
Split-Order Distance for Clustering and
Classification Hierarchies

Qi Zhang, Eric Yi Liu, Abhishek Sarkar, and Wei Wang

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract. Clustering and classification hierarchies are organizational
structures of a set of objects. Multiple hierarchies may be derived over
the same set of objects, which makes distance computation between hi-
erarchies an important task for summarization and similarity search of
hierarchical patterns. In this paper, we model the classification and clus-
tering hierarchies as rooted, leaf-labeled, unordered trees. We propose
a novel distance metric Split-Order distance to evaluate the organiza-
tional structure difference between two hierarchies over the same set of
leaf objects. The Split-Order distance reflects the order in which subsets
of the tree leaves are differentiated from each other and can be used to
explain the relationships between the leaf objects. We also propose an
efficient algorithm for computing Split-Order distance between two trees
in O(n2d4) time, where n is the number of leaves, and d is the max-
imum number of children of any node. Our experiments on both real
and synthetic data demonstrate the efficiency and effectiveness of our
algorithm.

Key words: ENTER KEYWORDS HERE

1 Introduction

Clustering and classification hierarchies are important tools for capturing the
relationships among objects. Two representative examples are dendrograms il-
lustrating the hierarchical clustering result (Fig. 1(a)) and taxonomies classifying
the biological species (Fig. 1(b)). A hierarchy organizes the set of objects in a
tree, where objects with higher similarity are grouped together at a lower level,
before objects that are more distant merge into bigger groups. The groups at
the intermediate levels represent subclusters or subclasses.

Clustering and classification hierarchies can be automatically constructed
given the pair-wise distance matrix over the set of objects. However, different
models and methods may yield different estimates for the hierarchical structure.
Quantifying the differences between hierarchies becomes crucial for tasks such
as summarization of hierarchical patterns, computation of consensus hierarchies,
and comparison of hierarchically structured data. A motivating example is the
comparison of phylogenetic taxomonies, or phylogeny trees. A phylogeny tree
(Fig. 1(b)) describes the evolutionary relationship between different organisms.

f

{b, c, f, g}

{a, b, c, d, e, f, g}

a b cd

{b, c}

{b, c, g}

{a, d}

{a, d, e}
d

a

b
c

g f

e

e g

(a) A dendrogram over 7 objects

Brown

bear

Polar

bear

Black

bear

Spectacled

bear

Giant

bear

Raccoon

bear

Red

bear

(b) A taxnomony over 7 species

Fig. 1. Example clustering and classification hierarchies.

The leaves of the tree represent the species, and the internal nodes correspond
to the specialization events, where the evolution diverge in different directions to
generate subspecies. The root of the tree is the most recent common ancestor for
all the species. Different hierarchies can be derived for a given set of species using
different phylogeny tree construction algorithms, such as UPGMA [Sneath73],
neighbor-join [Saitou87], maximum parsimony [Felsenstein78], etc. Comparing
the similarity of different phylogeny trees is important for evaluating different
algorithms and deriving the consensus phylogeny tree.

Many algorithms have been proposed for comparing general tree topologies.
Tree edit distance is a classic metric to compare two trees with both inter-
nal nodes and leaf nodes labeled. As opposed to a general tree structure, clus-
tering and classification hierarchies are leaf-labeled trees; leaves represent the
objects. The tree edit distance computation for unordered trees is NP-complete
[Zhang89]. Polynomial-time algorithms [Zhang89,Demaine07,Touzet03,Bille05,Klein98,Lu79,Wang94]
only exist for ordered trees. As for classification or clustering hierarchies, there
is no specific order among siblings. If we were to consider classification or clus-
tering hierarchies as ordered, fully-labeled trees, metrics such as the tree edit
distance may produce results which do not agree with our understanding of the
hierarchies. Consider four trees presented in Fig. 2. T1, T2, T3, and T4 are differ-
ent hierarchies over a common object set {a, b, c, d}. To apply the ordered tree
edit distance, we also impose labels for the internal nodes. As classification hier-
archies, T2 and T4 are the same as T1. The objects are classified in the same way
in each of the trees; specifically, the order in which the objects are differentiated
from each other is the same. However, the tree edit distance between T1 and T2

is 2 since leaves a and b are transposed. The tree edit distance between T1 and
T4 is also 2 since two internal nodes are transposed. In addition, T3 has a tree
edit distance of 2 from T1, which implies that T1, T2, and T3 are equidistant
from T1. However, the way in which a and d are classified in T3 is very different
from the way they are classified in T1. On the other hand, a and d are classified
in the same way in both T1 and T2.

In this paper, we propose a novel distance metric, Split-Order distance,
for comparing clustering/classification hierarchies. Different from a general tree

e

c

a b

f

g

d

(a) T1

e

c

b a

f

g

d

(b) T2

e

c

d b

f

g

a

(c) T3

c

a b

f

e

d

g

(d) T4

Fig. 2. An example with four trees. T1, T2, T3, and T4 are four hierarchies with the
same set of objects(leaf labels) {a, b, c, d}. To apply the tree edit distance, we also
impose labels for internal nodes. Trees are considered as ordered.

structure, a clustering/classification hierarchy can be modeled as rooted, un-
ordered, leaf-labeled trees. Essential to these hierarchical structures is the set
of relationship among the leaf objects captured by the hierarchy: an object is
more closely related to another object which it merges with at a lower level than
another object which it merges with at a higher level. We refer to a split between
two objects as the smallest subcluster/subclass in the hierarchy where both ob-
jects belong to. A split corresponds to an internal node in the tree which is the
most recent common ancestor of the two leaf nodes representing the two objects.
All the splits form a partial order which uniquely determines the relationship
among all the objects captured by the hierarchy. For example, in Fig. 1(a), the
split between O2 and O3 happens at a lower level than the split between O3

and O6 does; in Fig. 1(b), the split between polar bear and red bear occurs at
a higher level than the split between polar bear and brown bear. We define the
Split-Order distance between two hierarchical structures based on the order of
the splits occuring in the tree. Our contributions can be summarized as follows:

1. We define a novel distance metric, Split-Order distance, between two clus-
tering or classification hierarchies. We prove that Split-Order distance is a
metric.

