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Abstract

In this paper, we study the problem on how to build an index struc-
ture for large string databases to efficiently support various types of
string matching without the necessity of mapping the substrings to
a numerical space (e.g., string B-tree and MRS-index) nor the re-
striction of in-memory practice (e.g., suffix tree and suffix array).
Towards this goal, we propose a new indexing scheme, BASS-tree,
to efficiently support general approximate substring match (in terms
of certain symbol substitutions and misalignments) in sublinear time
on a large string database. The key idea behind the design is that all
positions in each string are grouped recursively into a fully balanced
tree according to the similarities of the subsequent segments starting
at those positions. Each node is labeled with a regular expression
that describes the commonality of the substrings indexed through the
subtree. Any search can then be properly directed to the portion
in the database with a high potential of matching quickly. With the
BASS-tree in place, wild card(s) in the query pattern can also be
handled in a seamless way. In addition, search of a long pattern can
be decomposed into a series of searches of short segments followed
by a process to join the results. It has been demonstrated in our
experiments that the potential performance improvement brought by
BASS-tree is in an order of magnitude over alternative methods.

1 Introduction

String data naturally exists in many applications includ-
ing web documents, E-Commerce data, event sequences,
and biological sequences, which generally involve very large
databases and the database size still grows exponentially.
Searching on these large string databases has become a com-
mon practice and the need for effective string indexes has been
urgent. For example, biologists frequently need to search for
similar samples of a certain DNA or protein region in a mas-
sive database of decoded sequences. Nowadays, the amount
of mapped sequences exceeds 30 Giga base pairs and still
grows at an exponential pace. However, the lack of an effec-
tive index makes the flat files continue to be used as the stan-
dard format to store the huge biological sequences. Searching
on these sequences is usually carried out by sequentially scan-
ning the entire database using a screening approach to iden-
tify the set of desired sequences (e.g., BLAST [1, 2]). This
approach inevitably suffers from a prolonged response time
when dealing with a large amount of sequences.

Similarity search on a string database can be classified into
two categories: exact match and approximate match. The
search of exact match looks for substrings in the database,
which is exactly identical to the query pattern while the search
of approximate match allows some types of imperfection such
as substitutions between certain symbols, some degree of mis-
alignment, and the presence of “wild-card” in the query pat-
tern. We shall mention that supporting approximate match is
very important to many applications. For instance, biologists
have observed that mutations between certain pair of amino
acids may occur at a noticeable probability in some proteins
and such a mutation usually does not alter the biological func-
tion of the proteins.

Until very recently, many researchers have suggested us-
ing the suffix tree or the suffix array as an index of the string
database [10, 14, 19, 25, 30]. However, this approach may not
be the ideal choice due to the high I/O costs associated with
constructing disk-reside structures [10, 14] and performing
truly approximate match queries. Recently proposed indexes
such as the String B-tree [11], the String R-tree [15], and
the MRS-index [17] transformed the strings into a numerical
space where a traditional multidimensional index structure is
applied. Even though these techniques have been proved to be
successful in their own application domains, the complicated
relationship between symbols has not been taken into full con-
sideration. The String B-tree and String R-tree were designed
for exact match and hence did not provide efficient support
for approximate match allowing symbol substitutions while
the MRS-index did not allow the effects of different substitu-
tions to be distinguished by associating with different scores.

Therefore, in this paper, we focus on the issue of support-
ing symbol substitution in searching approximate match. A
score is assigned to each pair of symbols to represent the func-
tional similarity between the pair of symbols. The higher the
score, the more the similarity. A so-called score matrix is
used to organize the set of scores. The score matrix is usually
obtained through ample empirical studies and proper analyti-
cal inferences1. Figure 1 shows a score matrix, BLOSUM 50
[13], defined on the set of amino acids. Since their publica-
tion [13], the BLOSUM (BLOcks SUbstitution Matrix) score
matrices have been the most popular scoring schemes used in
evaluating the similarities between protein sequences. The en-
tries on the diagonal correspond to identical amino acid pairs

1There is an extensive literature [8, 12] concerning the way how credible
scores should be obtained and justified.



and have high positive scores. Entries in the rest of the ma-
trix specify scores for substitution operations2. The similarity
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Figure 1. The BLOSUM 50 Score Matrix

search can then be posed by specifying a string/pattern and
a similarity threshold, where the similarity threshold is used
to define the separation between the approximate matches of
the pattern and mismatches. The higher the similarity thresh-
old, the more restrict the approximate match. This model of
similarity search enables the presence of “wild card(s)” to be
accommodated seamlessly.

To efficiently support this type of similarity search, we pro-
pose a new index structure called BASS-tree. The key idea
behind the design is that all position points3 are grouped re-
cursively into a fully balanced tree according to the similari-
ties of the subsequent substrings. Each node in the tree has a
bounded size and is designed to be fit in a disk block. Leading
positions of similar substrings would share a common ances-
tor and each node is labeled with a regular expression that
describes the commonality of the substrings indexed through
the subtree. Each leaf node contains a collection of position
points and each internal node holds links to a list of children
nodes. While search of short patterns can be performed di-
rectly on the BASS-tree (via a recursive traversal of relevant
nodes4), search of a long pattern can be decomposed into a
series of searches of short segments (which may or may not
overlap with each other) followed by a process to join the re-
sults. Many properties of the BASS-tree, including the bal-
anced height and compactness, provide the theoretical founda-
tion of the efficiency of the search as well as the maintenance.

