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Efficient Algorithms for Genome-Wide
Association Study
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Studying the association between quantitative phenotype (such as height or weight) and single
nucleotide polymorphisms (SNPs) is an important problem in biology. To understand underlying
mechanisms of complex phenotypes, it is often necessary to consider joint genetic effects across
multiple SNPs. ANOVA (analysis of variance) test is routinely used in association study. Important
findings from studying gene-gene (SNP-pair) interactions are appearing in the literature. However,
the number of SNPs can be up to millions. Evaluating joint effects of SNPs is a challenging task
even for SNP-pairs. Moreover, with large number of SNPs correlated, permutation procedure is
preferred over simple Bonferroni correction for properly controlling family-wise error rate and
retaining mapping power, which dramatically increases the computational cost of association study.

In this article, we study the problem of finding SNP-pairs that have significant associations with
a given quantitative phenotype. We propose an efficient algorithm, FastANOVA, for performing
ANOVA tests on SNP-pairs in a batch mode, which also supports large permutation test. We derive
an upper bound of SNP-pair ANOVA test, which can be expressed as the sum of two terms. The first
term is based on single-SNP ANOVA test. The second term is based on the SNPs and independent
of any phenotype permutation. Furthermore, SNP-pairs can be organized into groups, each of
which shares a common upper bound. This allows for maximum reuse of intermediate computation,
efficient upper bound estimation, and effective SNP-pair pruning. Consequently, FastANOVA only
needs to perform the ANOVA test on a small number of candidate SNP-pairs without the risk
of missing any significant ones. Extensive experiments demonstrate that FastANOVA is orders
of magnitude faster than the brute-force implementation of ANOVA tests on all SNP pairs. The
principles used in FastANOVA can be applied to categorical phenotypes and other statistics such
as Chi-square test.
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1. INTRODUCTION

Quantitative phenotype association study analyzes genetic variation across a
population in order to find the genetic factors underlying continuous pheno-
types (such as height or weight). These phenotypes are often complex in the
sense that they are likely due to the effects of multiple genes [Carlson et al.
2004; Segr et al. 2005]. The most abundant source of genetic variation is repre-
sented by single nucleotide polymorphisms (SNPs). A SNP is a DNA sequence
variation occurring when a single nucleotide (A, T, G, or C) in the genome dif-
fers between individuals of a species. For inbred species, a SNP usually shows
variation between only two of the four possible nucleotide types [Ideraabdullah
et al. 2004], which allows us to represent it by a binary variable. The binary
representation of a SNP is also referred to as the genotype of the SNP. Table I
shows an example dataset consisting of 1000 SNPs {X 1, X 2, . . . , X 1000} and a
quantitative phenotype Y for 12 individuals.

Various statistics can be applied to measure the association between SNPs
and the phenotypes of interest, among which ANOVA (analysis of variance)
test is one of the standard statistic methods and has been routinely used in
quantitative phenotype association study [Pagano and Gauvreau 2000]. The
goal of ANOVA test is to determine whether the group means are significantly
different after accounting for the variances within groups. It accomplishes the
comparison by decomposing the total variance in the data into within-group
variance and between-group variance. If the between-group variance is suf-
ficiently larger than the within-group variance, then the test concludes that
there is significant (phenotypic) difference between the groups.

In the application of phenotype-SNP association study, the individuals’ phe-
notype values are grouped by the genotype of a SNP or a subset of SNPs. Using
the dataset showing in Table I, Figure 1(a) shows an example of strong associ-
ation between the phenotype and SNP X 1. 0 and 1 on the x-axis represent the
binary SNP genotype and the y-axis represents the phenotype. Each point in the
figure represents an individual. It is clear from the figure that the phenotype
values are partitioned into two groups with distinct means, hence indicating a
strong association between the phenotype and the SNP. On the other hand, if
the genotype of a SNP partitions the phenotype values into groups as shown in
Figure 1(b), the phenotype and the SNP are not associated with each other.

Recent advances in high-throughput techniques enable genotyping SNPs in
genome-wide scale, resulting in large datasets containing thousands to millions
of SNPs, for example, the genotype datasets available in the Broad Institute
(http://www.broad.mit.edu/) and the Jackson Laboratory (http://www.jax.org/).
The vast number of SNPs has posed great computational challenge to genome-
wide association study. In order to understand the underlying biological mech-
anisms of complex phenotype, one needs to consider the joint effect of multiple
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Table I. An Example Dataset for Phenotype-SNP
Association Study

SNPs Phenotype
X 1 X 2 X 3 X 4 X 5 · · · X 1000 Y
0 0 0 1 0 1 8
0 0 0 0 0 0 7
0 1 1 0 0 · · · 1 12
0 1 0 0 1 0 11
0 1 0 1 0 1 9
0 1 0 0 0 · · · 0 13
1 0 1 1 1 1 6
1 0 0 0 1 0 4
1 1 1 1 1 · · · 1 2
1 0 0 1 0 0 5
1 0 0 1 0 1 0
1 0 1 1 0 · · · 0 3
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(a) Strong association (b) No association

Fig. 1. Examples of associations between a phenotype and two different SNPs.

SNPs simultaneously. Although the idea of studying the association between
phenotype and multiple SNPs is straightforward, the implementation is non-
trivial. For a study with total N SNPs, in order to find the association between
n SNPs and the phenotype, a brute-force approach is to exhaustively enumer-
ate all

(N
n

)
possible SNP combinations and evaluate their associations with the

phenotype. The computational burden imposed by this enormous search space
often makes the complete genome-wide association study intractable.

The computational challenge of genome-wide association study is further
compounded by another well-known statistical problem – the multiple testing
problem [Miller 1981]. The multiple testing problem can be described as the
potential increase in Type I error (false positive, the error of rejecting a null
hypothesis when it is true) when statistical tests are performed multiple times.
Let α be the Type I error for each independent test. If n independent compar-
isons are performed, the experimental-wise error α′ is given by

α′ = 1 − (1 − α)n.

For example, when α = 0.05 and n = 20, α′ = 1 − 0.9520 = 0.64. We have
64% probability to get at least one spurious result. Determining the statistical
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significance of the association between the phenotype and SNPs is crucial. Bon-
ferroni correction based on the assumption that all n tests are independent is too
conservative for the genome-wise association studies since SNPs are often cor-
related. Alternatively, permutation procedure can be used and much preferred
in association studies which automatically takes the correlation structure of
SNPs into consideration.

The null hypothesis is that there is no association between the genotype and
the phenotype. Permutation test is used to estimate the null distribution. The
idea is to randomly permute the phenotype K times, where K can be hundreds
to thousands. The association analysis will be repeated in order to find the
maximum test value for each permutated phenotype. Then the distribution of
the K maximum test values is used as the approximated null distribution to
assess the statistical significance of the findings from the original phenotype.
Permutation test is usually very time-consuming since the test procedure needs
to be performed in all permutations in order to find the maximum values.

Algorithm development to support these large scale analysis is still in its
infancy stage. Most existing work focuses on studying associations between the
phenotype and SNP-pairs and can only handle a small number of SNPs. Given
a pair of SNPs, the phenotype values can be partitioned into at most four groups
by the genotype of the SNP-pair, that is, 00, 01, 10, and 11. Since each SNP has a
distinct location on the genome, the association study of a phenotype and SNP-
pairs is also called two-locus association mapping. Important findings are
appearing in the literature from studying the association between phenotypes
and SNP-pairs [Saxena et al. 2007; Scuteri et al. 2007; Weedon et al. 2007].

