M, Wy

T Converge?
(1) Randomly initialize ,6’26(”; for each
row in M and each column in M.

(2) Calculate @ for each column in M
using W, and Hg .

Start iteration, t=0
t=t+1
]

PROPERTY 5.1. For each rowr} of Mz and its corresponding
row r; of M, if we use Equations 15 and 16 to calculgtewve have

(3) Single side row clustering on My An updated G?Ilumn B(ri) = Br (1‘3) a7
based on Sy, 8" clustering, &%, for
1 each column in M Proof: According to Constraint 3 in Definition 3.1, we have ;| >
An updated row t+1T "U_)Z'Z‘, z € {1,...,m’} — {]} Assume thaﬁR(I‘J{) = 7,. When
clustering, ﬁ;*, for (7) Calculate "™ for each column calculatings;, we get
each row in M, in M using W, and 45"

sin = maz{|wiz| |Br(r;) =} = |wij].

(4) Calculate [ *ior each row in M An updated column

using Wy and 71 clustering 617 for According to Equation 15, we know;: € {|wii, ..., |Wim/|}, t €
) each column in M, {1,...,k}. Thus we get
An updated row sin = max{si|t =1, ..., k}.
clustering, B for (6) Single side cu\u!mn t!:ILfstering ih {si ek}
each row in M on M based on 6}, 4 Applying Equation 16, we get
B(ri) = {z|si» = max(si1, ..., 8ik)} = h = ﬂR(rg)
Yes 5)Need o~ No
re-sample? |

According to Property 5.1, when calculatiggfrom Sg, the se-
lected rows ofM will have the same cluster label as their corre-
sponding rows inV/z.

The calculation of) is the same as that gf. Moreover,d also
holds a property similar to Property 5.1, which can be derived from
Constraint 3 in Definition 3.2. We thus omit the formal discussion
due to space limitations.

Figure 5: Framework for Co-clustering using Decomposition:
CRD

O(t(k + l)mn) wheret is the number of iterations. WhilERD
only useO(t(km'n +In'm+m'm+n'n)) plusthetimeusedin 5.2 Re-sample Data Matrix

matrix decompositionD((m + n)m'n), whichis a one-time cost Although we add several constraints to the low ramk/column
at the beginning. Since usually we have < m andn’ < n, decomposition, the rows/columns are still randomly sampled from

CR%'S mutI:h fgjter.l N d . | the original data matrix. It is possible that some row/column clus-
The single side clustering in Steps (3) and (6&Dis exactly ters are not sampled, i.e., none of the rows/columns in those clus-

the same as the one in the Iterative Sin_gle Side Clustgring approachyq .q are selected il z/ M. Though this problem does not happen
Details about the steps can be found in [5, 1]. We will discuss the oq,ently, its occurrence may impact the accuracy of our method.

two new stleps, Steps (4,7) and Steps (5,8) in the following sections tgefore, we introduce a re-sampling stepdRD to solve the
respectively.

problem.
. Consider the scenario where an existing row cluster
5.1 Mapping Cluster Labels from Selected 7; = {rj,,...,r;, } is not sampled in/g, then for each row vec-
Rows /Columns to All Rows/Columns torr,, € 7y, all of them’ row vectors inMp are almost equally

In Steps (2), (4) and (7) &RD, we calculates () for each row irrelevant tor;,. Thus if we calculate the label vectsiof r;, ac-
(column) inM usingWg (W¢) and8r (6¢). Since the procedure cording to Equation 15, it is expected that the standard deviation of
for calculatingd on columns is the same as that of calculatihon the elements is is very low.
rows, we will only explain the calculation ¢f. Let d(s) denote the standard deviation of the elements iAn

Using low rankrow decomposition) is approximated byV example is shown in Figure 6. The figure pldts) for each row in

andMz. Each row ofi’r can be considered as a projection of the ©0ne iteration of the co-clustering. The first 250 rows form a cluster
corresponding row oM onto the sub-space formed by the rows in  in the data. However, none of them is selectedix. As we
Mg, i_e.’ there is a one-to-one re|ationship between a row/of can see, for those rOWé(S) is much lower than other rows which

and the corresponding row & ;. Therefore, when we getthe row  belong to properly sampled clusters.
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In CRD, we useChebyshev’'s Inequalityto detect those rows
and columns. Considei(s) of all rows(columns) as a distribu-
tion with expected valug and standard deviatiom, Chebyshev’s
inequality entails that, for any real numbgr> 0 we have the con-
servative bound:

Pr(d(s) = ul 2 40) < (18)

We setg = 2 in CRD, i.e., if there are more than = q% = 25%
of the rows (columns) havingl(s) — u| > 20, the algorithm will
quit the iteration and re-sample the rows (columns).