2Note that, a negative score means that the pair of amino acids are highly
unlike. While most substitution operations are associated with negative
scores, a few entries have positive scores. This is because mutations between
certain pair of amino acids are frequently observed in practice and such mu-
tations usually do not alter the biological function of proteins.

3We will define later that a position point is the combination of a string
ID and an offset relative to the beginning of the string. The notation of po-
sition point is introduced to uniquely identify a specific position in the string
database.

4A node is believed to be relevant if one of its leaf descendants may con-
tain a pointer to a similar substring.

We have applied the BASS-tree index on a protein database
and have been able to achieve at least an order of magni-
tude speed-up over other schemes. In this paper, we will use
the protein database as an example to present the structure of
BASS-tree and its potential advantage in supporting approxi-
mate match search, although the BASS-tree can be applied to
other type of strings.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of some related work. The approx-
imate match query is formally introduced in Section 3 and
the model of BASS-tree is presented in Section 4. Section 5
describes the process of approximate queries using the BASS-
tree. An extensive experimental study is provided in Section
6 before the final conclusions are drawn in Section 7.

2 Related Work

In this section, we give a brief overview of previous
research on approximate matching and on indexing string
databases. Interested readers please refer to the individual pa-
pers for detail discussions.

Most previous work on approximate string match falls into
three categories. The first category of approaches utilize a fil-
tering algorithm to quickly eliminate large parts of the strings.
The filter used is usually a simpler and necessary condition of
the matching criterion. A family of algorithms that fall in this
category use the notion of �-gram [22, 26, 27, 28]. A �-gram
is a (short) substring of length �. Matches of �-grams in the
target database may be stored and indexed [22] to facilitate
the search. In general, such indices need linear space and can
be built in linear time, with respect to the size of the target
database, and may be able to provide sublinear search time on
average if the required similarity is very high [24]. However,
the �-gram based approaches are not suitable for approximate
search allowing symbol substitutions with moderate similarity
requirement.

Algorithms belonging to the second category [1, 2, 17, 21,
25] try to reduce the problem to a set of approximate searches
of (short) segments of the original query pattern. The BLAST
[1, 2] is a representative and has been the most popular tool
used by biologists. The BLAST (Basic Local Alignment
Search Tool) package is designed for finding high scoring lo-
cal alignments between a query pattern and a target database,
both of which can be either DNA or protein. The idea be-
hind the BLAST algorithm is that true match alignments are
very likely to contain within them a short stretch of identities,
or very high scoring matches. Therefore, short segments of
the query pattern are first taken as the “seeds” to search the
database and the results are then “extended out” in search of
good longer alignments.

The third category of approaches run on a persistent index
structure instead of on the raw strings. Suffix tree [7, 16, 25,
29] and suffix array [18] are the most popular choices. Since
every substring appearing in the string database can be found
by traversing the suffix tree from the root, it is sufficient to
explore every path starting at the root, descending by every
branch until the point where it can be seen that the branch does
not represent the beginning of a potential match. Some further



investigation has been taken in limiting the traversal by only
visiting nodes that represent viable prefixes [7, 16, 25, 29].
Even though these structures typically take linear space and
construction time [30] theoretically, they are very inefficient
in both construction time and space requirements [10]. Most
previous work [3, 10, 14, 19, 23, 25, 30] focused on fast al-
gorithms for building suffix trees on a string database, though
many of them failed to break the barrier of memory bottleneck
[10]. One successful attempt on building a truly disk-reside
suffix tree has been made recently in [14]. A new construction
algorithm is proposed to trade the linear time performance for
locality of access. A large persistent suffix tree can be built in
��� ����� time on average and in ��� �� time in the worst
case.

Parallel to the above achievements, the model of String B-
tree [11] and its multidimensional version, String R-tree [15],
were developed to index string databases. The idea is to first
convert strings to numerical domain and then apply the tradi-
tional indexing schemes. Although this approach is good for
exact substring search, it does not support approximate search
that allows symbol substitutions because the distance in the
mapped numeric space does not reflect the similarity between
symbols. The authors of [6] proposed an index structure, RE-
tree, on regular expressions, but the queries are still limited to
exact match.

More recently, the authors of [17] proposed a novel index
structure, MRS-index, built on an integer space of wavelet
coefficients to support range query and �-nearest neighbor
query. Substrings of fixed length are mapped to a coeffi-
cient vector via wavelet transform and multiple lengths may
be employed to generate local frequencies for different reso-
lutions. A new distance function is also defined on the co-
efficient space, which is also proved to be a lower bound of
the original distance (e.g., edit distance used in [17]). The
efficiency of this approach largely depends on the tightness
of the bound provided by the new distance function, which
in turn depends on the choice of the original distance func-
tion. The performance is expected to degrade significantly if
different weights are associated with different symbol substi-
tutions. Such degradation amplifies for applications involving
larger alphabet (e.g., the alphabet of protein sequences is 20 in
contrast to the DNA sequences used in [17], which only have
alphabet of size 4).