Although the standard ANOVA test has been a valuable tool to find associa-
tion between SNP-pairs and phenotype, it is usually not performed in genome-
wide scale. This is due to the fact that the search space of two-locus association
mapping in genome-wide scale prohibits an exhaustive search. Suppose that
the dataset consists of N SNPs and the number of permutations is K . The total
number of ANOVA tests is KN(N − 1)/2. Given a moderate number of SNPs
N = 10, 000 and number of permutations K = 1, 000, the number of ANOVA
tests is around 5 × 1010. Therefore, ANOVA test is often reserved for validat-
ing a small set of candidates identified by other methods [Ohno et al. 2000;
Shimomura et al. 2001].

In this article, we examine the computational aspect of ANOVA test. We
present an efficient algorithm, FastANOVA, and show that the standard
ANOVA test can be applied in genome-wide scale for two-locus association
mapping even when the permutation procedure is needed. Unlike algorithms
applying heuristics, FastANOVA is a complete algorithm, that is, it guarantees
to find the optimal solution, though it does not explicitly examine all possible
SNP-pairs. In fact, a large portion of the SNP-pairs are pruned without the
need of performing the tests. FastANOVA establishes an upper bound on the
two-locus ANOVA test. The upper bound is the sum of two terms: one based on
the ANOVA test between phenotype and a single SNP, and the other based on
the pair-wise SNP genotype and the ordered phenotype values. This formula-
tion of the upper bound allows the algorithm to calculate the bound for a large
number of SNPs together, which enables fast candidate retrieval. Moreover,
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the intermediate results for calculating the second term of the upper bound
is independent of phenotype permutations. Hence, they only need to be com-
puted once and can be reused in all permutations. Applying this bound, Fas-
tANOVA is able to identify SNP-pairs with significant ANOVA test values using
only a small fraction of the time required by performing ANOVA test on all
SNP-pairs.

In Section 7, we discuss further extensions of the FastANOVA algorithm to
case-control study whose phenotypes can be represented as binary variables.
We first show that the principle of FastANOVA can be applied to Chi-square
test [Zhang et al. 2009b]. Then we briefly describe a more general approach
that can be applied to a variety of statistics used in case-control study [Zhang
et al. 2009a].

2. RELATED WORK

The problem of phenotype-SNP association study has attracted extensive re-
search interests and is an ongoing research area in biology and statistic commu-
nities. In this section, we review the related work from a computational point
of view. Please refer to Doerge [2002], Hoh and Ott [2003], and Balding [2006]
for excellent surveys of existing work.

Different machine learning models have been adopted in multilocus associa-
tion study. In Curtis et al. [2001] and Sherriff and Ott [2001], the authors inves-
tigate using neural networks to study the relationship between complex traits
and multilocus genotypes. These models are theoretically well suited for analyz-
ing high-order interactions. However, the results of these methods are usually
expressed as weights associated with SNPs. They are difficult to interpret and
do not clearly identify the interacting SNPs. Recursive partitioning methods
[Zhang and Bonney 2000; Province et al. 2001] utilize classification and regres-
sion tree (CART) [Breiman et al. 1984] to pick the SNP that minimizes some
pre-specified measure of impurity in each iteration. These methods are not
effective in detecting SNP combinations if there is little or no marginal effect.

Under the assumption that the number of SNPs is limited, for example,
from tens to hundreds, exhaustive algorithms that explicitly enumerate all
possible SNP combinations have been developed. Combinatorial partitioning
method (CPM) [Nelson et al. 2001] is designed to identify multilocus genotypic
partitions that predict quantitative trait variation. Given a small set of SNPs,
CPM searches for the partitions of multilocus genotypes that are the most
predictive in terms of phenotypic variability. Motivated by CPM, multifactorial
dimension reduction (MDR) [Ritchie et al. 2001; Moore et al. 2006] is designed
for case/control studies. By pooling genotypes of multilocus into two groups at
high disease risk and low disease risk, MDR reduces the genotype of multiple
SNPs into one dimension. Among all possible combinations, MDR selects the
one that maximizes the case/control ratio of the high risk group. Since these
methods explicitly enumerate all possible SNP combinations, they are not well
adapted to genome-wide association studies.

To avoid exhaustively enumerating the search space, a common approach
is to break the problem into two steps [Hoh et al. 2000; Evans et al. 2006].
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First, a subset of important SNPs are selected. Second, within the selected
subset, the association between SNPs and the phenotypes are searched. These
methods are not complete since the SNPs with weak marginal effects may not
be selected in the first step. Genetic algorithm [Carlborg et al. 2000; Nakamichi
et al. 2001] has been applied in finding SNP-pairs for quantitative phenotypes.
These methods cannot guarantee to find the optimal solution.

Feature selection methods [Liu and Motoda 1998] have been proposed to ad-
dress the problem of finding important SNPs. In feature selection, the selected
feature subset usually contains features that have low correlation with each
other but have strong correlation with the target feature. In the application of
selecting SNPs, the goal is to select a subset of SNPs that can be used as proxies
for all SNPs in the genome [Sebastiani et al. 2003; Chi et al. 2006; Halperin
et al. 2005]. The selected SNPs can then be used as the input SNPs in the asso-
ciation study. These methods are also not complete since some important SNPs
may not be tagged.

3. TWO-LOCUS ANOVA TEST

In this section, we formalize the problem of two-locus ANOVA test with per-
mutation procedure. Let {X 1, X 2, . . . , X N } be the set of SNPs of M individ-
uals. Each SNP X i (1 ≤ i ≤ N ) is a binary variable coded by {0, 1}. Let
Y = { y1, y2, . . . , yM } be the quantitative phenotype of interest, where ym
(1 ≤ m ≤ M ) is the phenotype value of individual m. For any SNP X i
(1 ≤ i ≤ N ), we represent the F-statistic from the ANOVA test of X i and
Y as F (X i, Y ). For any SNP-pair (X i X j ), we represent the F-statistic from the
ANOVA test of (X i X j ) and Y as F (X i X j , Y ).

The basic idea of ANOVA test is to partition the total sum of squared devia-
tions SST into between-group sum of squared deviations SSB and within-group
sum of squared deviations SSW

SST = SSB + SSW .

Suppose that phenotype values are partitioned into k groups, with mi individu-
als in group i (1 ≤ i ≤ k). Let yi j be the j th observation in group i. Let ȳ be the
mean of all the observed phenotype values, and ȳi be the mean of the observed
phenotype values in group i. The terms used in an ANOVA test are defined as
follows.

SSB =
k∑

i=1

mi( ȳi − ȳ)2;

SSW =
k∑

i=1

mi∑
j=1

( yi j − ȳi)2; SST =
k∑

i=1

mi∑
j=1

( yi j − ȳ)2.

In the application of two-locus association study, Table II(a) and Table II(b)
show the possible groupings of phenotype values by the genotypes of X i and
(X i X j ) respectively. Let A, B, a1, a2, b1, b2 represent the groups as indicated
in Table II(a) and Table II(b). We use SSB(X i, Y ) and SSB(X i X j , Y ) to distin-
guish the one locus (i.e., single-SNP) and two locus (i.e., SNP-pair) analysis.
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Table II. Possible Groupings of Phenotype
Values by the Genotypes of X i and (X i X j )

(a) Grouping of Y by X i

X i = 1 X i = 0
group A group B

(b) Grouping of Y by X i X j

X i = 1 X i = 0
X j = 1 group a1 group b1

X j = 0 group a2 group b2

Specifically, we have

SST (X i, Y ) = SSB(X i, Y ) + SSW (X i, Y ),

SST (X i X j , Y ) = SSB(X i X j , Y ) + SSW (X i X j , Y ).