2. We prove that a complete set of split orders uniquely defines a hierarchi-
cal structure. In addition, we propose an algorithm for reconstructing the
hierarchy using a set of split orders.

3. We propose an efficient algorithm for computing the Split-Order distance
between any two hierarchies. Our algorithm takes O(n2d4) time, where n is
the number of leaves, d is the maximum degree of any node.

The rest of the paper is organized as follows. We review the related work in
Section 2 and introduce the preliminaries in Section 3. In Section 4, we discuss the
formal definition of Split-Order distance. We present our algorithm for efficient
computation of the Split-Order distance in Section 5. The experimental results
are reported in Section 6, and Section 7 concludes the paper.

2 Related Work

Many algorithms have been proposed for comparing tree-like or hierarchically
structured data. One of the tree distance metrics which has been extensively
studied is the tree edit distance. The tree edit distance evaluates the cost of
transforming a tree into another tree through a sequence of operations, such
as deleting, inserting, and relabeling nodes. A cost is defined for each oper-
ation, and the minimum of the total cost of all operations in a sequence is
the tree edit distance. Among the different tree edit distance computation algo-
rithms [Demaine07,Touzet03,Bille05,Klein98,Lu79,Wang94,Zhang89], two repre-
sentative ones are Zhang-Shasha [Zhang89] and Klein [Klein98]. Both algorithms
use dynamic programming techniques with worst-case complexities O(n4) and
O(n3logn), respectively. Besides tree edit distance, another type of tree dis-
tance metrics compare the trees based on the structures they share such as
maximum agreement subtrees [Amir97], cousin-pairs [Shasha04], etc. However,
as mentioned in the previous section, these general tree distance metrics might
not be readily used for comparing clustering or classification hierarchies which
are usually modeled as rooted, unordered, leaf-labeled trees, and are able to
capture the relationship among leaf objects. For phylogeny trees, several dis-
tance metrics have been proposed incorporating biologically meaningful defini-
tions [Wang03,Robinson81,Robinson79,Allen01,Estabrook85]. But they may not
work well on general clustering/classification hierarchies.

3 Preliminaries

We model the clustering and classification hierarchies as rooted, unordered, leaf-
labeled trees, as shown in Fig. 3.

e

c

a b

hf

k

g

root

d

i lj

1

2 3

4

5 6

10 13

15 16 17 18 19 20

7 8

11 12
9 14

Fig. 3. A rooted, unordered, leaf-labeled tree representing a clustering or classification
hierarchy over a set of objects Σ = {a, b, c, d, e, f, g, h, i, j, k, l}.

The leaf nodes represent the objects. Each internal node represents the split of
a cluster/class into several subclusters/subclasses. The root represents the entire
set of objects. We consider unordered trees, since the sibling order does not exist

in classification/clustering hierarchies. We also assume that each internal node
has at least two children; each child represents a different subclass/subcluster
resulting from the split.

Let the set of leaf labels be Σ = {σ1, . . . , σn}. We refer to a leaf node using
its label in the following discussion. All nodes in the tree are uniquely numbered
for easy reference (see Fig. 3). For a leaf node σi ∈ Σ, the internal nodes on
the path from σi to the root are ancestors of σi. The ancestors represent the
subclusters/subclasses containing σi. For any two leaf nodes σi, σj , we define
the Split between σi, σj as follows:

Definition 1. The Split between σi, σj (denoted as Split(σi, σj)). Given a
rooted, unordered tree T with a set of leaf labels Σ, for any two leaf nodes
σi, σj ∈ Σ, the Split between σi, σj is defined as the most recent common ances-
tor of σi and σj in T .

Split(σi, σj) represents the smallest cluster/class which includes both σi and
σj , i.e., the split during the top-down hierarchical clustering/classification pro-
cess which divides σi, σj into different subclusters/classes. For example, in Fig.
3, nodes 1, 2, 4, and 9 are ancestors of leaf node a, nodes 1, 2, and 4 are ancestors
of leaf node c. Therefore, Split(a, c) is node 4.

In the following section, we define the Split-Order distance for any two hier-
archies T1, T2 over the same set of leaf objects Σ.

4 Split-Order Distance

Given a rooted, unordered tree T with a set of leaf labels Σ, for any leaf node σi,
the order of the splits which separate σi and the remaining leaf nodes determines
the relationship between σi and other leaves. By “order”, we mean that the
split happens “earlier” (closer to the root) or “later” (closer to the leaf σi).
Formally, for any leaf node σi, we define the order relationship of any two splits
Split(σi, σj),Split(σi, σk) as follows:

Definition 2. Split-Order Relations. Given a rooted, unordered tree with a set
of leaf labels Σ, for any leaf node σi ∈ Σ, and any two other leaf nodes σj,
σk ∈ Σ, we define

1. SplitOrder(σi, σj , σk) =‘≺’, if Split(σi, σj) is an ancestor of Split(σi, σk),
(Split(σi, σj) happens earlier than Split(σi, σk));

2. SplitOrder(σi, σj , σk) =‘Â’, if Split(σi, σk) is an ancestor of Split(σi, σj),
(Split(σi, σj) happens later than Split(σi, σk));

3. SplitOrder(σi, σj , σk) =‘=’, if Split(σi, σj) = Split(σi, σk), (Split(σi, σj)
happens at the same time with Split(σi, σk)).