In additional to these advances, some interesting work has
also been done on indexing regular expressions [6] under the
assumption that no symbol mutation is allowed.

3 Query of Approximate Match

Let � be the alphabet. For example, the alphabet for
protein sequences are the set of 20 amino acids. Let � �
���� ��� � � � � ��� be a set of strings over the alphabet where
�� � ����

�
� � � � �

�
��

and ��� � � for � � 	 � 
�. 
� is referred to as
the length of the string ��. � is also referred to as the ID of the
string ��. Given a string �� � ����

�
� � � � �

�
��

, a consecutive por-
tion ���� � � � �

�
��

(� � 	� � 	� � 
�) is referred to as a segment
whose length is 	��	���. We define ��		���	�
 � ���� � � � �

�
��

in the following discussion. Each individual symbol � �� in a
string ����

�
� � � � �

�
��

can be regarded as a segment of length 1.
In this case, we use ��		
 as an abbreviation of ��		� 	
. It is
easy to see that each distinct position in a string serves as the
starting position of some segment(s). Each of these positions
can be uniquely identified by the combination of string ID and
offset within the string. Each distinct combination (of string
ID � and offset 	) is also referred to as a position point ��� 	�.
We sometimes say that a position point ��� 	� leads a segment
�� � � � �� if the segment starts at the 	th position in the string ��

(i.e., ��� � ��� � � � � �
�
����� � ��). The total number of position

points is equal to the size of the string database (i.e.,
��

��� 
�).
Our index structure is built upon the set of all position points
in the database.

Given a score matrix that defines the similarity �
��� ��
between each pair of symbols � and � (�� � � �), we adopt the
weighted edit distance to measure the similarity. Let �
���
be the score of inserting a gap in one string. The value of
�
��� is typically negative. For example, �
��� � �� is
a typical score used by many biologists for BLOSUM Score
Matrix. The similarity between two strings is defined as the
maximum aggregated similarity of any alignment of these two
strings.

Definition 3.1 Let �� � ����
�
� � � � �

�
� and �� � ����

�
� � � � �

�
�� be

two strings. Their similarity is

��
���� ��� �

�
�

��
�

��
���	���
� �
� ��	���

� � �
� � �
���� � �

�
���

��
���� ��	���

� � �
� � �
���

��
���	���
� �
� ��� � �
���

For example, using the score matrix in Figure 1, the similarity
between FILVM and LIVLM is 2. One gap is introduced in
each string in this best alignment.

� � � � � �

� � � � � �

�� �� �� �� �� �� �� � �

The query for searching approximate match can be formal-
ized as follows.

Definition 3.2 Given a string database and a score matrix,
an approximate match query is defined in terms of two pa-
rameters: a query pattern � and a similarity threshold � . The
query returns the set of substrings in the database whose sim-
ilarity to � is greater than or equal to � . Each of such sub-
strings is also referred to as an approximate match of �.

The threshold � controls the set of symbol substitutions
allowed in an approximate match. For example, FILVM is
considered an approximate match of LIVLM if the similarity
threshold is set to � � �.

Given a set of strings of equal length, a regular expression
(of the same length) can be used to describe the symbol(s)
taken at each position of the strings. For example, the set
of three strings FIL, LIV, and LVF can be described by the
regular expression (F+L)(I+V)(F+L+V). We also say that the



length of the regular expression is 3. Note that the regular
expression of this form only serves as a necessary condition
of the set of strings described. We choose this simple form
(instead of using a precise yet more complex regular expres-
sion) because it is easy to generate, to store, and to operate.
The measure of similarity can also be defined between a string
and a regular expression and between two regular expressions.

Definition 3.3 Given a string �� � ����
�
� � � � �

�
� and a regular

expression �� � ����� � � � �������
�
�� � � � ����� � � � ��

��

� � � � � ��
�

���
�,

their similarity is defined as

������� ��� �

���

�
������������ �	� �������� � �	� 
�����������

�����
�
� 	�

�

��
�

������� �������� � �	� 
 �����
������������ �	� ��� 
 �����

Definition 3.4 Given two regular expressions �� � ���� �
� � � ����� ��

�
��� � � ����� � � � ��

�
��� � � ����� and�� � ������ � � ����

�

���� � � � � ����
� � � � ���

�

� � � � � ��
�

���
�, their similarity is

������� ��	 �


��

�
������
���� � ��� ��
����

�
� ��	 ��	
 ����� ��	

������� ��
����
�
� ��	 � ����	

������
���� � ��� ��	 � ����	

where 
�� �
�
� 
�� � �
�������	��������
�
����� �

��

�� �.