The F-statistics for ANOVA tests on X i and (X i X j ) are:

F (X i, Y ) = M − 2
2 − 1

× SSB(X i, Y )
SST (X i, Y ) − SSB(X i, Y )

, (1)

F (X i X j , Y ) = M − g
g − 1

× SSB(X i X j , Y )
SST (X i X j , Y ) − SSB(X i X j , Y )

, (2)

where g in Eq. (2) is the number of groups that the genotype of (X i X j ) partitions
the individuals into. Possible values of g are 3 or 4, assuming all SNPs are
distinct: If none of groups A, B, a1, a2, b1, b2 is empty, then g = 4. If one of them
is empty, then g = 3.

Let T = ∑
ym∈Y ym be the sum of all phenotype values. The total sum of

squared deviations does not depend on the groupings of individuals:

SST (X i, Y ) = SST (X i X j , Y ) =
∑

ym∈Y

y2
m − T 2

M
.

Let Tgroup = ∑
ym∈group ym be the sum of phenotype values in a specific

group, and ngroup be the number of individuals in that group. SSB(X i, Y ) and
SSB(X i X j , Y ) can be calculated as follows:

SSB(X i, Y ) = T 2
A

nA
+ T 2

B

nB
− T 2

M
,

SSB(X i X j , Y ) = T 2
a1

na1

+ T 2
a2

na2

+ T 2
b1

nb1

+ T 2
b2

nb2

− T 2

M
.

Note that for any group of A, B, a1, a2, b1, b2, if ngroup = 0, then T 2
group/ngroup

is defined to be 0.
The two-locus association mapping with permutation test is typically con-

ducted in the following way [Westfall and Young 1993; Dudoit and van der
Laan 2008]:
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Fig. 2. An example of determining the critical value using permutation test.

First, for every SNP-pair (X i X j ) (1 ≤ i < j ≤ N ), the ANOVA test is
performed and F (X i X j , Y ) is recorded.

Second, a permutation test is performed to get a reference distribution in or-
der to assess the statistical significance of previous findings. More specifically,
a permutation Yk of Y is generated by sampling the phenotype Y without
replacement. In other words, phenotype values are randomly assigned to indi-
viduals in the dataset with no single phenotype value being assigned to more
than one individual. Let Y ′ = {Y1, Y2, . . . , YK } be the set of K permutations of
Y . For each permutation Yk ∈ Y ′, let FYk represent the maximum F-statistic
value of all SNP-pairs, that is,

FYk = max{F (X i X j , Yk)|1 ≤ i < j ≤ N }.
The distribution of {FYk |Yk ∈ Y ′} is then used as the reference distribution
for assessing the statistical significance of F (X i X j , Y ) values found using
the original phenotype Y : Given a Type I error threshold α, the critical value
Fα is the αK -th largest value in {FYk |Yk ∈ Y ′}. The SNP-pair (X i X j ) whose
F-statistic value F (X i X j , Y ) ≥ Fα is considered as significant at α.

For example, Figure 2 shows the cumulative distribution of the maximum
values for K = 100 permutations. Suppose that α = 0.3, then Fα is the 30th
largest value among the 100 maximum test values, which is 32 as shown in this
example.

Two computational problems need to be solved in this procedure. The first
one is to find the critical value Fα for a given Type I error threshold α. The
second one is to find all SNP-pairs (X i X j ) whose F-statistics are greater than
Fα. We formalize these two problems as follows:

Problem (1). Given the Type I error threshold α, find the critical value Fα,
which is the αK -th largest value in {FYk |Yk ∈ Y ′}.

Problem (2). Given the threshold Fα, find all significant SNP-pairs (X i X j )
such that F (X i X j , Y ) ≥ Fα.

A brute force approach to these two problems is to enumerate all SNP-pairs
and find their F-statistics. In Problem (1), for each permutation Yk ∈ Y , all
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SNP-pairs need to be enumerated in order to find the maximum value FYk . In
Problem (2), all SNP-pairs need to be enumerated to see if their test values
are above the threshold Fα. Computationally, Problem (1) is more challenging,
since the permutation number K can range form hundreds to thousands, which
means the running time of finding the critical value Fα can be hundreds to
thousands times longer than the running time of finding the significant SNP-
pairs in Problem (2) using a brute-force search.

In the reminder of this article, we first derive an upper bound on two-
locus ANOVA test value and discuss how this upper bound enables an efficient
ANOVA testing for a single phenotype. Then, we show how this approach can
be easily extended to handle the permutation procedure.

4. THE UPPER BOUND

4.1 Updating F-Statistic

Since the total sum of squared deviations does not change, from the calculation
of F (X i, Y ) and F (X i X j , Y ) (Eqs. (1) and (2)), we know that the relationship
between these two tests only depends on the relationship between SSB(X i, Y )
and SSB(X i X j , Y ). Next, we show that SSB(X i X j , Y ) can be updated from
SSB(X i, Y ).

For groups A, a1 and a2, let

�A = T 2
a1

na1

+ T 2
a2

na2

− T 2
A

nA

= na2 T 2
a1

+ na1 T 2
a2

na1na2

− (Ta1 + Ta2 )
2

na1 + na2

= (na2 Ta1 − na1 Ta2 )
2

na1na2nA

= (nATa1 − na1 TA)2

na1 (nA − na1 )nA
.

Similarly, we have

�B = T 2
b1

nb1

+ T 2
b2

nb2

− T 2
B

nB
= (nBTb1 − nb1 TB)2

nb1 (nB − nb1 )nB
.

Thus, SSB(X i X j , Y ) can be updated using SSB(X i, Y ):

SSB(X i X j , Y ) = SSB(X i, Y ) + �A + �B. (3)

Note that if any one of {na1 , na2 , nA} is 0, then �A = 0. Similarly, if any one
of {nb1 , nb2 , nB} is 0, then �B = 0.

Next, we develop an upper bound of SSB(X i X j , Y ). We first show the deriva-
tion of an upper bound of �A. A similar idea can be applied to find an upper
bound of �B.
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4.2 Bounds of �A and �B

Let { ym| ym ∈ A} = { yA1 , yA2 , . . . , yAnA
} be the phenotype values in group A.

Without loss of generality, assume that these phenotype values are arranged
in ascending order, that is,

yA1 ≤ yA2 ≤ · · · ≤ yAnA
.

The derivative of �A with respect to Ta1 is:

d�A
dTa1

= 2nA(nATa1 − na1 TA)
na1 (nA − na1 )nA

.

Thus we have

�A monotonically

{
increases if Ta1 ≥ na1 TA

nA
;

decreases if Ta1 ≤ na1 TA

nA
.

We have the range of Ta1 :

Ta1 ∈ [la1 , ua1 ] =
⎡
⎣ na1∑

i=1

yAi ,
nA∑

i=nA−na1 +1

yAi

⎤
⎦ .

The maximum value of �A is attained when Ta1 = la1 or Ta1 = ua1 , i.e.,

�A ≤ max{(nAla1 − na1 TA)2, (nAua1 − na1 TA)2}
na1 (nA − na1 )nA

. (4)

We use R1(X i X j Y ) to denote this upper bound.
Let { ym| ym ∈ B} = { yB1 , yB2 , . . . , yBnB

} be the phenotype values in group B.
Without loss of generality, assume that these phenotype values are arranged
in ascending order, that is,

yB1 ≤ yB2 ≤ · · · ≤ yBnB
.

Similarly, we can derive the bound on �B:

�B ≤ max{(nBlb1 − nb1 TB)2, (nBub1 − nb1 TB)2}
nb1 (nB − nb1 )nB

. (5)

We use R2(X i X j Y ) to denote this upper bound. The symbols used in In-
equalities (4) and (5) are summarized in Table III.

From Eq. (3), Inequalities (4) and (5), we have the overall upper bound on
SSB(X i X j , Y ):

THEOREM 4.1 (UPPER BOUND OF SSB(X i X j , Y )).