For example, in Fig. 3, we have SplitOrder(a, b, c) =‘Â’, SplitOrder(a, g, d) =‘≺’,
and SplitOrder(a, f, h) =‘=’. The topology of T determines a map Σ×Σ×Σ 7→
{≺,Â,=}. In the following discussion, we show that the complete set of the
Split-Order relations Θ = {SplitOrder(σi, σj , σk) = θi,j,k}, ∀σi, σj , σk ∈ Σ,
θi,j,k ∈ {≺,Â, =} can serve as a unique signature of T .

Theorem 1. Given a complete set of the Split-Order relations Θ = {SplitOrder(σi, σj , σk) =
θi,j,k}, ∀σi, σj , σk ∈ Σ, θi,j,k ∈ {≺,Â,=}, we can either reconstruct a unique tree
or declare that a tree corresponding to Θ does not exist.

Proof. We prove the theorem by describing the following recursive algorithm to
reconstruct a unique tree or report the nonexistence of a tree.

In the beginning, we start with the set of leaf nodes Σ. All the nodes are
unprocessed initially. Each time we pick an unprocessed leave node from Σ for
processing until all nodes in Σ are processed. Let σi be the node we pick. We
find the set of leaf nodes {σj} which have the latest split with σi:

{σj |¬∃σk ∈ Σ, σk 6= σi, SplitOrder(σi, σj , σk) =′≺′} (1)

It is intuitive to prove that σi and all nodes in {σj} must be siblings. Next, we
examine whether there are any conflicting Split-Order relations in Θ. For any
two leaf nodes σj1 , σj2 ∈ {σj}, we check whether the following two equations
hold:

SplitOrder(σi, σj1 , σk) = SplitOrder(σi, σj2 , σk)
∀σk ∈ Σ

(2)

SplitOrder(σj1 , σk, σl) = SplitOrder(σj2 , σk, σl) = SplitOrder(σi, σk, σl)
∀σk, σl ∈ Σ

(3)

If any of the above equations does not hold, which implies conflicting Split-
Order relations in Σ, a tree conforming to Σ does not exist. Due to limited
space, we omit the proof here. If both equations hold, we create a parent node
σnew for σi and all leaf nodes in {σj}. We add σnew to Σ(1), and mark {σj} and
σi as processed.

If Σ still contains unprocessed nodes, we pick another leaf node, and start
the process again. After all nodes in Σ have been processed, we start the next
iteration with Σ(1). All nodes in Σ(1) will be treated as leaf nodes, and their
Split-Order relations are determined by the nodes they represent, as follows:

SplitOrder(σ(1)
u′ , σ

(1)
v′ , σ

(1)
w′) = SplitOrder(σu, σv, σw) (4)

where σu is any child of σ
(1)
u′ , σv is any child of σ

(1)
v′ , and σw is any child of σ

(1)
w′ .

We recurse until at iteration p, Σ(p) contains only the root node. If at any
point, either Equation 2 or 3 does not hold, the process aborts and reports the
nonexistence of a tree. The complete algorithm is shown in Algorithm 1.

Definition 3. Split-Order distance. For two rooted, unordered trees T , T ′ with
the same set of leaf labels Σ, and their corresponding Split-Order relationship
sets Θ, Θ′, the Split-Order distance between T and T ′ is defined as

SODist(T, T ′) =
|{SplitOrder(σi, σj , σk) s.t. SplitOrder(σi, σj , σk) 6= SplitOrder(σ′i, σ

′
j , σ

′
k)}|

(5)

Algorithm 1 ReconstructTree(Σ,Θ)
Input Σ: the leaf label set; Θ: the set of Split-Order relations over Σ, Θ =
{SplitOrder(σi, σj , σk) = θi,j,k}, ∀σi, σj , σk ∈ Σ, θi,j,k ∈ {≺,Â, =}
1: Σcurr ← Σ
2: while do
3: if |Σcurr| = 1 then
4: The only node in Σcurr is the root, return;
5: else
6: while Σcurr contains unprocessed nodes do
7: Pick an unprocessed node σi ∈ Σcurr.
8: Find the set of nodes {σj} which have the latest split with σi, according to

Equation 1.
9: Test conflict, according to Equations 2 and 3.

10: if there is a conflict then
11: Tree does not exist, return
12: else
13: Create a new node σnew as the parent of σi and all nodes in {σj}
14: Add σnew to Σnext

15: Mark σi and all nodes in {σj} as processed
16: end if
17: end while
18: Σcurr ← Σnext

19: end if
20: end while

where (SplitOrder(σi, σj , σk) = θi,j,k) ∈ Θ, and (SplitOrder(σ′i, σ
′
j , σ

′
k) = θ′i,j,k) ∈

Θ′.
The relative Split-Order distance is defined as:

SODistRel(T, T ′) = SODist(T, T ′)/n3 (6)

where n = |Σ|. In other words, n3 = |Θ| = |Θ′|. Note that SODistRel(T,
T ′) ∈ [0, 1].

Theorem 2. The Split-Order distance is a metric.

Proof. Assume that we have three rooted, unordered trees T1, T2, T3 with the
same set of leaf labels Σ. The proof for symmetry, identity and non-negativity
properties are intuitive and omitted here. We will prove the triangle inequality:
SODist(T1, T2) ≤ SODist(T1, T3)+SODist(T2, T3). Denote the total number of
Split-Order relations for each tree as m. Then the number of common Split-Order
relations shared between T1 and T3 is m − SODist(T1, T3), and the number of
common Split-Order relations shared between T2 and T3 is m−SODist(T2, T3).
Therefore, the number of common Split-Order relations shared between T1, T2,
and T3 is at least

(m− SODist(T1, T3)) + (m− SODist(T2, T3))−m
= m− (SODist(T1, T3) + SODist(T2, T3))

Thus, the number of Split-Order relations which are different between T1 and
T2 is at most

m− (m− (SODist(T1, T3) + SODist(T2, T3)))
= SODist(T1, T3) + SODist(T2, T3)

5 Split-Order Distance Computation

We propose an efficient algorithm for computing the Split-Order distance be-
tween any two trees T1, T2 over the same set of leaf objects Σ.

