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Abstract

We present a fast algorithm for computing approx-
imate quantiles in high speed data streams with deter-
ministic error bounds. For data streams of size N
where N is unknown in advance, our algorithm par-
titions the stream into sub-streams of exponentially
increasing size as they arrive. For each sub-stream
which has a fixed size, we compute and maintain a
multi-level summary structure using a novel algorithm.
In order to achieve high speed performance, the algo-
rithm uses simple block-wise merge and sample oper-
ations. Overall, our algorithms for fixed-size streams
and arbitrary-size streams have a computational cost of
O(N log( 1

ε log εN)) and an average per-element update
cost of O(log log N) if ε is fixed.

1 Introduction

Quantile computation has a wide range of applica-
tions in database and scientific computing. Comput-
ing exact quantiles on large datasets or unlimited data
streams requires either huge memory or relatively slow

disk-based sorting. It is proven that at least O(N
1
p )

storage is needed for exact median (0.5 quantile) com-
putation in p passes for a data set of size N [12]. Re-
cently, researchers have studied the problem of com-
puting approximate quantiles with guaranteed error
bound to improve both memory and speed performance
[10, 11, 5, 6, 2, 8, 3, 4].

Streaming quantile computation has several con-
straints. Data streams are transient and can arrive
at a high speed. Furthermore, the stream size may
not be known apriori. Streaming computations there-
fore require single pass algorithms with small space re-
quirement and which are able to handle arbitrary sized

streams. In order to guarantee the precision of the re-
sult, the algorithm should ensure random or determin-
istic error bound for the quantile computation. The
best reported storage bound for approximate quantile
computation is O( 1

ε log εN) [5]. Many algorithms were
developed for computing approximate quantiles over
the entire stream history [10, 5] or over a sliding win-
dow [8, 2]; with uniform error [10, 5] or with biased
error [3, 4]. However, most of these algorithms focus
on reducing the space requirement and can trade off
the computational cost. This can be an issue in stream
applications such as streaming music, streaming video,
voice over IP, etc. which require real-time performance.
For high-speed streams on OC-768 links with 40 Gbps
capacity, many algorithms may not have enough time
for processing the data, even if the storage requirement
is relieved.

In this paper, we present fast algorithms for comput-
ing approximate quantiles with uniform error on entire
stream history. Specifically, for a fixed error, our algo-
rithm has a computational cost of O(N log 1

ε log εN)
where N is the size of the data stream. An av-
erage per element cost of O(log log N) for fixed ε
is achieved which significantly reduces the compu-
tational bandwidth requirement. Our algorithm is
based on block-wise sampling and merging operations.
For a fixed-sized stream with known size, we main-
tain a multi-level summary structure online which
can answer ε-approximate quantile query for any rank
r ∈ [1, n]. For an arbitrary-sized stream with un-
known size, our algorithm divides the streams into
sub-streams of exponentially-increasing sizes, where a
fixed-sized stream algorithm can be applied for each
sub-stream. The storage requirement of our algorithms
is O( 1

ε log2 εN).

We have tested the performance of our algorithms
on arbitrary-sized streams with tens of millions of el-
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ements and different error thresholds. We also com-
pared the performance of our algorithms against prior
algorithms for arbitrary-sized streams. In practice, our
algorithm is able to achieve upto 300× speedup over
prior algorithms.
Organization of the paper: The rest of the paper
is organized as follows. We describe the related work
in Section 2. In Section 3, we present our algorithms
and analysis for both fixed-sized streams and arbitrary-
sized streams. In Section 4, we demonstrate our imple-
mentation results. Section 5 concludes the paper.

2 Related Work

Quantile computation has been studied extensively
in the database literature. At a broad level, they can
be classified as exact algorithms and approximate al-
gorithms.

Exact Algorithms: Several algorithms are pro-
posed for computing exact quantiles efficiently. There
is also considerable work on deriving the lower and up-
per bounds of number of comparisons needed for find-
ing exact quantiles. Mike Paterson [13] reviewed the
history of the theoretical results on this aspect. The
current upper bound is 2.9423N comparisons, and the
lower bound is (2 + α)N , where α is the order of 2−40.
Munro and Paterson [12] also showed that algorithms
which compute the exact φ-quantile of a sequence of
N data elements in p passes, will need Ω(N 1/p) space.
For single pass requirement of stream applications, this
requires Ω(N) space. Therefore, approximation algo-
rithms that require sublinear-space are needed for on-
line quantile computations on large data streams.