SSB(X i X j , Y ) ≤ SSB(X i, Y ) + R1(X i X j Y ) + R2(X i X j Y ).

PROPERTY 4.2. The upper bound in Theorem 4.1 is tight.

The tightness of the bound is obvious from the derivation of the upper bound,
since there exists some genotype of SNP-pair (X i X j ) that makes the equality
hold. For the same reason, we have the following property.
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Table III. Notations for the Bounds on �A and �B

Symbols Formulas

la1

∑na1
i=1 yAi

ua1

∑nA
i=nA−na1 +1 yAi

R1(X i X j Y )
max{(nAla1 −na1 TA)2, (nAua1 −na1 TA)2}

na1 (nA−na1 )nA

lb1

∑nb1
i=1 yBi

ub1

∑nB
i=nB−nb1 +1 yBi

R2(X i X j Y )
max{(nBlb1 −nb1 TB )2, (nBub1 −nb1 TB )2}

nb1 (nB−nb1 )nB

PROPERTY 4.3. The upper bound in Theorem 4.1 does not exceed the total
sum of squared deviations, that is,

SSB(X i, Y ) + R1(X i X j Y ) + R2(X i X j Y ) ≤ SST (X i X j , Y ).

5. THE FASTANOVA ALGORITHM

In this section, we show how our algorithm FastANOVA utilizes the upper
bound in Theorem 4.1 to achieve efficient two-locus ANOVA testing. In Section
5.1, we describe the method for Problem (2) discussed in Section 3; that is, given
a threshold Fα, we want to find all SNP-pairs whose F-statistics are greater than
Fα. Then, in Section 5.2, we discuss how FastANOVA performs in permutation
procedure, that is, the scenario of Problem (1) in Section 3.

5.1 A Single Phenotype

Given the threshold Fα, to find all SNP-pairs whose F-statistics are greater
than Fα, a brute-force approach is to enumerate all SNP-pairs. To expedite this
process, we employ the inequality in Theorem 4.1 to prune SNP pairs that will
have no chance to pass the significance threshold Fα. From Eq. (2), we know that
finding SNP-pairs (X i X j ) whose F-statistics F (X i X j , Y ) ≥ Fα is equivalent to
finding SNP-pairs satisfying

SSB(X i X j , Y ) ≥ SST (X i, Y )
M−g

(g−1)Fα
+ 1

= θ.

Theorem 4.1 suggests that we only need to compute the F-statistics for the
SNP-pairs that satisfy:

SSB(X i, Y ) + R1(X i X j Y ) + R2(X i X j Y ) ≥ θ.

We refer to these SNP-pairs as candidate SNP-pairs.
We now discuss how to apply the upper bound in Theorem 4.1 in detail. The

set of all SNP-pairs is partitioned into nonoverlapping groups such that each
group has a common upper bound. For every X i (1 ≤ i ≤ N ), let AP(X i) be the
set of SNP-pairs

AP(X i) = {(X i X j )|i + 1 ≤ j ≤ N }.
ACM Transactions on Knowledge Discovery from Data, Vol. 3, No. 4, Article 19, Publication date: November 2009.
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Fig. 3. The index array Array(X 1) for efficient retrieval of the candidate SNP-pairs.

For all SNP-pairs in AP(X i), nA, TA, nB, TB and SSB(X i, Y ) are constants.
Moreover, la1 , ua1 are determined by na1 , and lb1 , ub1 are determined by nb1 .
Therefore, in the upper bound, na1 and nb1 are the only variables that depend
on X j and may vary for different SNP-pairs (X i X j ) in AP(X i).

Note that na1 is the number of 1’s in X j when X i takes value 1, and nb1 is the
number of 1’s in X j when X i takes value 0. In Section 4.2, we have shown the
upper bound of �A (�B) using the phenotype values in group a1 (b1). We can
also develop a similar bound based on group a2 (b1). Therefore, without loss of
generality, we always assume that na1 is the smaller one between the number
of 1’s and number of 0’s in X j when X i takes value 1, and nb1 is the smaller
one between the number of 1’s and number of 0’s in X j when X i takes value 0.

For example, using the dataset showing in Table I, for SNP-pair (X i X 2),
na = 1 since the minimum of number of 1’s and 0’s in X 2 when X 1 = 1 is 1 (the
number of 1’s), and nb = 2 since the minimum of number of 1’s and 0’s in X 2

when X 1 = 0 is 2 (the number of 0’s).
The following property specifies the values that na1 and nb1 can take. The

proof is straightforward and omitted here.

PROPERTY 5.1. If there are m 1’s and (M −m) 0’s in X i, then for any (X i X j ) ∈
AP(X i), the possible values that na1 can take are {0, 1, 2, . . . , �m/2�}. The possible
values that nb1 can take are {0, 1, 2, . . . , �(M − m)/2�}.

To efficiently retrieve the candidates, the SNP-pairs (X i X j ) in AP(X i) are
grouped by their (na1 , nb1 ) values and indexed in a 2D array, referred to as
Array(X i).

Example 5.2. Using the example dataset shown in Table I, we con-
sider the SNP-pairs in AP(X 1), that is, {(X 1 X 2), (X 1 X 3), (X 1 X 4), (X 1 X 5), . . . ,
(X 1 X 1000)}. There are 12 individuals in the dataset, and the genotype of X 1 con-
tains 6 0’s and 6 1’s. Therefore, the possible values of na1 and nb1 are {0, 1, 2, 3}.
Figure 3 shows the 4×4 array, Array(X 1), whose entries represent the possible
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values of (na1 , nb1 ) for the SNP-pairs in AP(X i). The entries in the same column
have the same na1 value. The entries in the same row have the same nb1 value.
The na1 value of each column is noted beneath each column. The nb1 value of
each row is noted left to each row. Each entry of the array is a pointer to the
SNP-pairs having the corresponding (na1 , nb1 ) values. For example, for SNP-pair
(X 1 X 3), its (na1 , nb1 ) = (3, 1). Thus, it is indexed by entry (3,1).

Note that for a SNP-pair (X i X j ) ∈ AP(X i), na1 and na2 can be calculated
faster than performing the two-locus ANOVA test. To obtain na1 and na2 , we
only need to count the numbers of 0’s and 1’s of X j when X i is equal to 0
and 1 respectively, which can be done by a linear scan of the M × 2 binary
matrix consisting of the genotypes of X i and X j . In contrast, to calculate
the F-statistic, we first need to scan the M × 3 binary matrix consisting of
X i, X j and Y in order to find out how the phenotype values are grouped by
the genotype of (X i X j ). Then a constant time O(t) is required to compute the
F-statistic.

PROPERTY 5.3. For any SNP X i, the maximum number of the entries in
Array(X i) is (⌈

M
4

⌉
+ 1

)2

.

The proof of Property 5.3 is straightforward and omitted here. In order to
find candidate SNP-pairs, we scan all entries in Array(X i) to calculate their
upper bounds. Since the SNP-pairs indexed by the same entry share the same
(na1 , nb1 ) value, they have the same upper bound.

PROPERTY 5.4. Given phenotype Y , for any SNP X i, the SNP-pairs indexed
by the same entry in AP(X i) have the same upper bound value.

For typical genome-wide association studies, the number of individuals M
is much smaller than the number of SNPs N . From Property 5.3, there must
be a group of SNP-pairs indexed by the same entry of AP(X i). In Example 5.2,
there are in total 16 entries in Array(X 1), and 999 SNP-pairs in AP(X 1). Thus
many SNP-pairs share the same (na1 , nb1 ) value and hence indexed by the same
entry in Array(X 1). Moreover, from Property 5.4, we can calculate the upper
bound for the group of SNP-pairs indexed by the same entry together. It is
these two key properties of the index structure that help to reduce the com-
plexity of the algorithm. The additional cost for accessing Array(X i) is mini-
mal compared to performing ANOVA tests for all pairs (X i X j ) ∈ AP(X i) since
M 	 N .