The naive algorithm computes the complete set of the Split-Order relations
for both trees and counts the number of different Split-Order relations in two
trees. Since there are O(n3) Split-Order relations for each tree, counting the
different Split-Order relations alone will take O(n3) time. In fact, computing
a single Split-Order relation has more than O(1) complexity. In the following
discussion, we propose an efficient algorithm for computing Split-Order distance
which takes only O(n2d4) time, where d is the maximum degree of any node.

Let Θ(T) denote the complete set of the Split-Order relations of tree T . For
each internal node np, we compute a subset of Θ(T), denoted as SplitOrderSet(T, np):

SplitOrderSet(T, np) = {SplitOrder(σi1 , σi2 , σi3) = θi1,i2,i3 where
(Split(σi1 , σi2) = np) ∧ ((SplitOrder(σi1 , σi2 , σi3) = θi1,i2,i3) ∈ Θ(T))} (7)

It is easy to prove that Θ(T) can be divided into disjoint sets of SplitOrderSet(T, np):

∪npSplitOrderSet(T, np) = Θ(T) (8)

SplitOrderSet(T, np1) ∩ SplitOrderSet(T, np2) = φ (9)

The basic idea of our Split-Order distance computation algorithm is to count, for
any internal node np in T and any internal node np′ in T ′, the number of com-
mon Split-Order relations associated with them, i.e., |SplitOrderSet(T, np) ∩
SplitOrderSet(T ′, np′)|. In the following discussion, we only consider the Split-
Order relations of type ‘Â’ and ‘=’, since we have

SplitOrder(σi1 , σi2 , σi3) =′≺′⇔
SplitOrder(σi1 , σi3 , σi2) =′Â′ (10)

The total number of common Split-Order relations is twice the number of total
common ‘Â’-type Split-Order relations plus the number of total common ‘=’-
type Split-Order relations. Furthermore, we only consider Split-Order relations
where σi1 , σi2 , and σi3 are three different leaf labels. If any two of them are the
same we already know that the relation is common between Θ(T) and Θ(T ′).

We first explain how to compute the Split-Order relations of type ‘Â’ and ‘=’
in SplitOrderSet(T, np) given a tree T and an internal node np. Denote the set
of leaf nodes which are inside the subtree rooted at np as Leaves(np), and the
kth child of np as Child(np, k) (see Fig. 4). It is easy to prove that Leaves(np) =

∪kLeaves(Child(np, k)), and Leaves(Child(np, k)) ∩ Leaves(Child(np, k
′)) =

φ. Here we assume that all child nodes are in an ordered list for the con-
venience of discussion. The child nodes can be of any order. For example in
Fig. 3, consider n4, Leaves(n4) = {a, b, c}. n9 and n10 are the children of n4,
and Leaves(n9) = {a, b}, Leaves(n10) = {c}. Now we determine the neces-
sary conditions for SplitOrder(σi1 , σi2 , σi3) to be of ‘Â’ or ‘=’ type. If σi1 ∈
Leaves(Child(np, k1)), and σi2 ∈ Leaves(Child(np, k2)), we know that k1 6= k2.
Otherwise, Split(σi1 , σi2) is Child(np, k1) or a descendent of Child(np, k1), but
not np. Therefore, σi1 ,σi2 are from different child nodes of np. For the re-
quirement of σi3 , we have σi3 ∈ Σ\Leaves(Child(np, k1)). Otherwise, if σi3 ∈
Leaves(Child(np, k1)), we have Split(σi1 , σi2 , σi3) =‘≺’. Furthermore, depend-
ing on the type of the Split-Order relationship (‘Â’ or ‘=’), σi3 should belong
to either Σ\Leaves(np) or Leaves(np)\Leaves(Child(np, k1)). In summary, σi1 ,
σi2 , σi3 in a ‘Â’-type Split-Order relation in SplitOrderSet(T, np) should satisfy
(see Fig. 4): 




σi1 ∈ Leaves(Child(np, k1))
σi2 ∈ Leaves(Child(np, k2)) ∧ k1 6= k2

σi3 ∈ Σ\Leaves(np)

where 1 ≤ k1, k2 ≤ K, and K is the number of children of node np. σi1 , σi2 , σi3

in an ‘=’-type SplitOrder relation in SplitOrderSet(T, np) should satisfy (see
Fig. 4):





σi1 ∈ Leaves(Child(np, k1))
σi2 ∈ Leaves(Child(np, k2)) ∧ k1 6= k2

σi3 ∈ Leaves(Child(np, k3)) ∧ k1 6= k3 ∧ σi2 6= σi3

where 1 ≤ k1, k2 ≤ K, and K is the number of children of np. As an example,
for node n7 in Fig. 3, we have SplitOrder(f, h, i) =‘=’ and SplitOrder(f, h, a) =‘Â’.