In general, largerr induces lower re-sampling frequency and
shorter runtime while smaller induces higher re-sampling fre-
guency and longer runtime. Sin€@hebyshev’s Inequalityholds
for any distribution,qi2 is a rather loose bound. In fact, we found

in the experiments that the boumnd= q% = 25% is too loose and
does not induce re-sampling sufficiently. Therefore we test various
values ofr to obtain the optimal frequency of re-sampling. Based
on our experiments on both real and synthetic data, inste2&l6f
7 = 12.5% has the best tradeoff between runtime and cluster purity
(as defined in Section 6).

In Steps (5,8) of Figure 5, we calculatés) for each row(column).
If the percentage of rows (columns) havif(s) — p| > 20 is
larger thanr, the re-sampling works in the following way.

e All the rows(columns) that are already Mz (M) will be
kept.

o If the number of rows(columns) havinl{s) < p — 20 is t,

then % rows (’%’ columns) will be randomly re-sampled
only from this set of rows (columns).

e When adding new rows/columns intt/r and M¢, they
must not violate Constraints ~ 3 in Definitions 3.1 and
3.2.

Note that in Step (5) of Figure 5, only rows are re-sampled, and in
Step (8), only columns are re-sampled.

The re-sampling only involves the calculation of a nBw which
is very fast. B and B only need to be expanded to include the
new columns and rows.

After the re-sampling, the iteration will start over again. In Step
(1), those rows (columns) that are alreadyhify (M) will re-
tain their cluster labels obtained before the re-sampling. All the

new rows (columns) will start with the same new cluster label, e.g,
Br(r) =k+10r(c) =1+1).

In general,CRD has runtime complexity) (t(km'n + In'm +
m’m+n’n)) plus the time used in matrix decompositi@(m +
n)m/n’). For large dataset, it's easy to get < m andn’ < n,
andCRD can be orders of magnitude faster than the previous co-
clustering algorithms that have runtime complexity at |€2g{ k+
l)mn).

6. EXPERIMENTS

In this section, we present results on both synthetic data and real
data. In order to demonstrate the effectiveness and efficiency of
our CRD algorithms, all the datasets have large number of rows
and columns. Several other co-clustering algorithms were also im-
plemented for comparison.

Datasets

We use two real datasets and one synthetic dataset in our experi-
ments.

e Multiple Features DatasetThis dataset consists of features
of handwritten numerals (‘0'—'9") extracted from a collection
of Dutch utility maps. It contains 2000 numerals (rows) and
240 features. There are 10 classes in the dataset (frtam
9) and each of them has 200 numerals.

20 Newsgroup DatasetThe package consists of 20000 doc-
uments from 20 major newsgroups. Each document is la-
belled by the major newsgroup in which it is involved. We
preprocess the 20 Newsgroup dataset to build the correspond-
ing two dimensional contingency table. Each document is
represented by a row in the table and 2000 distinct words are
selected to form 2000 columns. Words are selected using the
same method as that in [17].

e Synthetic dataset: We generated a set of synthetic data with
different sizes and noise levels. Each synthetic data is an
m X m square matrix consisting 6fand1. Co-clusters are
embedded by setting different blocks in the matrix tolbe
And we use parameterto control the noise level, i.e., the
value of each element can be randomly flipped with proba-

bility e.
Algorithms

We implemented two versions of o@RD framework using differ-
ent iterative single side clustering approaches.

e CRD-ITC CRDusing information-theoretic co-clustering [5].

e CRD-kmeansCRD using Euclidian distance (k-means) co-
clustering [1].

Unless otherwise noted, we set= 2 and use bound = 12.5%
for re-sampling in th&€€RDalgorithms.

In order to show the efficiency of o @RD framework, we also
implemented three recent co-clustering algorithms.

e ITC: the original information-theoretic co-clustering algo-
rithm without matrix decomposition[5].

e Kmeans the original Euclidian distance co-clustering algo-
rithm without matrix decomposition[1].

e ONMF: the orthogonal nonnegative matrix tri-factorization
co-clustering algorithm proposed in [8].