Algorithm 1 describes the FastANOVA algorithm for finding the SNP-pairs
whose F-statistics are greater than the threshold Fα. The inputs of FastANOVA
include the N SNPs, the phenotype Y and the critical value Fα. For each X i,
FastANOVA first indexes (X i X j ) ∈ AP(X i) using Array(X i). Then it re-
trieves the candidate SNP-pairs by accessing Array(X i) and records them
in Cand(X i, Y ). The candidates in Cand(X i, Y ) are then evaluated for their
F-statistics. The candidates whose F-statistics are greater than or equal to Fα

are reported by the algorithm.
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Algorigthm 1: FastANOVA (no phenotype permutation)

Input: SNPs X ′ = {X 1, X 2, . . . , X N }, phenotype Y , and threshold Fα

Output: find the set of SNP-pairs
Result(Y ) = {(X i X j )|F (X i X j , Y ) ≥ Fα, 1 ≤ i < j ≤ N }

1 for every X i ∈ X ′, do
2 index (X i X j ) ∈ AP(X i) by Array(X i);
3 access Array(X i) to find the candidate SNP-pairs and store them in Cand(X i , Y );
4 for every (X i X j ) ∈ Cand(X i , Y ) do
5 if F (X i X j , Y ) ≥ Fα then
6 Result(Y ) ← (X i X j );
7 end
8 end
9 end

10 return Result(Y ).

5.2 Permutation Procedure

For multiple tests, permutation procedure is often used in genetic analysis for
controlling family-wise error rate. For genome-wide association study, permu-
tation is less commonly used because it often entails prohibitively long compu-
tation time. Our FastANOVA algorithm makes permutation procedure feasible
in genome-wide association study.

Let Y ′ = {Y1, Y2, . . . , YK } be K permutations of the phenotype Y . Following
the idea discussed in Section 5.1, the upper bound in Theorem 4.1 can be easily
incorporated in the algorithm to handle the permutations.

PROPERTY 5.5. For every SNP X i, the indexing structure Array(X i) is inde-
pendent of the permuted phenotypes in Y ′.

The correctness of this property relies on the fact that, for any (X i X j ) ∈
AP(X i), na1 and nb1 only depend on the genotype of the SNP-pair and thus
remain constant for different phenotype permutations. Therefore, for each X i,
once we build Array(X i), it can be reused in all permutations.

The FastANOVA algorithm for permutation test is described in Algorithm 2.
The inputs include the N SNPs, K phenotype permutations, and the Type I
error threshold α. The goal is to find the critical value Fα, which is the αK -th
largest value in {FYk |Yk ∈ Y ′}. Recall that FYk is the maximum F-statistic value
for phenotype Yk . We use Tlist to keep the αK phenotype permutations having
the largest F-statistics found by the algorithm so far. Initially, Tlist contains
αK dummy phenotype permutations with test values 0. The smallest F-statistic
value in Tlist, initially 0, is used as the threshold to prune the SNP-pairs. For
each X i, FastANOVA first indexes (X i X j ) ∈ AP(X i) using Array(X i). Then
it finds the set of candidate SNP-pairs Cand(X i, Yk) by accessing Array(X i)
for every phenotype permutation Yk . The candidates in Cand(X i, Yk) are then
evaluated for their F-statistics. If a candidate’s F-statistic value is greater than
the current threshold, then Tlist is updated accordingly: If the candidate’s phe-
notype Yk is not in the Tlist, then the phenotype in Tlist having the smallest
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Algorigthm 2: FastANOVA (for permutation test)

Input: SNPs X ′ = {X 1, X 2, . . . , X N }, phenotype permutations
Y ′ = {Y1, Y2, . . . , YK }, and the Type I error α

Output: find the critical value Fα

1 Tlist ← αK dummy phenotype permutations with F-statistics 0;
2 Fα = 0;
3 for every X i ∈ X ′, do
4 index (X i X j ) ∈ AP(X i) by Array(X i);
5 for every Yk ∈ Y ′, do
6 access Array(X i) to find the candidate SNP-pairs and store them in

Cand(X i , Yk);
7 for every (X i X j ) ∈ Cand(X i , Yk) do
8 if F (X i X j , Yk) ≥ Fα then
9 update Tlist;

10 Fα = the smallest test value in Tlist;
11 end
12 end
13 end
14 end
15 return Fα.

F-statistic value is replaced by Yk . If the candidate’s phenotype Yk is already
in Tlist, we only need to update its corresponding F-statistic value to be the
maximum value found for the phenotype so far. The threshold is also updated
to be the smallest F-statistic value in Tlist.

5.3 Complexity Analysis

In this section, we study the time and space complexities of the FastANOVA
algorithm for permutation test. The complexity for a single phenotype can be
analyzed in a similar way.

Time Complexity. For each X i, FastANOVA needs to index (X i X j ) in AP(X i).
The complexity to build the indexing structure for all SNPs is O(N (N −
1)M/2). The worst case for accessing all Array(X i) for all permutations is
O(N × K × (� M

4 � + 1)2) = O(NKM2). Let C = ∑
i,k |Cand(X i, Yk)| represent

the total number of candidates. The overall time complexity of FastANOVA is
thus O(N (N − 1)M/2) + O(N K × (� M

4 � + 1)2) + O(
∑

i,k |Cand(X i, Yk)|M ) =
O(N 2M + NKM2 + CM). The experimental results show that the overhead of
building the indexing structures and accessing them for candidate retrieval
are negligible when large permutation tests are needed. The time complexity
of the brute-force approach is O(K N (N − 1)M/2) = O(K N 2M ). Note that in a
typical genotype-phenotype association study, the number of SNPs N is much
lager than the number of individuals M . Therefore, when the number of per-
mutations K is large, e.g. thousands, the complexity of FastANOVA is much
less than the complexity of the brute force approach.

Space Complexity. The total number of variables in the dataset, including
the SNPs and the phenotype permutations, is N + K . The maximum space of
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Table IV. Statistics of the Genotype Datasets

Cardiovascular Metabolism Neurosensory

# individuals 19 26 34
# SNPs 14,513 43,856 66,006

the indexing structure Array(X i) is O((� M
4 � + 1)2 + N ). Note that for each SNP

X i, FastANOVA only needs to access one indexing structure, Array(X i), for all
permutations. Once the evaluation process for X i is done for all permutations,
Array(X i) can be cleared from the memory. Therefore, the space complexity
of FastANOVA is O((N + K )M ) + O((� M

4 � + 1)2 + N ) = O((N + K )M ) since
M 	 N . The space complexity is linear to the dataset size.

6. EXPERIMENTAL RESULTS

In this section, we present extensive experimental results on evaluating the per-
formance of the FastANOVA algorithm. We show (1) the runtime comparison
between FastANOVA and the brute-force approach under various experimental
settings, (2) the punning effect of the upper bound, and (3) the relative compu-
tational cost of each component of FastANOVA. FastANOVA is implemented in
C++. The experiments are performed on a 2.4 GHz PC with 1G memory running
WindowsXP system.

Dataset. The SNP dataset used for the experiments is extracted from a
set of combined SNPs from the 140k Broad/MIT mouse dataset (http://www.
broad.mit.edu/) and 10k GNF mouse dataset (http://www.gnf.org/). This
merged dataset has 156,525 SNPs for 71 individuals. The missing values in
the dataset are imputed using NPUTE [Roberts et al. 2007]. We use both real
phenotypes and synthetic phenotypes in our experiments. The real phenotype
data is available from the Jackson Laboratory (http://www.jax.org/).