Now we explain how to compute the size of SplitOrderSet(T, np)∩SplitOrderSet
(T ′, np′) for a pair of internal nodes np, np′ in tree T and T ′, respectively. As
discussed earlier, we consider the ‘Â’ and ‘=’ Split-Order relations. The num-
ber of common ‘Â’ Split-Order relations SharedÂ(np, np′) can be computed as
follows:

SharedÂ(np, np′) = Σ1≤k1 6=k2≤K,1≤k′1 6=k′2≤K′

(|Leaves(Child(np, k1)) ∩ Leaves(Child(np′ , k
′
1))|

×|Leaves(Child(np, k2)) ∩ Leaves(Child(np′ , k
′
2))|

×|(Σ\Leaves(np)) ∩ (Σ\Leaves(np′))|)
(11)

In both trees, a ‘Â’-type Split-Order relation satisfies the following conditions:
σi1 , σi2 are descendants of two different children of np and also of two different
children of np′ . In addition, σi3 is not in either Leaves(np) or Leaves(np′) (see
Fig. 4). Assume that computing the size of a set intersection takes constant time
(we will explain later how to compute it in constant time). Let the maximum
number of children for a node be d. The computation of SharedÂ(np, np′) takes
O(d4) time.

np

Child(np,k1)

…

Child (np,k3)
Child (np,k2)

\Leaves(np)

Leaves
(Child(np,k1))

Leaves
(Child(np,k2))

Leaves
(Child(np,k3))

Leaves(np)

… …

Child (np,K)Child (np,1)

…

root

Fig. 4. Illustration of Split-Order distance computation.

The number of common ‘=’-type Split-Order relations Shared=(np, np′) can
be computed as follows:

Shared=(np, np′) = Σ1≤k1≤K,1≤k′1≤K′

(|Leaves(Child(np, k1)) ∩ Leaves(Child(np′ , k
′
1))|

×(Σ1≤k2≤K,1≤k′2≤K′,k2 6=k1,k′2 6=k′1|Leaves(Child(np, k1)) ∩ Leaves(Child(np′ , k
′
2))|)

×((Σ1≤k2≤K,1≤k′2≤K′,k2 6=k1,k′2 6=k′1|Leaves(Child(np, k1)) ∩ Leaves(Child(np′ , k
′
2))|)− 1))

(12)

Similarly, in either tree, an ‘=’-type Split-Order relation satisfies the following
conditions: σi1 , σi2 , σi3 are all descendants of np and children of n′p; also, σi2 and
σi3 must be descended from children which are not ancestors of σi1 ; finally, σi2 are
σi3 are different leaf labels (see Fig. 4). Again, if a set intersection computation
takes constant time, the computation of Shared=(np, np′) takes O(d4) time.

Therefore, let the total number of common ‘Â’-type Split-Order relations
shared between two trees be SharedÂ(T, T ′), and the total number of common
‘=’-type Split-Order relations shared between two trees be Shared=(T, T ′). Then
we have:

SharedÂ(T, T ′) = Σ∀np∈T,np′∈T ′SharedÂ(np, np′) (13)

Shared=(T, T ′) = Σ∀np∈T,np′∈T ′Shared=(np, np′) (14)

Thus, the total number of common Split-Order relations shared between
SplitOrderSet(T, np) and SplitOrderSet(T ′, np′) is:

Shared(T, T ′) = Shared=(T, T ′) + 2× SharedÂ(T, T ′) (15)

Therefore, the Split-Order distance between T and T ′ is:

SODist(T, T ′) = n3 − (n + 3n(n− 1))− Shared(T, T ′) (16)

Here n3 is the total number of Split-Order relations for a leaf label set of size n,
and n+3n(n− 1) is the number of Split-Order relations of which at least two of
σi1 ,σi2 ,σi3 have the same label. As mentioned before, these Split-Order relations
must be common for both trees.

Now we explain how we can compute the size of the set intersection in
constant time. The basic idea is that we compute in advance |Leaves(np) ∩
Leaves(np′)| for all possible pairs of np and np′ , which are the internal nodes of
T and T ′, respectively. This can be done in O(n2) time as follows:

1. Initially, we compute |Leaves(np) ∩ Leaves(np′)| where np and np′ are leaf
nodes in T and T ′, respectively. Each |Leaves(np) ∩ Leaves(np′)| can be
done in constant time.

2. We compute |Leaves(np)∩Leaves(np′)| if either of the following cases holds:
(a) |Leaves(Child(np, k))∩Leaves(np′)| has been computed for all children

of np

(b) |Leaves(np)∩Leaves(Child(np′ , k
′))| has been computed for all children

of np′

This can be done in O(d) time where d is the maximum degree of any node.
For case (a):

|Leaves(Child(np, k)) ∩ Leaves(np′)| =
Σk|Leaves(Child(np, k)) ∩ Leaves(np′)| (17)

For case (b):

|Leaves(Child(np, k)) ∩ Leaves(np′)| =
Σk′ |Leaves(np) ∩ Leaves(Child(np′ , k

′))| (18)

3. Repeat 2) until |Leaves(np)∩Leaves(np′)| is computed for any pair of nodes
np ∈ T , and np′ ∈ T ′

Therefore, computing Leaves(np) ∩ Leaves(np′) for all possible pairs of np and
np′ takes O(dn2) time. Note that in the computation of SharedÂ(np, np′), we also
need to compute |(Σ\Leaves(np)) ∩ (Σ\Leaves(np′))|, which can be computed
in constant time as follows:

|(Σ\Leaves(np)) ∩ (Σ\Leaves(np′))| =
n− |Leaves(np)| − |Leaves(np′)|+
|Leaves(np) ∩ Leaves(np′)|

(19)

We can easily compute |Leaves(np)| and |Leaves(np′)| in advance for all np ∈ T
and np′ ∈ T ′ using a post-order traversal for both trees, which takes O(nd) for
each tree.

The complete algorithm for computing Split-Order distance is in Algorithm
2.

Theorem 3. Algorithm 2 runs in O(n2d4) time.