2http://mlearn.ics.uci.edu/MLSummary.htm|
3http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html



Performance Measurement

In the experiments, we compare the runtime and purity of co-clustering
solution of the algorithms. 500
The purity measurement was used in [8]. The purity of a cluster-
ing solution is calculated as the weighted sum of the purity of each 1000
cluster and is given by,
k 1 1500
purity = Z T::Pi, P, = o AT L] (m])

=1

2000

wherem is the total number of rows(columnsy; is the size of
clusteri andm is the number of rows(columns) in clustethat
has (real) class labgl The larger the value of purity, the better the
clustering is. %000 500 1000 1500 2000 2500 3000
In the real datasets, since we only know the true class labels of
the rows, the purity is only calculated and compared on row clus-
ters. While in the synthetic data, we compare the purity of both row
and column clusters found by co-clustering.
All algorithms were implemented in MATLAB. All experiments
were conducted on a PC with CPU P4 3GHz, 1G RAM and 80G

2500

500

HDD. 1000
6.1 Synthetic Data 1500
In this section, we compare the performance of the algorithms on
a set of synthetic data. For each synthetic dataset ofisizen, we 2000
embed 5 row/column clusters into the matrix . An example dataset
of size3000 x 3000 is shown in Figure 7. The figure at the top plots 2500
the original data matrix: the dark point represents the '1’ elements
in the matrix. And the figure at the bottom shows the co-cluster 3000 5001000 amon a0 e 500

structure after the orders of the columns/rows are rearranged.
We vary the following parameters separately in the experiments:

e m: size of synthetic data matrix (for both row and column). Figure 7: Example of a synthetic data matrix of size3000x 3000
Default value 5000.

e ¢: noise level of synthetic data. Default value] . The purity of all algorithms decreases when we increase the

. . number of rows/columns in the matrix. One reason is that the in-

o ' number of selected rows (columns) in low rank row/columny, e aing number of rows/columns (with noise) brings more local
decomposition when usir@RD. Default value 20. optimums into the data, which makes it more difficult for the al-

When varying one of the parameters, the rest use their default gorithms to find the embedded co-clustering structure. The purity

values. of CRDalgorithms is comparable to that of the other algorithms as
. shown in Figure 9. Thus, the dramatic saving in its running time
Varying m makesCRDthe winner among all algorithms.

By varyingm, the number of rows and columns in the data matrix

are changed simultaneously, e.g., whetis doubled, the data ma- Varying .

trix will have size2m x 2m. We varym from 3000 to 11000. The

runtime and row/column cluster purity of the algorithms are plotted When we increase the value ef the synthetic data have more

in Figures 8 and 9. noise. The largest row/column cluster embedded in the data covers
As we can seeCRD algorithms are orders of magnitude faster only 20% of the rows/columns. Whenexceed$.2, the embedded

than the other three algorithm@NMF is the slowest algorithm be-  structure begins to be overwhelmed by noise. Therefore, in this set

cause it uses more iterations to converge. Winelbbecomes larger  of experiments, we vary from 0.02 to 0.1.

than9000, the entire matrix is too large to be loaded into the MAT-  The runtime of the algorithms does not change so much with
LAB environment. Therefore, we did not get any resultsIfoC, increasinge. So we only report the purity performance in Figure
KmeansandONMF for m > 9000. While for ourCRDalgorithm, 10.

there is no problem for such large matrices, since it only needs to  The purity of CRD algorithms is comparable to others but is
load{Mc, We, Mr, Wr} which are much smaller. slightly lower whene becomes larger. One reason is that, the ef-

The runtime of calculating the low rank row/column decompo- fectiveness (accuracy) of the low rank decomposition is sensitive to
sition is shown in Figures 8 at the bottom. The decomposition is the increase in noise. Though we have the re-sampling procedure
very efficient. It only takes a small portion of the total runtime of in CRD, the computation of the updated weight matridé& and
CRD algorithms. Whenm > 9000, since the data matrix cannot W, is still affected by the noise.
be entirely loaded, our decomposition algorithm have to load the . ,
matrix piece by piece when calculating the norm of each column Varymg m
and row. That's the reason for the steep change in runtime when  Inthis set of experiments, we vary the number of selected rows/columns
passe9000. m/, from 10 to 50. This parameter does not affect e, Kmeans
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andONMF algorithms, therefore we only plot the cluster purity and y 58.4
runtime of ourCRDalgorithms in Figures 11 and 12 respectively. = 58.2
As we can see, theRDalgorithms and their pre-processing pro- z o8
cedure, the decomposition algorithm, both have runtime increase = g?i
linearly with respect tan’. Increasing the number of selected = 574
rows/columns can also improve the purity of the co-clustering so-
lutions. However, when there are enough rows/columidnand
Mg, adding more rows/columns can only affect the purity slightly. r
As shown in Figure 11, when there are more than 30 rows/columns, CRD—kmeans ECRD{TC‘

the improvement of purity becomes very small.

Efficiency of Re-sampling Figure 13: Runtime and Row cluster purity performance with

As we discussed in Section 5.2, the random sampling of matrix différent re-sampling bound 7

decomposition does not guarantee to sufficiently sample all clus-
ter structures and re-sampling is useddRD to make up for the
missing clusters in random sampling. We use Equation 18 to de-
tect those rows/columns that are not properly sampled. For all the
previous experiments we set= 2 and use bound = 12.5%,
i.e., if there are more thah2.5% of the rows (columns) having
|d(s) — p| > 20, the CRD algorithm will re-sample the rows
(columns).