6.1 Real Phenotypes

We use three real phenotypes in our experiments: cardiovascular (blood pres-
sure), metabolism (water intake), and neurosensory (acoustic startle response).
Table IV shows the statistics of the genotype datasets corresponding to the three
phenotypes. The number of SNPs in the table indicates the number of unique
SNPs in each genotype dataset.

We first show the results on finding the critical value Fα, which is more time-
consuming than finding the significance SNP-pairs given the critical value Fα

for a single phenotype.

6.1.1 Finding Critical Value Fα

6.1.1.1 FastANOVA vs. the Brute-Force Approach. We compare FastANOVA
with the brute-force approach under various experimental settings. Since the
brute-force approach is very time-consuming, we use a moderate number of
SNPs and permutations in the default setting in order to show the perfor-
mance comparisons. The default setting is as follows: The Type I error thresh-
old α = 0.01. The number of permutations is 100. The number of SNP is 10,000
for the two larger datasets of metabolism and neurosensory, and 2,900 for the
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Fig. 4. Performance comparison between FastANOVA and the brute-force approach when varying
Type I error thresholds.

Fig. 5. Performance comparison between FastANOVA and the brute-force approach when varying
the number of SNPs.

cardiovascular SNP dataset. These experimental settings are chosen to demon-
strate the performance gain and enhanced scalability offered by FastANOVA
over the brute-force implementation. FastANOVA can handle much larger SNP
panels and larger number of permutation tests. The performance of FastANOVA
is expected to follow the same trends presented in the remainder of this section.

Figures 4, 5, and 6 show the running time comparison of FastANOVA and the
brute-force approach on the three genotype phenotype datasets using different
settings. The y-axis is in logarithm scale. The numbers above the runtime line of
FastANOVA indicate the ratio of the runtimes of the brute-force approach over
FastANOVA. We terminate the programs that have run over 72 hours without
completion.

Figure 4 shows the runtime comparison when varying the Type I error
thresholds. For each dataset, the runtime of the brute-force approach does not
change over different Type I error thresholds. The runtime of FastANOVA de-
creases as the threshold decreases. FastANOVA offers 218-fold speedup when
α = 0.05 and 293 fold speedup when α = 0.01 on cardiovascular dataset. We can
also observe a similar two-orders-of-magnitude speedup in the metabolism and
neurosensory datasets. This is consistent with the pruning effect of the upper
bound, which will be presented later in this section. In general, the lower the
Type I error threshold, the more powerful the pruning effect, hence the faster
the algorithm.

Figure 5 depicts the comparison of these two approaches when the number
of SNPs changes. From these figures, it is clear that FastANOVA is about two
orders of magnitude faster than the brute-force approach. The brute-force ap-
proach cannot finish in 72 hours when the number of unique SNPs is greater
than 26k in the metabolism dataset and greater than 24k in the neurosensory
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Fig. 6. Performance comparison between FastANOVA and the brute-force approach when varying
the number of permutations.

dataset. We observe that the runtime ratio tends to increase (approaching
three-orders-of-magnitude speedup) as the number of SNPs increases. This
indicates that the performance gain of FastANOVA is even higher for larger
SNP datasets.

Figure 6 shows the runtime comparison when the number of phenotype per-
mutations changes. The runtime of the brute-force approach is linear with re-
spect to the number of permutations. FastANOVA is consistently two orders
of magnitude faster than the brute-force approach. The performance gap in-
creases as the number of permutations increases.

6.1.1.2 Pruning Effect of the Upper Bound. Table V shows the percentage
of SNP-pairs pruned under different experimental settings. Since the three
datasets have different numbers of SNPs, the 1st to 5th rows in the column of
“# SNPs” correspond to the settings from left to right on x-axis in each plot in
Figure 5. Most SNP-pairs are pruned under all settings. Moreover, as the Type
I error threshold α decreases, the pruning ratio increases, which is consistent
with runtime comparison shown in Figure 4. As the number of SNPs increases,
the pruning ratio also increases. This is because, with more SNPs, the dynamic
threshold used to prune the search space becomes higher. Hence, a larger por-
tion of SNPs are pruned. This is consistent with results shown in Figure 5. Note
that from Table V, we observe that the pruning ratio tends to remain steady
when the number of permutations changes. However, we observe that the run-
time ratio increases as the number of permutations increases. The reason for
these two different trends will become clear after we show the results on the
computational cost of each component of FastANOVA in the next subsection.

6.1.2 Finding Significant SNP-Pairs. In this section, we study the compar-
ison between FastANOVA and the brute-force approach in finding significant
SNP-pairs given a critical value Fα. Only the original phenotype (without per-
mutations) is used in this procedure. We examine the detailed computation cost
of each component of the FastANOVA algorithm. FastANOVA has three major
components: building the indexing structure Array(X i) for every SNP X i, ac-
cessing Array(X i) to find the candidate SNP-pairs, and performing ANOVA
tests on these candidates.

Figures 7 to 9 show the performance comparison on the three datasets. The
default experimental setting is the same as before. We examine the performance
on metabolism dataset in detail. Similar behaviors can be observed on the other
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Table V. Pruning Effects on Cardiovascular, Metabolism and
Neurosensory Datasets when Finding Critical Value Fα

Cardiovascular Metabolism Neurosensory

0.05 99.881% 99.724% 99.701%
0.04 99.907% 99.758% 99.751%

α 0.03 99.928% 99.797% 99.792%
0.02 99.949% 99.877% 99.853%
0.01 99.974% 99.929% 99.911%
1st 99.974% 99.929% 99.911%
2nd 99.991% 99.985% 99.979%

# SNPs 3rd 99.996% 99.996% 99.997%
4th 99.998% 99.996% 99.997%
5th 99.998% 99.993% 99.998%
100 99.974% 99.929% 99.911%
200 99.966% 99.935% 99.917%

# Perm. 300 99.977% 99.962% 99.919%
400 99.977% 99.961% 99.914%
500 99.974% 99.953% 99.907%

(a) Varying threshold values (b) Varying number of SNPs

Fig. 7. Finding significant SNP-pairs (cardiovascular dataset).

two datasets. Figure 8(a) and Figure 8(b) show the runtime of these three com-
ponents when varying the Type I error threshold and number of SNPs in the
metabolism dataset respectively. Since Fα is a function of α, in Figure 8(a), we
plot the runtime with respect to α. In both figures, the three lines from the
bottom show the runtime of these three components. The runtime of the brute-
force approach is the top line. As we can see from these two figures, performing
two-locus ANOVA tests on candidate SNP pairs is two to three orders of mag-
nitude faster than performing such tests on all SNP-pairs. This is the benefit
of the upper bound pruning since most SNP-pairs have been pruned and only a
very small portion of candidates need to be evaluated for their F-statistics. The
cost for accessing the indexing structures is also small, which demonstrates
the efficiency of the method introduced in Section 5.1 for candidate retrieval.
Among the three components of FastANOVA, the most time-consuming one is
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(a) Varying threshold values (b) Varyingn umber of SNPs

Fig. 8. Finding significant SNP-pairs (metabolism dataset).

(a) Varying threshold values (b) Varying number of SNPs

Fig. 9. Finding significant SNP-pairs (neurosensory dataset).

building the index structures. Yet, its runtime is only a small fraction of the
runtime of performing the two-locus ANOVA tests on all SNP pairs. Note that,
in permutation test, building the index structures is a one time cost. Once the
index structures are built, they can be reused in all permutations. Therefore,
the amortized overhead per permutation decreases when the number of per-
mutations increases. This is why the pruning ratio remains steady in Table V
while the runtime ratio increases in Figure 6 when the number of permutations
increases.