Proof. To compute SODist(T, T ′), we consider every pair of nodes (np, np′).
The number of internal nodes for both trees are O(n), therefore, we have O(n2)
node pairs. Since computing Shared(np, np′) takes O(d4) time, the total time
complexity of Algorithm 2 is O(n2d4).

Algorithm 2 SODist(T ,T ′,Σ)
Input Σ: the leaf label set; T, T ′: two trees
1: Compute all possible set intersections: |Leaves(np)∩Leaves(np′)|, for any internal

node np ∈ T and any internal node np′ ∈ T ′

2: Compute all |Leaves(np)|, |Leaves(np′)|, for any internal node np ∈ T and any
internal node np′ ∈ T ′

3: for any internal node np ∈ T and any internal node np′ ∈ T ′ do
4: Compute SharedÂ(np, np′) and Shared=(np, np′) according to Equation 10 and

11
5: end for
6: Compute SODist(T, T ′) according to Equation 12,13,14 and 15.

6 Experimental Results

We test the performance of our algorithm on both real and synthetic data sets.

– Iyer’s Data[Iyer96]: Iyer’s Data contains gene expression levels of 517
human genes in response to serum stimulation over 12 time points. The
517 genes can be clustered into hierarchical structures based on their co-
expressions [Iyer96,Jiang03].

– Synthetic Data: 1) SYN-Random: The synthetic dataset contains a
set of randomly generated, rooted, leaf labeled, unordered trees. The sim-
ulation is controlled by two parameters: the number of leaves n, and the
maximum degree d of any internal node. 2) SYN-2D: The 2-D synthetic
dataset contains 1000 sampled pixels from 4 shapes in an image, including
1% of background noises. Clustering hierarchy for Syn-2D is obtained by ap-
plying CLUTO software1. The 4 clusters (representing the four big branches
in the hierarchy) are illustrated using different colors in Fig. 6(a).

We compared the performance of our algorithm against the tree edit distance.
We used a Java implementation of Zhang-Shasha’s tree edit distance algorithm
[Zhang89] available online2. Zhang-Shasha’s algorithm applies to ordered, la-
beled trees. Our Split-Order algorithm is implemented in both C++ and Java,
and the experiments are performed on an Intel Core 2 Duo 1.6GHz machine with
3GB memory. The Java version of the Split-Order algorithm is mainly used for
the comparison of running time performance with the Java implementation of
Zhang-Shasha’s tree edit distance algorithm.

6.1 Distance Evaluation

Distance Comparison on Iyer’s Data Iyer’s Data contains gene expression
levels of 517 human genes over 12 time points. We refer to the complete Iyer’s
Data as Iyer12. Six additional data sets are generated from Iyer12 by randomly
1 http://glaros.dtc.umn.edu/gkhome/views/cluto
2 http://www.ics.mq.edu.au/ swan/howtos/treedistance/package.html

T11 T10 T9 T8 T7 T6
0

0.2

0.4

0.6

0.8

1

1.2

Trees on Subsets of Dimensions

N
o

rm
a

li
z
e

d
 D

is
ta

n
c

e

SOD-Iyer
EditDist-Iyer
SOD-Random
EditDist-Random

Fig. 5. Comparison of Split-Order distance and tree edit distance (Zhang-Shasha) on
Iyer’s data

choosing 11, 10, 9, 8, 7, 6 dimensions respectively. These data sets are referred to
as Iyer11, Iyer10, Iyer9, Iyer8, Iyer7, and Iyer6. We apply the same hierarchical
clustering algorithm on these 7 data sets with Euclidean distance and single
linkage, and obtain 7 trees: T12, T11, T10, T9, T8, T7, and T6. As we remove
more and more dimensions, the correlation captured by the resulting tree differs
more and more from the original tree T12. We would therefore expect that the
distances of T11, T10, T9, T8, T7, and T6 to T12 are in an increasing order.

Fig.5 compares the distance scores computed using Split-Order distance and
tree edit distance on the Iyer’s Data. The Split-Order scores are normalized with
the Split-Order distance of a random tree to T12 which is 0.664. Similarly, the tree
edit distance scores are normalized with the tree edit distance between a random
tree and T12 which is 1433. The Split-Order distance curve demonstrates a clear
increasing trend for distances of T11, T10, T9, T8, T7, and T6 to the original tree
T12, which is consistent with our expectation. Compared to tree edit distance,
Split-Order distance generates a much smaller distance for similar trees. The
Split-Order distance between T11 and T12 is 10% of the distance between a
random tree and T12. The tree edit distance between T11 and T12 is however
80% of the distance between a random tree and T12.

We also generated a random matrix of the same size (517 by 12) and per-
formed the same experiment on this data. The corresponding curves are plotted
in Fig.5. The two curves on random data are flat. The different behaviors of the
random data curves and the Iyer’s data curves can be explained by the gene
correlation existing in the Iyer’s data and the captured tree similarity due to the
data correlation.

The average running time of Split-Order distance and tree edit distance in
this experiment is 0.374 sec and 120.2 sec respectively.

Distance Evaluation on Synthetic Data We performed the distance evalu-
ation on clustering hierarchies generated using SYN-2D. SYN-2D contains 1000
pixels uniformly sampled from 4 different shapes in an image, including 1% of
background noise. We generated 5 additional data sets by randomly choosing

(a) T0 (b) SODist(T0, T10) = 0.087 (c) SODist(T0, T20) = 0.128

(d) SODist(T0, T30) = 0.176 (e) SODist(T0, T40) = 0.217 (f) SODist(T0, T50) = 0.458

Fig. 6. Illustration of 4 big clusters in the clustering hierarchies computed for SYN-2D
and its perturbed data sets. T0 is the clustering hierarchy computed on SYN-2D, T10,
T20, T30, T40, T50 are the clustering hierarchies computed on SYN-2D with 10%, 20%,
30%, 40%, 50% of points applied perturbation.