Approximate Algorithms: Approximate algo-
rithms are either deterministic with guaranteed error
or randomized with guaranteed error of certain proba-
bility. These algorithms can further be classified as uni-
form, biased or targetted quantile algorithms. More-
over, based on the underlying model, they can be
further classified as quantile computations on entire
stream history, sliding windows and distributed stream
algorithms.

Jain and Chlamatac [7], Agrawal and Swami [1] have
proposed algorithms to compute uniform quantiles in
a single pass. However, both of these two algorithms
have no apriori guarantees on error. Manku et al.
[10] proposed a single pass algorithm for computing
ε-approximate uniform quantile summary. Their algo-
rithm requires prior knowledge of N . The space com-
plexity of their algorithm is O( 1

ε log2 εN). Manku et
al. [11] also presented a randomized uniform quan-
tile approximation algorithm which does not require
prior knowledge of N . The space requirement is

1
ε (log2( 1

ε ) + log2 log( 1
δ )) with a failure probability of δ.

Greenwald et al. [5] improved Manku’s [11] algorithm
to achieve a storage bound of O( 1

ε log εN). Their algo-
rithm can deterministically compute an ε-approximate
quantile summary without the prior knowledge of N .
Lin et al. [8] presented algorithms to compute uniform
quantiles over sliding windows. Arasu and Manku [2]
improved the space bound using a novel exponential
histogram-based data structure.

More recently, Cormode et al. [3] studied the prob-
lem of biased quantiles. They proposed an algorithm
with poly-log space complexity based on [5]. However,
it is shown in [15] that the space requirement of their
algorithm can grow linearly with the input size with
carefully crafted data. Cormode et al. [4] presented
a better algorithm with an improved space bound of
O( logU

ε log εN) and amortized update time complexity
of O(log log U) where U is the size of the universe where
data element is chosen from and N is the size of the
data stream.

Recent work has also focussed on approximate quan-
tile computation algorithms in distributed streams and
sensor networks. Greenwald et al. [6] proposed an
algorithm for computing ε-approximate quantiles dis-
tributely for sensor network applications. Their algo-
rithm guarantees that the summary structure at each
sensor is of size O(log2 n/ε). Shrivastava et al. [14]
presented an algorithm to compute medians and other
quantiles in sensor networks using a space complexity
of O( 1

ε log(U)) where U is the size of the universe.
To deal with massive quantile queries, Lin et al.

[9] proposed an algorithm to reduce the number of
distinct quires by clustering the queries and treating
each cluster as a single query. For relative error or-
der statistics, Zhang et al. [15] proposed an algo-
rithm with confidence 1 − δ using O( 1

ε2 log 1
δ log ε2N)

space, which improved the previous best space bound
O( 1

ε3 log 1
δ log N).

3 Algorithms

In this section, we describe our algorithms for fast
computation of approximate quantiles on large high-
speed data streams. We present our data structures
and algorithms for both fixed-sized (with known size)
and arbitrary-sized (with unknown size) streams. Fur-
thermore, We analyze the computational complexity
and the memory requirements for our algorithms.

Let N denote the total number of values of the data
stream and n denote the number of values in the data
stream seen so far. Given a user-defined error ε and
any rank r ∈ [1, n], an ε-approximate quantile is an
element in the data stream whose rank r′ is within
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[r − εn, r + εn]. We maintain a summary structure to
continuously answer ε-approximate quantile queries.

3.1 Fixed Size Streams

We first present our approximate quantile computa-
tion algorithm for the case where N is given in advance.
We will generalize the algorithm with unknown N in
the following subsection. In practice, the former algo-
rithm can be used for applications such as summarizing
large databases that do not fit in main memory. The
latter algorithm is useful for continuous streams whose
size can not be predicted beforehand. We introduce
our summary structure and describe the algorithm to
construct the summary.