Figure 10 shows the histogram of the sizes of the indexing structures for the
three datasets. From Property 5.3, the maximum sizes of the indexing struc-
tures are 36 for the cardiovascular dataset, 64 for the metabolism dataset, and
100 for the neurosensory dataset. It is clear from the figure that the actual sizes
of the indexing structures are much smaller than the maximum sizes.

6.1.3 Finding FYk for All Permutations. Sometimes the users may be in-
terested in finding FYk values of all phenotype permutations. In this way, the
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Fig. 10. Histogram of the sizes of the indexing structures.

Table VI. Pruning Effect on Cardiovascular,
Metabolism and Neurosensory Datasets when

Finding FYk for all Permutations

Cardiovascular Metabolism Neurosensory

97.865% 97.844% 98.061%

users can get the critical value Fα for any Type I error threshold α ranging
from 0 to 1, without re-running the permutation tests for different thresh-
olds. Recall that, given a set of phenotype permutations Y ′ = {Y1, Y2, . . . , YK },
FYk = max{F (X i X j , Yk)|1 ≤ i < j ≤ N } is the maximum F-statistic value for
permutation Yk . Fα is the αK th largest value in {FYk |Yk ∈ Y ′}. In this section,
we show the pruning effect of the upper bound when it is applied to determine
FYk for every Yk (1 ≤ k ≤ K ). Note that in this case, for each permutation Yk ,
the dynamic threshold used to prune the search space is the largest F-statistic
value of Yk identified by the algorithm so far.

Table VI shows the pruning ratio of applying the upper bound to the three
real phenotype datasets. The experimental setting is the same as the default
setting before. As expected, the pruning ratios are slightly lower than those in
Table V, where smaller Type I error thresholds are used to prune the search
space. However, the pruning ratios on all three datasets are still above 97%.
Moreover, finding all FYk provides the advantage that we can get the Fα values
for all possible α values instead of just for a specific one.

6.2 Synthetic Phenotypes

To further study the performance of FastANOVA, we generate three synthetic
phenotypes whose values follow three different distributions: uniform, stan-
dard normal (with mean 0 and variance 1), and standard exponential distri-
bution (with the probability density function f (x) = e−x). Our purpose is to
study the pruning effect of the upper bound under different phenotype distri-
butions. The default setting of the experiments in this subsection is as follows:
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Table VII. Pruning Effect when Finding Critical Value
Fα using three Synthetic Phenotypes

Uniform Normal Exponential

0.05 96.469% 97.793% 99.335%
0.04 96.888% 98.222% 99.401%

α 0.03 97.695% 98.631% 99.502%
0.02 98.712% 99.072% 99.617%
0.01 99.605% 99.506% 99.737%
10k 99.605% 99.506% 99.737%
22k 99.864% 99.814% 99.924%

# SNPs 34k 99.907% 99.905% 99.967%
46k 99.928% 99.889% 99.965%
58k 99.941% 99.942% 99.963%
100 99.605% 99.506% 99.737%
200 98.891% 99.398% 99.726%

# Perm. 300 98.897% 99.072% 99.780%
400 98.623% 99.315% 99.762%
500 98.709% 99.199% 99.759%
28 99.756% 99.695% 99.893%
30 99.422% 99.577% 99.880%

# indiv. 32 99.605% 99.506% 99.737%
34 99.073% 99.289% 99.773%
36 98.736% 98.832% 99.745%

#individuals = 32, #SNPs = 10,000, #permutations = 100, α = 0.01. There are
60,970 unique SNPs for these 32 individuals.

Table VII shows the pruning ratio of FastANOVA under different settings
using permutation test. In this table, we also include the pruning ratio when the
number of individuals varies. We observe that the pruning effects are similar
to that of real phenotypes, which indicates that the upper bound pruning is
effective and insensitive to different phenotype distributions.

7. DISCUSSION

The large number of available SNPs poses great computational challenge to
the genome-wide association study. To assess the significance of the findings,
permutation test is usually required. These factors make the association study
a very time-consuming process. Thus tools that can improve the efficiency of
the association study are in demand.

In this article, we present an efficient algorithm, FastANOVA, for genome-
wide two-locus ANOVA test. FastANOVA is a complete algorithm which guar-
antees to find the optimal solution. Experimental results demonstrate that
FastANOVA is two to three orders of magnitude faster than the brute-force
alternative. The efficiency of FastANOVA is gained from two sources. First, it
utilizes an upper bound of the two-locus ANOVA test value to prune a major-
ity of the SNP-pairs. Second, it identifies and reuses computation units that
are independent of the phenotype and hence are invariant in permutation test.
By eliminating redundant computation of these invariant units, FastANOVA
is much more efficient than the brute-force method.
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Table VIII. Notations Used in the Derivation of the
Upper Bound for Two-Locus Chi-Square Test

Symbols Formulas

T1
M2

(OA+OB )(OA+OC )(OC+OD )

S1 max
{
O2

A, O2
C
}

R 1 min
{[

OX j =1

OX j =0
|X i = 0

]
,
[

OX j =0

OX j =1
|X i = 0

]}
T2

M2

(OA+OB )(OB+OD )(OC+OD )

S2 max
{
O2

B, O2
D

}
R 2 min

{[
OX j =1

OX j =0
|X i = 1

]
,
[

OX j =0

OX j =1
|X i = 1

]}

7.1 Extension to Chi-Square Test

As our initial attempt to develop scalable algorithms for genome-wide associa-
tion study, FastANOVA is specifically designed for the ANOVA test on quanti-
tative phenotypes. Another category of phenotypes is generated in case-control
study, where the phenotypes are binary variables representing disease/non-
disease individuals. Chi-square test is one of the most commonly used statis-
tics in binary phenotype association study. We can extend the principles in Fas-
tANOVA for efficient two-locus chi-square test [Zhang et al. 2009b]. The general
idea of FastChi is similar to that of FastANOVA, that is, re-formulating the chi-
square test statistic to establish an upper bound of two-locus chi-square test,
and indexing the SNP-pairs according to their genotypes in order to effectively
prune the search space and reuse redundant computations. Here we briefly
introduce the FastChi algorithm.

For SNP X i, we represent the chi-square test value of X i and the binary
phenotype Y as χ2(X i, Y ). For any SNP-pair X i and X j , we use χ2(X i X j , Y )
to represent the chi-square test value for the combined effect of (X i X j ) with
Y . Let A, B, C, D represent the following events respectively: Y = 0 ∧ X i = 0;
Y = 0∧ X i = 1; Y = 1∧ X i = 0; Y = 1∧ X i = 1. Let Oevent denote the observed
value of an event. T1, T2, S1, S2, R 1, and R 2 represent the formulas shown in
Table VIII. We have the upper bound of χ2(X i X j , Y ) stated in Theorem 7.1.

THEOREM 7.1 (UPPER BOUND OF χ2(X i X j , Y )).

χ2(X i X j , Y ) ≤ χ2(X i, Y ) + T1S1R 1 + T2S2R 2.

For given phenotype Y and SNPX i, χ2(X i, Y ), T1, S1, T2, and S2 are con-
stants. R 1 and R 2 are the only variables that depend on X j and may vary for
different SNP-pairs (X i X j ) ∈ AP(X i). (Recall that AP(X i) = {(X i X j )|i + 1 ≤
j ≤ N }.) Thus, for a given X i, we can treat equation χ2(X i, Y ) + T1S1R 1 +
T2S2R 2 = θ as a straight line in the 2-D space of R 1 and R 2. The ones whose
(R 1(X i X j ), R 2(X i X j )) values fall below the line can be pruned without any
further test.