10%, 20%, 30%, 40%, and 50% of pixels in SYN-2D and applyed a random per-
turbation on each pixel. Clustering hierarchies are generated on all 6 data sets
using the hierarchical clustering function equipped with CLUTO [Karypis02].
We refer to the corresponding trees as T0, T10, T20, T30, T40, and T50. The four
big clusters (the four big branches) in each tree are plotted in Fig.6(a)-Fig.6(f).

The Split-Order distances of each of T0 to T10, T20, T30, T40, and T50 are
0.087, 0.128, 0.176, 0.216, and 0.458, respectively. The visual differences among
Fig.6(a)-Fig.6(f) reflect the clustering hierarchy differences among the corre-
sponding trees. The increasing order of the Split-Order differences are accordant
with the increasing visual differences shown in Fig.6(b) to Fig.6(f). Particularly,
from T50 to T40, the Split-Order distance increases dramatically by more than
100%. Comparing Fig. 6(e) and Fig. 6(f), we also observe a big change: the blue
cluster in 6(e) becomes part of the red cluster in 6(f); part of the red cluster in
6(e) becomes blue cluster in 6(f). This implies that the big branch representing
the blue cluster in T40 switches positions with a subbranch of the red cluster.
This change impacts the relationship between a large number of pixels, which
results in a big difference in the corresponding Split-Order distances.

6.2 Running Time Performance

We compare the running time performance of our algorithm (the Java version)
with tree edit distance (Java implementation of Zhang-Shasha algorithm) on the
SYN-Random dataset.

200 400 600 800 1000
0

50

100

150

Number of Leaves n

R
u

n
n

in
g

 T
im

e
 (

s
e
c
) EditDist

SOD

(a)

2 3 4 5 6
0

20

40

60

80

Max Degree d

R
u

n
n

in
g

 T
im

e
 (

s
e
c
) SOD

EditDist

(b)

Fig. 7. Running time comparison of Split-Order distance (the Java implementation)
and tree edit distance (Java implementation of Zhang-Shasha) with varying number of
leaf nodes n ((a)) and with varying max degree d ((b)).

Running time vs. n: Fig. 7(a) compares the running time of Split-Order
and Zhang-Shasha (both implemented in Java) on trees with varying number of
leaves n. As n increases from 200 to 1000, the running time for both algorithms
increases. The Split-Order distance is up to 10 times faster than the Zhang-
Shasha algorithm and demonstrates better scalability with increasing n. Each
data point is the average time taken for 10 distance computations for a given n.
Although the running time of Zhang-Shasha is acceptable for reasonably large
trees (less than 150 seconds for trees with 1000 leaves), the speedup would still be
necessary considering large number of tree edit distance computations required
for applications such as querying phylogeny tree databases.

Running time vs. d: Fig. 7(b) compares the running time of Split-Order
and Zhang-Shasha (both implemented in Java) on trees with varying maximum
degree d. The tree edit distance demonstrates a clear decline with increasing
d, due to reduced total number of nodes with increasing d and fixed number
of leaves n. Split-Order remains almost flat with small variations. The time
complexity of our algorithm depends on the number of internal nodes (which is
O(n)) and the maximum degree of any node d. The running time would increase
with larger d. However, with fixed n and increasing d, the number of internal
nodes decreases, which cancels out the increase introduced by larger d. The data
is averaged over 10 runs of the algorithms.

6.3 SODist Distribution

We examined the distribution of SODist between any two trees using SYN-
Random. 100 pairs of random trees are chosen and the relative Split-Order dis-
tances (SODistRel) are computed for each pair. Fig. 8(a) and 8(b) illustrate
the distribution of the average SODistRel with varying parameters. We ob-
serve that the average SODistRel between any two random trees roughly falls

20 40 60 80 100
0.52

0.54

0.56

0.58

0.6

0.62

Number of leaves n

S
O

D
is

tR
e
l

(a) Average SODistRel vs. n

2(59) 3(48) 4(46) 5(45) 6(44)
0.2

0.4

0.6

0.8

d(total # of nodes)

S
O

D
is

tR
e

l

(b) Average SODistRel vs. d

Fig. 8. The average SODistRel between random trees with varying parameters: n (the
number of leaf nodes) and d (the maximum number of children an internal node could
have in a tree). d is fixed to be 3 in (a) and n is fixed to be 30 in (b).

within the range [0.5, 0.6]. There are small variations when parameters change.
As shown in Fig. 8(a), SODistRel ranges between 0.53 and 0.61 as n varies from
20 to 100 and d is fixed to be 3. The increase in the average SODistRel between
random trees is due to the increased topological variety of trees when n is larger.
In Fig. 8(b), the average SODistRel between random trees is computed as d
varies from 2 to 6, and n is fixed to be 30. We can observe a slow drop in the
average SODistRel between random trees when d increases. This is due to the
decrease in the number of internal nodes with increasing d and fixed n. As tree
becomes flatter, the amount of topological variety of trees also decreases.

Fig. 9(a)–9(d) plots the histogram of 500 SODistRels between 500 pairs of
random trees with different parameters settings: n = 20 and d = 2 (Fig. 9(a)),
n = 20 and d = 6 (Fig. 9(b)), n = 100 and d = 2 (Fig. 9(c)), n = 100 and d = 6
(Fig. 9(d)). We observe that all distributions have the bell shape. For larger d
(d = 6 compared to d = 2), more diversity exists in the tree space and histogram
is more symmetric. For a larger n (n = 100 compared to n = 20), SODistRel
becomes larger, and the mean of the distribution moves further to the right.
These histograms depict the variation of the tree space when parameters change
evaluated by the Split-Order distance.