3.1.1 Multi-level Quantile Summary

We maintain a multi-level ε-summary S of the stream
as data elements are coming in. An ε-summary is a
sketch of the stream which can provide ε-approximate
answer for quantile query of any rank r ≤ n.
We maintain a multi-level summary structure S =
{s0, ..., sl, ..., sL}, where sl is the summary at level l
and L is the total number of levels (see Fig.1). Basi-
cally, we divide the incoming stream into blocks of size
b (b = b log εN

ε c). Each level l covers a disjoint bag Bi of
consecutive blocks in the stream, and all levels together
⋃

Bi cover the whole stream. Specifically, B0 always
contains the most recent block (whether it is complete
or not), B1 contains the older two blocks, and BL con-
sists of the oldest 2L blocks. Each sl is an εl-summary
of Bi, where εl ≤ ε.

The multi-level summary construction and main-
tainance is performed as follows. Initially, all levels
are empty. Whenever a data element in the stream
arrives, we perform the following update procedure.

1. Insert the element into s0.

2. If s0 is not full (|s0| < b), stop and the update
procedure is done for the current element. If s0

becomes full (|s0| = b), we reduce the size of s0

by computing a sketch sc of size d b
2e + 1 on s0.

We refer to this sketch computation operation as
COMPRESS, which we will describe in detail in later
discussion. Consider s0 as an ε0-summary of B0

where ε0 = 0, the COMPRESS operation guarantees
that sc is an (ε0 + 1

b )-summary. After COMPRESS

operation, sc is sent to level 1.

3. If s1 is empty, we set s1 to be sc and the update
procedure is done. Otherwise, we merge s1 with
sc which is sent by level 0 and empty s0. We refer

to these operations as MERGE on s1, sc and EMPTY

on s0. Generally, the MERGE(sl+1, sc) operation
merges sl+1 with the sketch sc by performing a
merge sort. The EMPTY(sl) operation empties sl

after MERGE operation is finished. Finally, we per-
form COMPRESS on the result of MERGE, and send
the resulting sketch sc to level 2.

4. If s2 is empty, we set s2 to be sc and the up-
date procedure is done. Otherwise, we perform the
operations s2 =MERGE(s2, sc), sc =COMPRESS(s2),
EMPTY(s1) in the given order, and send new sc to
level 3.

5. We repeatedly perform step 4 for si, i = 3, . . . , L
until we find a level L where sL is empty.

The pseudo code of the entire update procedure
whenever an element e comes is shown in Algorithm
1. In the following discussion, we describe the opera-
tions COMPRESS, MERGE in detail.

Assume that s is an ε-summary of stream B. For
each element e in s, we maintain rmax(e) and rmin(e)
which represent the maximum and minimum possible
ranks of e in B, respectively. Therefore, we can an-
swer the ε-approximate quantile query of any rank r
by returning the value e which satisfies: rmax(e) ≤
r + ε|B| and rmin(e) ≥ r − ε|B|. Initially, rmin(e) =
rmax(e) = rank(e). rmin(e), rmax(e) are updated
during the COMPRESS and MERGE operations.

COMPRESS(s, 1
b ): The COMPRESS operation takes

at most d b
2e + 1 values from s, which are:

quantile(s, 1), quantile(s, b 2|B|
b c), quantile(s, b2 2|B|

b c),

. . .,quantile(s, bi 2|B|
b c),. . ., quantile(s, |B|), where

quantile(s, r) queries summary s for quantile of rank
r. According to [6], the result of COMPRESS(s, 1

b ) is an
(ε + 1

b )-summary, assuming s is an ε-summary.
MERGE(s, s′): The MERGE operation combines s and s′

by performing a merge-sort on s and s′. According to
[6], if s is an ε-summary of B and s′ is an ε′-summary of
B′, the result of MERGE(s, s′) is an ε-summary of B

⋃

B′

where ε = max(ε, ε′).

Lemma 1. The number of levels in the summary
structure is less than log(εN).

Proof. In the entire summary structure construction,
s0 becomes full at most N

b times, sl becomes full N
2lb

times and the highest level sL becomes full at most
once. Therefore,

L ≤ log(
N

b
) < log(εN)− log(log(εN)) < log(εN) (1)

.
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Figure 1. Multi-level summary S: This figure highlights the multi-level structure of our ε-summary
S = {s0, s1, . . . , sL}. The incoming data is divided into equi-sized blocks of size b and blocks are grouped
into disjoint bags, B0, B1, . . . , Bl, . . . , BL with Bl for level l. B0 contains the most recent block, B1 contains
the older two blocks, and BL consists of the oldest 2L blocks. At each level, we maintain sl as the
εl-summary for Bl. The total number of levels L is no more than log N

b

.