For example, the similarity between the string FLM and
the regular expression (F+L)(I)(K) is 8. Through a similar
calculation, we can also obtain that the similarity between
(F+L)(I)(K) and (F)(I+L)(L+M) is 11. By definition, the
similarity measure satisfies the following property.

Property 3.1 The similarity between a string � and the regu-
lar expression of a set of strings � is always greater than or
equal to the similarity between � and any string in �.

To facilitate the following discussion, we also introduce the
concept of generalization/specialization on regular expres-
sions.

Definition 3.5 Given two regular expressions �� and ��, ��
is said to be a specialization of �� iff, for every segment �
satisfying��, either � also satisfies�� or a prefix of � satisfies
��. In this case, �� is called a generalization of ��.

For example, both (A+S) and (D)(I+L) are considered spe-
cializations of (A+D+S+T). In addition, a string can also be
regarded as a specialization of some regular expression. Prop-
erty 3.1 can be regarded as a special instance of the following
properties, which provide the motivation and justification of
our approach.

Property 3.2 The similarity between a string � and a regular
expression � is always greater than or equal to the similarity
between � and any specialization of �.

Property 3.3 The similarity between a string � and a regular
expression � is always less than or equal to the similarity
between � and any generalization of �.

We also adopt the notion of common generalization (special-
ization). For a set of regular expressions, �, a regular expres-
sion � is a common generalization (specialization) of � iff
it is a generalization (specialization) of every expression in
�; and it is called the minimum (maximum) common gen-
eralization (specialization) iff there does not exist another
regular expression � � �	� �� such that �� is a specialization
(generalization) of � and � � is also a common generalization
(specialization) of �.

Definition 3.6 Given two regular expressions �� � ���� �
� � � ����� ��

�
��� � � ����� � � � ��

�
��� � � ����� and�� � ������ � � ����

�

������ � � ����
� � � � ���

�

� �� � � ��
�

���
�, where �� is a specialization

of ��, the relaxation from �� to �� is defined as

����� ��	 ����

���

�

���������� ������ � �

�
�	�
����������

���
�� � 

�
�	
�
���

������

�

���������� ������ � �

�
�	���� ��

�
where 
�� �
 � ����� 	���� �
��� � ��� is the minimum
score between any pair of symbols in the score matrix.

For example, the relaxation from (F+L)(I)(K) to
(F+L)(I+V) is ������
������ �
������ �
�������
�����
������ �
������ �
�������� ������
��� ���
������
��� ��� �
������ �
��������
������
������ �
�� �
� � ������� �� �� �
������ �� ��� ��������� ������ �� ��� �������� �
����� � ��.

By definition, the relaxation from a regular expression to
a generalization is always non-negative while the relaxation
from a regular expression to itself is zero. The monotonicity
property of the relaxation makes it a desirable measure to as-
sess the “impact” of inserting a position point into a subtree,
in terms of how much generalization of the label is needed at
a node in order to include the position point in the subtree.
Therefore, the relaxation measure is used during the construc-
tion of the BASS-tree to guide the insertion of position points.

4 Model of BASS-Tree

In this section, we introduce a novel indexing structure,
namely BASS-tree5, on string databases. A BASS-tree is a
fully balanced tree that organizes all position points by recur-
sively grouping together position points that lead similar seg-
ments in the string database. The structure of the BASS-tree
is in spirit similar to that of the B+-tree [9] in the sense that
all leaf nodes are on the same level and each internal node has
a bounded number of children. The fundamental difference
between the BASS-tree and those structures proposed for in-
dexing numerical space is that the relationship between two
position points can only be defined in a much looser fash-
ion: (1) Their similarity largely depends on the length of the
subsequent segments used in the calculation; and (2) Even
if the segment length is given, the similarity does not pre-
serve the property of metric as the transitivity does not hold.
This characteristic poses a great challenge to the construction

5BASS stands for Balanced Approximate Substring Search.



and maintenance of the BASS-tree, especially when an over-
flowed node needs to be split. Figure 2(a) shows a portion
of a BASS-tree built on a protein database using the score
matrix BLOSUM 50 depicted in Figure 1. Each node in the
BASS-tree is labeled with a regular expression that describes
a set of similar segments in the string database. More specifi-
cally, the minimum common generalization of these segments
is used as the label of the node. Each leaf node (also referred
to as data node) contains a collection of position points that
lead a set of similar segments described by the regular expres-
sion that serves as the label of the leaf node. In Figure 2(a),
the node �� contains three position points that lead the seg-
ments with prefix FIL, LIV, and LVF. Each data node in Fig-
ure 2(a) is represented by a rectangle, which contains a list
of entries, each of which stores a position point. As illus-
trated by a dashed arrow in the figure, the first entry of node
�� stores the position point ��� ��. The label of each internal
node describes a set of similar segments led by position points
indexed through the subtree below. In Figure 2(a), the label of
node�� is (F+L)(I+V) which indicates that the set of position
points indexed in the subtree lead a set of segments (of length
2) that comply with the regular expression (F+L)(I+V). For
instance, the position point ��� �� leads the segment FI that
satisfies the label of node ��. Each internal node, � , has
a varying but bounded number of children, each of which is
labeled with a specialization of the regular expression that la-
bels � . This can be clearly observed from the example in Fig-
ure 2(a). According to Property 3.2, a node (and its subtree)
can be excluded from further examination if the similarity be-
tween its label and the query pattern falls below the threshold
� . In such a way, the search of approximate matches can be
well confined to a (small) portion of the BASS-tree and hence
a (small) portion of the underlying string database.