For comparison, we plot the four corresponding histograms of tree edit dis-
tances computed over the same 500 pairs of random trees in Figs. 9(e), 9(f),9(g)
and 9(h). The edit distance scores are normalized by 4n to get the relative scores.
4n is the upper bound of the tree edit distance between two trees with n leaves.
We observe that when d increases (from 2 to 6), the variance of the tree edit dis-
tance declines. This contradicts the fact that the topological diversity increases
as d increases. This suggests that the tree edit distance is not an ideal measure.

0.2 0.3 0.4 0.5 0.6 0.7
0

100

200

300

400

500

(a) n = 20,d = 2

0.2 0.3 0.4 0.5 0.6 0.7
0

100

200

300

400

500

(b) n = 20, d = 6

0.2 0.3 0.4 0.5 0.6 0.7
0

100

200

300

400

500

(c) n = 100, d = 2

0.2 0.3 0.4 0.5 0.6 0.7
0

100

200

300

400

500

(d) n = 100, d = 6

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

(e) n = 20,d = 2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

(f) n = 20, d = 6

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

(g) n = 100, d = 2

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

(h) n = 100, d = 6

Fig. 9. The distribution of SODistRel and tree edit distance between random trees
in different settings. A total number of 500 Split-Order distance computations are
performed. X axis is SODistRel or tree edit distance, Y axis is the number of the
distance computations contained in each bin.

7 Conclusion and Future Work

In this paper, we propose a novel metric, Split-Order distance, to evaluate the
distance between two clustering/classification hierarchies. This metric compares
the order of the splits in both trees. We proved that a complete set of the split
order relations uniquely determines the hierarchical structure. We also proposed
an algorithm for reconstructing the tree using the set of order relations. Further-
more, we presented an efficient algorithm for computing the Split-Order distance
between two hierarchies which takes O(n2d4) time, where n is the number of leaf
nodes (objects), and d is the maximum number of children in a tree.

In the future, we would like to take weighted edges into consideration where
weights represent the distance from a node to its parent. This allows us to model
the situations where a single edge with different weights can result in different
relationships among objects, such as in a dendrogram.

References

[Allen01] Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics
on evolutionary trees. Annals of Combinatorics, 5:1-13 (2001)

[Amir97] Amir, A., Keselman, D.: Maximum agreement subtree in a set of evolutionary
trees: metrics and efficient algorithms. Proc. of the SIAM Journal on Computing,
26(6):1656-1669 (1997)

[Bille05] Bille, P.: A survey on tree edit distance and related problems. Theoretical
Computer Science, 217-239 (2005)

[Demaine07] Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An Optimal De-
composition Algorithm for Tree Edit Distance. Proc. of the 34th International Col-
loquium on Automata, Languages and Programming (ICALP 2007)

[Estabrook85] Eastabrook, G.F., McMorris, F.R., Meacham, C.A.: Comparison of
undirected phylogenetic trees based on subtrees of four evolutionary units. Syst.
Zool. (1985)

[Felsenstein78] Felsenstein, J.: Cases in which parsimony and compatibility methods
will be positively misleading. Syst. Zool., 27:401-410 (1978)

[Iyer96] Iyer V.R. et al.: Transcriptional program in the response of human fibroblasts
to serum. Science, 283:83-87 (1996)

[Jiang03] Jiang, D., Pei, J., Zhang, A.: DHC: a density-based hierarchical clustering
method for time series gene expression data. Proc. of the The Third Symposium on
Bioinformatics and Bioengineering, 393-400 (2003)

[Karypis02] Karypis, G.: CLUTO - A Clustering Toolkit. Tech Report, Dept. of Com-
puter Science, University of Minnesota, 2002

[Klein98] Klein, P.N.: Computing the edit-distance between unrooted ordered trees.
Proc. of the 6th annual European Symposium on Algorithms (ESA) 1998

[Lu79] Lu, S.Y.: A tree-to-tree distance and its application to cluster analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI) 1979

[Robinson79] Robinson, D.F., Foulds, L.R.: Comparison of weighted labeled trees.
Combinatorial mathematics, VI 119-126 (1979)

[Robinson81] Robinson, D.F., Foulds, L.: Comparison of phylogenetic trees. Math.
Biosci., 53(1-2):131-147 (1981)

[Saitou87] Saitou, N., Nei, M.: The neighbor-joining method: a new method for recon-
structing phylogenetic trees. The Mol. Biol. Evol., 4(4):406425 (1987)

[Shasha04] Shasha, D., Wang, J.T.L., Zhang, S.: Unordered Tree Mining with Ap-
plications to Phylogeny. Proc. IEEE International Conference on Data Engineering
(ICDE’04)

[Sneath73] Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. WH Freeman and Com-
pany, 230-234 (1973)

[Touzet03] Touzet, H.: Tree edit distance with gaps. Information Processing Letters,
85(3): 123-129 (2003)

[Wang94] Wang, J.T., Zhang, K., Jeong, K., Shasha, D.: A system for approximate
tree matching. IEEE Transactions on Knowledge and Data Engineering, 6(4): 559-
571 (1994)

[Wang03] Eastabrook, G.F., McMorris, F.R., Meacham, C.A.: TreeRank: A similarity
measure for nearest neighbor searching in phylogenetic databases. Proc. of the 15th
International Conference on Scientific and Statistical Database Management (1985)

[Waterman78] Waterman, M.S., Smith, T.F.: On the similarity of dendrograms. Jour-
nal of Theoretical Biology, 73:789-800 (1978)

[Zhang89] Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance be-
tween trees and related problems. SIAM Journal of Computing (1989)