Algorithm 1 Update(e,S,ε)
Input e: current data element to be inserted, S: cur-
rent summary structure S = {s0, . . . , sl, . . . , sL}, ε: re-
quired approximation factor of S

1: insert e into s0

2: if |s0| = b then

3: sort s0

4: sc ← compress(s0,
1
b )

5: empty(s0)
6: else

7: exit
8: end if

9: for l = 1 to L do

10: if |sl| = 0 then

11: sl ← sc

12: break
13: else

14: sc = compress(merge(sl, sc),
1
b )

15: empty(sl)
16: end if

17: end for

Lemma 2. Each level in our summary maintains an
error less than ε.

Proof. During the construction process of S, the error
at each level εl depends on the COMPRESS and MERGE op-
erations. Intially, ε0 = 0. At each level, COMPRESS(sl,
1
b ) operation generates a new sketch sc with error εl+

1
b

and added to level l + 1, and MERGE does not increase
the error. Therefore, the error of the summary in sl+1

is given by

εl+1 = εl +
1

b
= ε0 +

l + 1

b
=

l + 1

b
(2)

From equations 2 and 1, it is easy to verify that

εl =
l

b
<

log(εN)
log(εN)

ε

= ε (3)

To answer a query of any rank r using S, we first
sort s0 and merge the summaries at all levels {sl} using
the MERGE operation, denote it as MERGE(S). Then the
ε-approximate quantile for any rank r is the element
e in MERGE(S) which satisfies: rmin(e) ≥ r − εN and
rmax(e) ≤ r + εN .

Theorem 1. For multi-level summary S, MERGE(S) is
an ε-approximate summary of the entire stream.

Proof. MERGE operation on all sl generates a sum-
mary for

⋃

Bl with approximation factor εU =
max(ε1, ε2, . . . , εL). According to Lemma 2, εU < ε.
Since the union of all the Bl is the entire stream,
MERGE(S) is an ε-approximate summary of the entire
stream.

3.1.2 Performance Analysis

Our summary structure maintains at most b + 3 ele-
ments in each level (after MERGE operation) and there
are L levels in the summary structure. Therefore, the
storage requirement for constructing the summary is
bounded by (b+3)L = O( 1

ε log2(εN)). The storage re-
quirement for our algorithm is higher than the best
storage bound proposed by Greenwald and Khanna
[5], which is O( 1

ε log(εN)). However, The goal behind
our algorithm is to achieve faster computational time
with reasonable storage. In practice, the memory size
requirements for the algorithm can be a small frac-
tion of the RAM on most PCs even for peta-byte-sized
datasets (see table 1).

Theorem 2. The average update cost of our algorithm
is O(log( 1

ε log(εN))).

Proof. At level 0, for each block we perform a sort and
a COMPRESS operation. The cost of sort per block is
b log b, COMPRESS per block is b

2 . Totally, there are N
b
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blocks, so the total cost at level 0 is: N log b + N
2 .

At each level Li, i > 0, we perform a COMPRESS and
a MERGE operation. Each COMPRESS costs b, since a
linear scan is required to batch query all the values
needed (refer to COMPRESS operation). Each MERGE

costs b with a merge sort. In fact, the computation
cost of MERGE also includes the updates of rmin and
rmax (will be discussed in Sec 3.3), which can be done
in linear time. Thus the cost of a MERGE adds up to
2b. Therefore, the total expected cost of computing
the summary structure is N log b + N

2 +
∑i=L

i=1
N
2ib3b =

O(N log( 1
ε log(εN)). The average update time per ele-

ment is O(log( 1
ε log(εN))).

In practice, for a fixed ε, the average per ele-
ment computation cost of our algorithm is given by
O(log log N) and the overall computation is almost lin-
ear in performance. The algorithm proposed by Green-
wald and Khanna [5] has a best case computation time
(per element) of O(log s), and worst computation time
(per element) of O(s) where s is 1

ε log(εN). We will
demonstrate in our experiment section the comparison
of the performance.