4.1 Data Structures

As shown in Figure 4(a), each data node consists of a head
field and a list of data entries, each of which stores a position
point. The head field usually maintains the number of position
points currently stored in the node and the segment length 6

currently used to assess the similarity between position points
during node split. The maximum number of entries that can
be stored at each data node is bounded by a parameter �


whose value can be determined as

�
 � 

����� � �����

����

� (1)

where �����, �����, and ����
 are the size of a disk block,
the space occupied by the head of the data node, and the
space used to store each position point, respectively. We have 7

����� � � Bytes, ����
 � � Bytes, and ����� � � KBytes in
most cases. Then �
 � ����. An example of the data node
(e.g., node �� in Figure 2(a)) is also shown in Figure 4(b).
This node currently has three position points and the segment
length used in similarity calculation is 3.

6This length should be equal to the length of the label of this data node.
7Assume that all parameters are of integer type.

Each internal node consists of a head field and a number of
entries, each of which holds the information of a child node.
The head field contains a counter to track the actual number
of children and the maximum label length for children nodes.
The essential information kept in each entry of the main body
includes label of a child and the link to the child node. While
it usually takes 4 Bytes to store the link of a child node, the la-
bel of the child may be of varying lengths and hence may take
varying amount of space. To store the label efficiently, we use
a bit array to encode the regular expression. Each bit repre-
sents the presence of a given amino acid at a given position
of the regular expression. Since there are 20 distinct amino
acids, three Bytes are allocated to encode each position of a
regular expression as shown in Figure 3(a). (The first 4 bits
are always set to zero.) If an amino acid is present at some po-
sition in the regular expression, the corresponding bit flips to
1. Figure 3(b) shows the bit array representation of the label
of nodes ��, ��, and �� in Figure 2(a). The space needed to
store a regular expression is �� � Bytes8 where � is the length
of the regular expression. It is possible that the labels of chil-
dren of a node may be of variable length. For simplicity, we
only use one number (maximum label length in a node) for
all its children. Thus, the maximum label length is allocated
for every children. For an internal node, let ���� be the max-
imum length of the child node labels. The maximum number
of children of the internal node, �� , can be determined as

�� � 

����� � �����

�����
� (2)

where �����, �����, and ����� are the disk block size, the
space allocated for the head field, and the space taken by each
child entry. We have ����� � � KBytes, ����� � � Bytes,
����� � �� ���� � � Bytes, and hence �� � 
 ���	

�����	�	
�.

For instance, for ���� � �� �� �� �� �,�� would be 1169, 818,
629, 511, 430, respectively. Figure 4(b) shows the informa-
tion stored at node �� in Figure 2(a). The bit array for each
child label is also shown.

A R N D C Q E G H I L K M F P S T W Y V

000000000000001001000000
000000000000010000000001

000000000000001001000000
000000000000010000000001
000000000000001001000001

Label

(F+I+L+V) 000000000000011001000001

(F+L)(I+V)

(F+L)(I+V)(F+L+V)

Bit Array

0 0 0 0

3 bytes

(a) The bit array for each position

(b) Label encoding

Figure 3. Bit Array Encoding of Regular Expres-
sion Label

8Additional saving can be obtained by storing only the difference between
the label of a child and its parent and applying similar techniques used in
[11, 15].
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Figure 2. An Example of BASS-Tree
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Figure 4. Data Structures of BASS-Tree

4.2 Building the BASS-Tree

The general procedure to build a BASS-tree on a string
database is to insert each distinct position point into an ini-
tially empty tree. At the beginning, the BASS-tree only con-
sists of a root node whose only child is an empty data node.
An insertion procedure is invoked to insert each position point
into an appropriate data node (determined by examining the
segment led by this position point) and to maintain the rele-
vant internal nodes accordingly.

4.2.1 Insertion of a Position Point

Given a BASS-tree, the procedure of inserting a position point
��� 	� consists of two phases: (1) locating the proper data
node and (2) updating the data node and its ascendant internal
node(s). Intuitively, the insertion of this position point should
be performed in such a data node that the least overall relax-
ation of the node’s label and its ancestors’ labels is incurred
as a result. The routine of locating the desired data node can
be done by, beginning from the root, recursively picking the
child whose label needs minimum relaxation to “spell out”

the segment � starting from the 	th position in � � and of the
same length as the child label. If there is a tie among several
children, the one with the highest similarity to � is picked
and the procedure continues. For example, in order to locate
an appropriate data node for the position point ��� ��� in Fig-
ure 2(a), since every child of the root has label of length 1,
we first compute the label relaxation needed to include the
segment F for every child of the root. It is easy to see that
node �� needs minimum relaxation (i.e., zero relaxation) to
F. The same procedure is then invoked again to examine � �’s
children where the segment FL is used in evaluating the re-
laxation. This procedure continues until the data node (e.g.,
��) is reached. (The path is indicated by bold arrows in Fig-
ure 2(a).)