In order to show the effects of on re-sampling frequency and

clustering performance, we varyfrom 100% to 6.3% in this set 6.2 Multiple Feature Dataset

of experiments. Note that when theis equa! t0100%, the CRD The multiple feature dataset contains 2000 rows and 240 columns.
algorithm does not re-sample rows/colums in any case. The results

- C O And the 2000 rows are equally divided into 10 classes. We run each
on the5000 x 5000 synt_hetlc data are s_ho\_Nn_ in Figure 13. Col algorithm 40 times on the dataset, and plot the distribution of their
umn cluster purity is omitted because it is similar to the row cluster . R .
purity runtime and row cluster purity in Figure 16. Since the columns do

S . . not have class label, the column cluster purity cannot be calculated
Considering runtime and clustering performance togethes,

X here.
12.5% has the best performance. When= 25%, there is al- N . .
most no re-sampling IERD. Whenr is set to6.3%, the algorithm Each point in Figure 16 represents the runtime or the purity of

. o : . _a single run of one of the algorithms. As we can see,GRD al-
consumes much longer time but has no significant improvementin _ =, .
. gorithms are about 10 times faster tHa€ andKmeansand more
clustering performance. There are two reasons for the longer run-

time when bounet 6.3% than 20 times faster tha®@NMF. The performance advantage of
270 the CRDalgorithms is not as much as the one on the synthetic data

T = 25% is always slightly faster. However, its purity of row clus-
tering is lower than that of th€RD algorithms withr = 12.5%
especially when there are a large number of rows and columns in
the data matrix, e.gs > 9000. In those cases, the initial low
rank decomposition may have a larger risk to miss a cluster or sam-
ple insufficiently in a cluster with a mixed number of selected rows
(columns), and the re-sampling steps becomes more important.

e More frequent matrix decomposition computation. because the multiple feature dataset has much less columns than
rows, and thus most of the speedup comes from the row-side sam-
e Larger size of Wg, Mg, We, Mc}. pling only.

And if we compare the distributions of cluster purity in Figure

The numbers of selected rows for these bounds are shown in Figurel6, we can find thaCRDalgorithms performs as good as the other
14. As we can see, when= 25%, only a few rows are re-sampled. three algorithms.
And whenr = 6.3%, there are too many rows selected in fhe;
matrix. 6.3 20 Newsgroup Dataset

We also user = 25% andr = 12.5% on datasets of differ- In this section, we use the 20 newsgroup dataset to compare the
ent sizes and compare the performance. The results are shown iperformance. The entire data matrix is too large to be loaded into
Figure 15. As expected, the runtime of t8&®D algorithms with MATLAB environment, therefore, we use a subset of the dataset
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which contains 5000 documents from 5 newsgroups. And 2000 Figure 17: Runtime and Document cluster purity performance

words are selected as features using the same method as in [17]. W@n 20 Newsgroups Dataset

run each algorithms 10 times on the dataset and plot the distribution

of runtime and row (document) cluster purity in Figure 17. Words

do not have class label so that the purity of word clusters cannot be poses the data matrix into low rank row/column approximation

calculated. matrices. Then co-clustering algorithms using iterative single-side
CRDalgorithms are still orders of magnitude faster than the other clustering are used to cluster the approximation matrices. Sev-

three algorithms. The Euclidian distance based algoritmeans eral constraints are added in the matrix decomposition in order

andCRD-kmeanscannot cluster the documents correctly and have to ensure the performance of co-clustering. Because of the smalll

much lower purity than other$TC, CRD-ITCandONMF has sim- size of the approximation matriceRD has runtime complexity

ilar performance on document cluster purity. O(t(km'n + In'm 4+ m’m + n’n)) which is orders of magnitude
The low rank decomposition on these two real datasets is fast faster tharO(t(k + [)mn), which is the runtime complexity of the

and the runtime can be neglected. previous co-clustering algorithms. We conducted experiments ex-

Based on the experiment results we presented in this section,tensively on real datasets and synthetic datasets. The results show
we can see that ouCRD framework can be used to design co- that our framework is both efficient and effective.
clustering algorithms which are much faster and can achieve com-
parable co-clustering accuracy.

8. REPEATABILITY ASSESSMENT RESULT

7. CONCLUSIONS Figure 8 (whenm = 3000 and 5000), Figure 16 and Figure
In this paper, we proposed a general framework for fast co-clngte 17(top) have been verified by the SIGMOD repeatability commit-
on large dataCRD. CRD has two components. It first decom- tee.
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