The majority of the computation in the summary
construction is dominated by the sort operations on
blocks. Although sorting is computationally intensive,
it is fast on small blocks which fit in the CPU L2 caches.
Table 1 shows a comparison of the block size, memory
requirement as a function of stream size N with error
bound 0.001 using our generalized streaming algorithm
in the next section. In practice, the size of the blocks
in our algorithm is smaller than the CPU cache size
even for peta-byte-sized data streams.

3.2 Generalized Streaming Algorithm

We generalize our algorithm for fixed size streams
to compute approximate quantiles in streams without
prior knowledge of size N . The basic idea of our algo-
rithm is as follows. We partition the input stream P
into disjoint sub-streams P0, P1, . . . , Pm with increas-

ing size. Specifically, sub-stream Pi has size 2i

ε and
covers the elements whose location is in the interval
[ 2

i−1
ε , 2i+1−1

ε ). By partitioning the incoming stream
into sub-streams with known size, we are able to con-
struct a multi-level summary Si on each sub-stream Pi

using our algorithm for fixed size streams. Our sum-
mary construction algorithm is as follows.

1. For the latest sub-stream Pk which has not com-
pleted, we maintain a multi-level ε′-summary SC

using Algorithm 1 by performing Update(e, SC , ε′)
whenever an element comes. Here ε′ = ε

2 .

Algorithm 2 gUpdate(e,S, ε, SC)
Input e: current data element, S: current sum-
mary structure, S = {S0, S1, . . . , Sk−1} (sub-streams
P0, . . . , Pk−1 have completely arrived), ε: required ap-
proximation factor of S, SC : the fixed size multi-level
summary corresponding to the current sub-stream Pk,
SC = {s0, s1, . . . , sL}

1: if e is the last element of Pk then

2: Apply merge on all the levels of SC : sall =
merge(SC) = merge(s0, s1, . . . , sL)

3: Sk = compress(sall,
ε
2 )

4: S = S
⋃

{Sk}
5: SC ← φ
6: else

7: update SC : SC = Update(e, SC , ε
2 )

8: end if

2. Once the last element of sub-stream Pk arrives,
we compute an ε

2 -summary on MERGE(SC), which
is the merged set of all levels in SC . The resulting
summary Sk =COMPRESS(MERGE(SC), ε

2 ) is an ε-
summary of Pk and it consists of 2

ε elements.

3. The ordered set of the summaries of all complete
sub-streams so far S = {S0, S1, . . . , Sk−1} is the
current multi-level ε-summary of the entire stream
except the incomplete sub-stream Pk.

The pseudo code for the update algorithm for stream
with unknown size is shown in Algorithm 2. Initially,
S = φ. Whenever an element comes, gUpdate is per-
formed to update the summary structure S.

To answer a query of any rank r using S, if SC

is not empty, we first compute Sk for the incomplete
sub-stream Pk: Sk = compress(merge(SC), ε

2 ), then

we merge all the ε-summaries S0, S1, . . . , Sk−1 in S to-
gether with Sk using MERGE operation, the final sum-
mary is the ε-summary for P .

3.2.1 Performance Analysis

We first present the storage analysis and then analyze
the computational complexity of our algorithm.

Theorem 3. The space requirement of Algorithm 2 is
O( 1

ε log2(εn)).

Proof. At any point of time, assume that the num-
ber of data elements arriving so far is n. According
to Algorithm 1, we compute and maintain a multi-
level ε-approximate summary SC for the current sub-
stream Pk. For each of the previous sub-streams
Pi, i = 1, . . . , k − 1 which are complete, we maintain
an ε-summary Si of size 2

ε . Since k ≤ blog(εn +
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Stream size (N) Maximum Block Size (Bytes) Bound of Number of Tuples Bound of Summary Size (Bytes)
106 191.2KB 161K 1.9MB
109 420.4KB 717K 8.6MB
1012 669.6KB 1.67M 20MB
1015 908.8KB 3.03M 36.4MB

Table 1. This table shows the memory size requirements of our Generalized algorithm (with unknown
size) for large data streams with an error of 0.001. Each tuple consists of a data value, and its minimum
and maximum rank in the stream, totally 12 bytes. Observe that the block size is less than a MB and
fits in the L2 cache of most CPUs. Therefore, the sorting will be in-memory and can be conducted
very fast. Also, the maximum memory requirement for our algorithm is a few MB even for handling
streams of 1 peta data.