Notice that, as the process proceeds from the root to the
data node, the segment used in calculating the similarity also
extends to include additional symbol(s). When the leaf level
is reached, the segment used in relaxation assessment is of
identical length to the label of the data node, which is also
equal to the segment length used to perform a node split when
this data node overflows. This would ensure that the exactly



same pool of segments would be evaluated during a further
node split, and make the structure of BASS-tree more consis-
tent and robust. Once the proper data node has been located,
the process enters the second phase where two scenarios need
to be considered.


 The data node still has empty entries. This scenario is
relatively easy to handle since it does not involve struc-
tural change of the BASS-tree. The position point is
stored in an empty entry and the head field of the data
node is updated to reflect the inclusion of the new data
entry. In addition, the node label (physically stored at
the parent node) is updated accordingly and this update
also propagates up towards the root if necessary. The la-
bel of the data node is the minimum common generaliza-
tion of the corresponding segments of all position points,
and can be updated incrementally after a position point
is inserted. The label of an internal node is the minimum
common generalization of the labels of its children, and
can also be updated easily in an incremental fashion.


 The data node is full. This is the scenario when we try
to insert the position point ��� ��� in �� in Figure 2(a),
assuming that each data node can hold at most 3 entries
(i.e., �
 � �). In this case, additional node(s) need
to be created in the BASS-tree. A partition procedure
is invoked to split this node into two data nodes. All
position points in this node and the new position point
will be divided into two portions of roughly equal size,
one portion will remain in this data node while the other
portion will be stored in a newly created data node. A
new child entry (corresponding to the newly created data
node) should be inserted in the parent node of the (orig-
inal) data node. If the parent node overflows as a result
of the insertion of a new child entry, a splitting proce-
dure is invoked to split this node into two internal nodes
containing roughly same number of child entries. A new
child entry is then added in the parent node of the in-
ternal node. This split may propagate all the way up
to create a new root node and hence a new level of the
BASS-tree. In the above example, assume that an inter-
nal node can take up to 54 Bytes (for illustration purpose
only). Then the maximum number of children that � �

can have is������ � 
 �	��
����	� � �. Similarly, we have

������ � � and�������� � �. After the data node��

is split into two nodes, the additional child entry causes
�� to overflow. This triggers the split of node �� into
two internal nodes, which happens to cause the overflow
of its ancestor node(s). In this example, this chain reac-
tion results in cascading split of all internal nodes along
the path up to the root and leads to the growth of the tree
height (from 3 to 4). The resulting BASS-tree is shown
in Figure 2(b). The shaded nodes (including both data
nodes and internal nodes) are those nodes affected in this
process.

We shall mention that, in most cases, inserting a position point
would not cause any structural change (in terms of node split)
and hence can be performed very efficiently. Specifically, the

chance that inserting a position point would trigger a node
split is �

�

where �
 is the capacity of the data node and

is typically in the range of hundreds to thousands. In addi-
tion, the probability that such a data node split may cause
an internal node to be split is �


����
where �
��� is the

maximum capacity of an internal node and often ranges up to
hundreds. The chance that the split propagates to the root and
increases the height of the BASS-tree is very rare. As a matter
of fact, the height of the BASS-tree grows at a very slow pace
(����� �

��

��� 
���). For example, a BASS-tree of height 3 is
sufficient to index the entire SWISS-PROT protein database
[4].

4.2.2 Node Split

The node split is a very crucial procedure to ensure the qual-
ity of the resulting BASS-tree, even though it is invoked only
when a node is full. There certainly exist many choices on
how to split a node (into two portions). A poor split may re-
sult in loss of vital information that plays a deterministic role
in screening out unnecessary candidates during an approxi-
mate match and significantly prolong the response time. The
optimal partition should be the one that maximize the similar-
ities within each portion resulted from the partition but min-
imize the similarities across portions. Ideally, we would like
that position points leading similar segments should be stored
together in the BASS-tree so that only a small number of data
nodes need to be retrieved eventually. In addition, the position
points should be organized in such a way that the label of each
node is as specific (i.e., containing less variant) and distinct
(i.e., having less similarity to others) as possible. In general,
the more distinct the label of each node, the more likely, on
average, a node (and its subtree) may be eliminated from fur-
ther investigation at a very early stage during an approximate
search, and hence the faster the overall response time.

The problem of generating the optimal partition is in spirit
similar to the min-cut problem [20]. Each entry in the node
to be partitioned as well as the new entry can be mapped to a
vertex, and the similarity between two entries is regarded as
the weight on the edge between the two corresponding ver-
tices. More specifically, the similarities between the labels of
child entries are used as the weights on edges during an inter-
nal node split, whereas the similarities between segments led
by position points when splitting a data node and the length
of the segments used is specified in the head field of the node.

The objective then turns to partition the graph into two
portions, each consists of roughly half of the vertices, and
the maximum weight on the edges across portions is mini-
mized. Consider the previous example of split node �� in
Figure 2(a) due to the insertion of position point ��� ���. The
mapped graph is shown in Figure 4(c). The length of segment
used in similarity assessment is 3. The segment annotated
beside each vertex is the segment used in similarity computa-
tion. Each shaded area represents a portion after the partition.
In this case, all edges across portions have weights less than
that of the edges within each portion. This graph partition
can be solved in ��� � ����� time via a randomized algo-
rithm where � is the number of entries considered [20] (e.g.,



�� � � for internal node and �
 � � for data node). Due
to space limitations, interested readers please refer to [20] for
the detail algorithm.

We also want to mention that the length of a node label
does not necessarily corresponds to its level in the BASS-tree,
even though the label length of a node is always greater than
or equal to that of its parent. In fact, the length of the reg-
ular expression used to label a node is driven by the needs.
The label of a data node has the same length as the segment
length used to assess similarity between position points. The
only time it might be incremented is when the current length
fails to produce a good partition during a data node split (e.g.,
when the similarities between every pair of position points are
uniformly high using the current segment length). During an
internal node split, lengthening of any child label may propa-
gate up to the split internal nodes.

The size of the BASS-tree is linear in proportion to the
number of position points, which is also the size of the string
database. As a fully balanced tree, the height is guaranteed
to be ������� where � is the size of the string database.
The BASS-tree is also a dynamic index structure in the sense
that update to the string database can be accommodated effi-
ciently. The insertion of a position point takes ������� time
and the deletion can be carried out in an analogous procedure
to the insertion and also takes ������� time. Due to space
limitations, we omit the detail algorithm for deletions.

5 Approximate Match on BASS-tree

Once the BASS-tree has been constructed on a string
database, the cost of processing an approximate match of any
given pattern can be dramatically reduced. One type of com-
monly asked query is, given a pattern � � ���� � � � �� and a
similarity threshold � , find the set of substrings in the database
whose similarities to � are at least � . A depth-first traver-
sal of the BASS-tree is able to locate all position points that
lead the qualified segments. Starting from the root, a recur-
sive procedure is invoked to examine the label of every child
and determine the set of children that may hold index to at
least one segment potentially possessing sufficient similarity
to the query pattern. This can be achieved by estimating the
maximum possible similarity between the query pattern and
any segment indexed through the child node. The maximum
similarity is equal to the summation of (1) the highest similar-
ity between the label of the child node and any prefix of the
query pattern and (2) the highest possible similarity that can
be produced by the remaining part of the query pattern. For
example, the maximum similarity between FALM and node
�� in Figure 2(a) can be computed as follows. First, the pre-
fix of FALM which has the highest similarity to the node label
(F+L)(I+V) is FAL (��
�FAL,(F+L)(I+V)� � �).

� � �

��� �	 � ����	
�� �� �� �� � �

Then, the highest possible similarity that can be produced by
the remaining portion, M, is �
�M, M� � �. Finally, the
maximum similarity between FALM and �� is � � � � ��.
If the maximum similarity to a child node is less than � , then

the child node and its subtree can be excluded from further
evaluation according to Property 3.3. If the maximum simi-
larity to a child node is greater or equal to � , the child node is
considered relevant to the query and the same procedure will
be invoked on the child node. The process continues until the
set of relevant data nodes are located.

The computational complexity of the approximate match
query depends on the number of data nodes actually involved.
In most cases, this number can be regarded as a constant (with
respect to the size of the string database). Then each query
can be answered in ������� time where � is the size of the
database.

6 Experimental Results

We evaluate the BASS-tree on an IBM-AIX computer with
a 333MHz CPU and 128 MB main memory. All programs are
implemented in C. The SWISS-PROT protein database [4] is
used in our experiments, which consists of 122,550 protein
strings with an average length of 367 amino acids. An amino
acid is encoded using 1 byte.

To build a BASS-tree, we set the data page size to be 8KB,
which is the same as a disk I/O page. The maximum number
of position points in a data node is 1023. To fit an internal
node in a data page, the number of children in an internal
node is calculated using Equation 2. In this experiment, we
find that the average fan-out of an internal node is 301.2 and
the height is 3, which confirm with our previous analysis. The
structure of BASS-tree is very compact. The space occupied
by the internal nodes is roughly �� of the database size.