1)c, totally we need O( 1
ε log εn) space. According

to the space bound for fixed size streams, we need
O( 1

ε log2(εn)) space for computing the summary SC

for the current sub-stream. Therefore, the space re-
quirement for the entire algorithm at any point of time
is O( 1

ε log2(εn)).

Theorem 4. The average update cost of Algorithm 2
is O(log( 1

ε log εn)).

Proof. According to Theorem 2, the computa-
tional complexity of each sub-stream Pi, i =
0, 1, . . . , blog(εn + 1)c is O(ni log( 1

ε′ log(ε′ni))) where

ni = |Pi| = 2i

ε ,Σni = n, ε′ = ε
2 . After each sub-

stream Pi is complete, we perform an additional MERGE
and COMPRESS operation each of cost O( 1

ε′ log2(ε′ni))

to construct Si.
Given the above observations, the total computa-

tional cost of our algorithm is

i=blog(εn+1)c
∑

i=0

(
2i

ε
log(

2(i− 1)

ε
) +

2

ε
(i− 1)2) (4)

.
Simplifying equation 4, the total computational cost

of our algorithm is O(n log( 1
ε log(εn))), the average up-

dating time per element is O(log( 1
ε log(εn))), which is

O(log log n) if ε is fixed.

3.3 Update rmin(e) and rmax(e)

For both fixed size stream and arbitrary size stream,
to answer the quantile query, we need to update rmin
and rmax values of each element e in the summary
properly.

rmin(e) and rmax(e) are updated during COMPRESS

and MERGE operations as follows (as in [6]):
Rank update in MERGE: Let S′ = x1, x2, . . . , xa and
S′′ = y1, y2, . . . , yb be two quantile summaries. Let
S = z1, z2, . . . , za+b = MERGE(S′, S′′). Assume zi corre-
sponds to some element xr in Q′. Let ys be the largest

element in S′′ that is smaller than xr (ys is undefined
if no such element), and let yt be the smallest element
in S′′ that is larger than xr (yt is undefined if no such
element). Then

rminS(zi) =

{

rminS′(xr) if ys undefined
rminS′(xr) + rminS′′(ys) otherwise

rminS(zi) =

{

rmaxS′(xr) + rmaxS′′(ys) if yt undefined
rmaxS′(xr) + rmaxS′′(yt) − 1 otherwise

Rank update in COMPRESS: Assume COMPRESS(S ′) =
S, for any element e ∈ S, we define rminS(e) =
rminS′(e) and rmaxS(e) = rmaxS′(e).

4 Implementation and Resuts

We implemented our algorithms in C++ on an Intel
1.8 GHz Pentium PC with 2GB main memory. We
tested our algorithm with a C++ implementation of
the algorithm in [5] (refer to as GK01 in the remaining
part of the paper) from the authors.

4.1 Results

We measured the performance of GK01 and our al-
gorithm on different data sets. Specifically, we studied
the computational performance as a function of the size
of the incoming stream, the error and input data dis-
tribution. In all experiments, we do not assume the
knowledge of the stream size, and we use float as data
type which takes 4 bytes.

4.1.1 Sorted Input

We tested our algorithms using an input stream with ei-
ther sorted or reverse sorted data. Fig. 2(a) shows the
performance of GK01 and our algorithm as the input
data stream size varies from 106 to 107 with a guar-
anteed error bound of 0.001. For these experiments,
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as the data stream size increases, the block size in the
largest sub-stream varies from 191.2K to 270.9K. In
practice, our algorithm is able to compute the summary
on a stream of size 107(40MB) using less than 2MB
RAM. Our algorithm is able to achieve a 200 − 300×
speedup over GK01. Note that the sorted and reverse
sorted curves for GK01 are almost overlapping due to
the log-scale presentation and small difference between
them (average 1.16% difference). Same reason for the
sorted and reverse sorted curves for our algorithm, and
the average difference between them is 2.1%.

We also measured the performance of our algorithm
and GK01 by varying the error bound from 10−3 to
10−2 on sorted and reverse sorted streams. Fig. 2(b)
shows the performance of our algorithm and GK01 on
an input stream of 107 data elements. We observe that
the performance of our algorithm is almost constant
even when the approximation accuracy of quantiles in-
creases by 10×. Note that the performance of GK01
is around 60× slower for large error and around 300×
slower for higher precision quantiles compared with our
algorithm.

4.1.2 Random Input

In order to measure the average case performance, we
measured the performance of our algorithm and GK01
on random data. Fig. 3(a) shows the performance of
GK01 and our algorithm as the input data stream size
varies from 106 to 107 with error bound of 0.001. As
the data size increases, the time taken by our algorithm
increases almost linearly as the computational require-
ment of our algorithm is O(n log log n). We observe
that our algorithm is able to achieve about 200−300×
speedup over GK01.

In Fig. 3(b), we evaluated our algorithms on a data
stream size of 107 by varying the error bound from
10−2 to 10−3. We observe that the performance of our
algorithm degrades by less than 10% while comput-
ing a summary with 10× higher accuracy. This graph
indicates that the performance of our algorithm is sub-
linear to the inverse of the error bound. In comparison,
the performance of GK01 algorithm degrades by over
500% as the accuracy of the computed summary in-
creases by 10×. In practice, the computational time
increase for computing a higher accuracy summary us-
ing our algorithm is significantly lower than that using
GK01.

4.2 Analysis

The worst-case storage requirement for our algo-
rithm is O( 1

ε log2(εN)). It is comparable to the storage

requirement of MRL [10] and higher than GK01. Al-
though the storage requirement is comparatively high,
for many practical applications, the storage used by
our algorithm is small enough to manage. For exam-
ple, a stream with 100 million values and error bound
0.001 has a worst-case storage requirement of 5MB
and practical on most PCs. Although our algorithm
has a higher storage requirement than GK01, our al-
gorithm can construct the summary upto two orders
of magnitude faster than GK01. In terms of the com-
putational cost, our algorithm has an expected cost
of O(n log( 1

ε log(εN))). Therefore, for a fixed error
bound, the algorithm has an almost linear increase in
computational time in n. Our algoritm also has a near-
logarithmic increase in time as error bound decreases.
Therefore, our algorithm is able to handle higher accu-
racy, large data streams efficiently.

5 Conclusion and Future Work

We presented fast algorithms for computing approx-
imate quantiles for streams. Our algorithms are based
on simple block-wise merge and sort operations which
significantly reduces the update cost performed for
each incoming element in stream. In order to handle
unknown size of the stream, we divide the incoming
streams into sub-streams of exponentially increasing
sizes. We construct summaries efficiently using lim-
ited space on the sub-streams. For both fixed sized
and arbitrary sized streams, our algorithm has an av-
erage update time complexity of O(log 1

ε log εN). We
also analyzed the performance of prior algorithms. We
evaluated our algorithms on different data sizes and
compared them with optimal implementations of prior
algorithms. In practice, our algorithm can achieve up
to 300× improvement in performance. Moreover, our
algorithm exhibits almost linear performance with re-
spect to stream size and performs well on large data
streams.

There are many interesting problems for future
investigation. We would like to extend our block-
wise merge and compress scheme to compute quan-
tiles quickly over sliding windows. Another interesting
problem is to extend our current algorithm to handle
biased quantiles. We are also interested in designing
biased quantile algorithms on distributed streams and
sensor networks. We would also like to design better
streaming algorithms with higher computational per-
formance for other problems such as k-median cluster-
ing, histograms, etc.
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Figure 2. Sorted Data: We used the sorted and reverse sorted input data to measure the best possible
performance of the summary construction time using our algorithm and GK01. Fig. 2(a) shows the
computational time as a function of the stream size on a log-scale for a fixed epsilon of 0.001. We observe
that the sorted and reverse sorted computation time curves for GK01 are almost overlapping due to
the log-scale presentation and small difference between them (average 1.16% difference). Same reason
for the sorted and reverse sorted curves for our algorithm, and the average difference between them is
2.1%. We also observe that the performance of our algorithm is almost linear and the computational
performance is almost two orders of magnitude faster than GK01. Fig. 2(b) shows the computational
time as a function of the error. We observe the higher performance of our algorithm which is 60−300×
faster than GK01. Moreover, GK01 has a significant performance overhead as the error becomes
smaller.
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