6.1 Effectiveness of the Node Split Algorithm

The efficiency of answering an approximate match query
using a BASS-tree depends on the number of nodes visited.
The more the distinction between labels of sibling nodes in
the BASS-tree, the less the expected number of nodes to be
visited during an approximate match query. To evaluate the
effectiveness of our node split algorithm, we compare the av-
erage similarities between every pair of sibling nodes using
different node split policies. Table 1 shows a comparison of
the average similarity of sibling nodes in the BASS-tree us-
ing our node split algorithm and the average similarity of sib-
ling nodes if random split is performed on overflowed nodes.
BLOSUM 50 is used in this experiment. The average similar-
ity between siblings decreases as we proceed from the root to
the leaf level. This is due to the fact that the label of a node is
always a specialization of its parent. It can be induced from
the definition that the similarity between two regular expres-
sions is always greater than or equal to the similarity between
specializations of these two regular expressions. The BASS
split algorithm, however, enables the average similarity to de-
crease as the node level increases, while the average similarity
surges when the random split is employed. This difference is
owe to the split policy employed in BASS, which intention-
ally minimizes the similarity between portions during each
node split.



Table 1. Avg. Similarity of Two Split Algorithms

node level 1 2 3
BASS split 2.11 -1.06 -2.53
random split 3.32 7.98 12.61

6.2 Query Response Time

The most important metric to determine how good an in-
dex structure is the query response time. We compare the
query time of four search schemes, the BASS-tree, the suf-
fix tree (with suffix links) [?], the MRS-index [17], QUASAR
[5], BLAST [1], and the linear scan (Boyer-Moore’s algorithm
[12]). Due to the space limitations, we do not furnish the com-
parison with String B-tree [11] and RE-tree [6] since they are
designed for exact match only. Interested readers may refer to
[31] for a detailed comparison.

The query response time with respect to the query pattern
length is shown in Table 2. BLOSUM 50 is used in this set
of experiments. The time is measured in second and is the
average of 20 queries. The BASS-tree is clearly the winner.
This performance attributes to the factors that the BASS-tree
is very compact and can be easily held in memory all together,
and that the BASS-tree tends to group similar segments to-
gether and hence confines the search to a very limited number
of branches.

Table 2. Response Time (sec.) on SWISS-PROT
Protein Database as a Function of Query Pat-
tern Length

Pattern Length 5 10 20 40
BASS-tree 0.08 0.1 0.13 0.18
BLAST 0.81 1.12 1.36 2.05
QUASAR 0.63 0.95 1.45 2.35
MRS-index 2.9 4.6 7.5 12.7
Suffix tree 2.1 3.8 7.3 15.2
Linear scan 6.4 13.8 22 29.5

Secondly, we study the response time with different score
matrices. Table 3 shows the response time of these six
schemes using BLOSUM 30, BLOSUM 40, BLOSUM 50,
BLOSUM 60, and BLOSUM 70, respectively. The average
pairwise similarity between amino acids for each score ma-

trix (i.e.,

�
���������

��
��	���

���� ) is also reported. BASS-tree
performs uniformly well for all score matrices. As a method
designed for highly selective queries, QUASAR is most vul-
nerable to the increase of average pairwise similarity because
it may substantially weaken the filtration ratio. A compre-
hensive study can be found in [31]. To further evaluate
the performance of BASS-tree, we also carry out a thorough
study on the dependencies of the query response time to the
database size, the average string length, and the number of
distinct symbols, respectively. A set of synthetic data sets are

Table 3. Response Time (sec.) on SWISS-PROT
Protein Database for Different Score Matrices

BLOSUM 30 40 50 60 70
Avg Similarity -0.88 -1.17 -1.46 -1.28 -1.72
BASS-tree 0.21 0.17 0.13 0.16 0.10
BLAST 3.12 2.33 1.36 2.07 1.24
QUASAR 4.93 2.75 1.45 2.35 1.23
MRS-index 17.2 11.7 7.5 10.4 5.8
Suffix tree 18.6 12.5 7.3 10.5 5.8
Linear scan 23.1 22.4 22 22.1 21.6

generated for this purpose. The default values of the parame-
ters are set as follows. The pattern length is 20. For a given
symbol, the average pairwise similarity is -1.2. The average
string length is 400. The database size is 2GB. The number of
distinct symbols is 20. To isolate the effect of each parameter,
we vary the value of only one parameter while the remaining
parameters are fixed to the default vales in each set of experi-
ments. The results are presented in Figure 5. The BASS-tree
performs consistently well under all parameter settings while
other schemes have mixed performance. The response time of
BASS-tree increases in a logarithmic pace with respect to the
database size and is insensitive to the changes of string length
and vocabulary size. This advantage mainly attributes to the
balanced and stable structure of the BASS-tree and the unique
feature that similar segments are always grouped together. We
also notice that the performance of the MRS-index degrades
substantially when the vocabulary size increases. A detailed
comparison is available in [31].

7 Conclusions

In many applications, a symbol in a string may be substi-
tuted by another symbol without change the natural charac-
teristic of the string. In this paper, we proposed a new index
structure, BASS-tree, for approximate search on large string
databases. In order to expedite the search process, the BASS-
tree localizes the access and computation to a small portion of
the index and the database by grouping position points accord-
ing to the similarities of following segments. Both symbol
substitutions and gap penalties are supported by this scheme
and querying patterns with wild card(s) can also be handled
seamlessly. Empirical studies show that the BASS-tree out-
performs all existing algorithms by a wide margin.
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