Suppose that there are 32 individuals, X i contains half 0’s, and half
1’s. For the SNP-pairs in AP(X i), the possible values of R 1 (and R 2) are
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Fig. 11. Pruning SNP-Pairs in AP(X i) using the Upper Bound.

{ 0
16 , 1

15 , 2
14 , 3

13 , 4
12 , 5

11 , 6
10 , 7

9 , 8
8 }. Figure 11 shows the 2-D space of R 1 and R 2. The

blue stars represent the values that (R 1, R 2) can take. The line χ2(X i, Y ) +
T1S1R 1 + T2S2R 2 = θ is plotted in the figure. Only the SNP-pairs whose
(R 1, R 2) values are in the shaded region are subject to two-locus Chi-square
test.

Similar to FastANOVA, in FastChi, we can index the SNP-pairs in AP(X i)
according to their genotype relationships, i.e., by the values of (R 1, R 2). Ex-
perimental results demonstrate that FastChi is an order of magnitude faster
than the brute force alternative. For further details of FastChi, please refer to
Zhang et al. [2009b].

7.2 A General Approach for Binary Phenotypes

The common drawback of FastANOVA and FastChi is that they are specifically
designed for ANOVA and chi-square tests, and cannot be applied to other statis-
tics. In Zhang et al. [2009a], a generalized approach, COE, for case-control study
is proposed. The major contribution is that COE can be applied to a wide range
of statistics. One key observation is that many commonly used statistics are
convex functions. This property allows to use convex optimization techniques
to find tight upper bound for tow-locus statistical tests.

We use T to denote the statistical test that will be used for two-locus associ-
ation study. Specifically, we represent the test value of SNP X i and phenotype
Y as T (X i, Y ), and represent the test value of SNP-pair (X i X j ) and Y as
T (X i X j , Y ). A contingency table, which records the observed values of all
events, is the basis for many statistical tests. Table IX shows contingency ta-
bles for the single-locus test T (X i, Y ), genotype relationship between SNPs
X i and X j , and two-locus test T (X i X j , Y ). Next, we use chi-square test,
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Table IX. Contingency Tables

(a) X i and Y (b) X i and X j

X i = 0 X i = 1 Total
Y = 0 event A event B
Y = 1 event C event D
Total M

X i = 0 X i = 1 Total
X j = 0 event S event T
X j = 1 event P event Q
Total M

(c) X i X j and Y
X i = 0 X i = 1 Total

X j = 0 X j = 1 X j = 0 X j = 1
Y = 0 event a1 event a2 event b1 event b2

Y = 1 event c1 event c2 event d1 event d2

Total M

G-test (likely ratio test), and entropy based test as concrete examples to show
that they are convex statistics.

Let A, B, C, D, S, T, P, Q , a1, a2, b1, b2, c1, c2, d1, d2 represent the events as
shown in Table IX. Let Eevent and Oevent denote the expected value and ob-
served value of an event. Suppose that E0 = {a1, a2, b1, b2, c1, c2, d1, d2},
E1 = {a1, a2, c1, c2}, and E2 = {b1, b2, d1, d2}. The two-locus chi-square tests
can be calculated as follows:

χ2(X i X j , Y ) =
∑

event∈E1

(Oevent − Eevent)2

Eevent︸ ︷︷ ︸
χ2

1 (X i X j Y )

+
∑

event∈E2

(Oevent − Eevent)2

Eevent︸ ︷︷ ︸
χ2

2 (X i X j Y )

. (6)

Note that we intentionally break the calculation into two components: one for
the events in E1, denoted as χ2

1 (X i X j Y ), and one for the events in E2, denoted
as χ2

2 (X i X j Y ). The reason for separating these two components is that each of
these two components is a convex function (See Lemma 7.2).

The G-test, also known as a likelihood ratio test for goodness of fit, is an
alternative to the chi-square test. The formula for two-locus G-test is

G(X i X j , Y ) = 2
∑

event∈E1

Oevent · ln
(

Oevent

Eevent

)
+ 2

∑
event∈E2

Oevent · ln
(

Oevent

Eevent

)
. (7)

Information-theoretic measurements have been proposed for association
study. We examine the mutual information measure, which is the basic form of
many other measurements. The mutual information between SNP-pair (X i X j )
and phenotype Y is I (Y ; X i X j ) = H(Y )+ H(X i X j )− H(X i X j Y ), in which the
joint entropy −H(X i X j Y ) is calculated as

−H(X i X j Y ) =
∑

event∈E1

Oevent

M
· log

Oevent

M
+

∑
event∈E2

Oevent

M
· log

Oevent

M
. (8)

Let T (X i X j , Y ) represent any one of χ2(X i X j , Y ), G(X i X j , Y ), and
−H(X i X j Y ). Let T 1(X i X j Y ) denote the component for events in E1, and
T 2(X i X j Y ) denote the component for events in E2. The following lemma shows
the convexity of T 1(X i X j Y ) and T 2(X i X j Y ).
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LEMMA 7.2. Given the values of OA, OB, OC, OD, OP , OQ , T 1(X i X j Y ) is a
convex function of Oc2 , and T 2(X i X j Y ) is a convex function of Od2 .

Suppose that the range of Oc2 is [lc2 , uc2 ], and the range of Od2 is [ld2 , ud2 ].
For any convex function, its maximum value is attained at one of the vertices of
it convex domain [Boyd and Vandenberghe 2004]. Thus, we have the following
theorem.

THEOREM 7.3. Given the values of OA, OB, OC, OD, OP , OQ , for chi-square
test, G-test, and entropy-based test, the maximum value of T 1(X i X j Y ) is at-
tained when Oc2 = lc2 or Oc2 = uc2 . The maximum value of T 2(X i X j Y ) is
attained when Od2 = ld2 or Od2 = ud2 .

By further studying the relationships between the observed values shown in
Table IX, we can derive the ranges of Oc2 and Od2 .

THEOREM 7.4. Given the values of OA, OB, OC, OD, OP , OQ , the ranges of
Oc2 and Od2 are {

max{0, OP − OA} ≤ Oc2 ≤ min{OP , OC};
max{0, OQ − OB} ≤ Od2 ≤ min{OQ , OD}.

Experimental results show that the developed upper bound is much tighter
than that of the FastChi algorithm. In addition, this approach only requires the
test statistic to be a convex function, which is true for a variety of tests. Please
refer to Zhang et al. [2009a] for further details about COE.

8. LIMITATIONS AND FUTURE WORK

In general, genome-wide association study is not restricted to two-locus tests.
Ideally, one should be able to examine the interactions among any number
of SNPs. This dramatically increases the computational burden. For exam-
ple, suppose that number of SNPs N = 10, 000 and number of permutations
K = 1, 000, the number of tests needed for two-locus association study is
in the order of 1010, and number of tests needed for three-locus association
study is in the order of 1014. In practice, this means that if two-locus associ-
ation testing takes 1 second, the three-locus testing will take about 104 sec-
onds. The computational burden increases exponentially when the number of
SNPs considered for interaction increases. In our future work, we will investi-
gate scalable algorithms for multi-locus association study involving more than
two-locus.

Our work in this article is motivated by the association study for inbred
mice, whose genotypes are usually binary. For other subjects, such as human,
the genotype are heterozygous, where SNPs are encoded as {0, 1, 2}. The formu-
lation in this article is for binary SNPs. In the future work, we plan to extend the
principles used in this article to the heterozygous case. Another difference be-
tween human subjects and inbred mice is that the number of samples of human
subjects are usually much larger than that of the mice. This could potentially
impair the applicability of the indexing structure which is the key component
of FastANOVA. The size of the indexing structure depends on the number of in-
dividuals in the dataset: the maximum size of the indexing structure increases
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quadratically with respect to the number of individuals. The associated prob-
lem is that he number of SNP-pairs indexed by the same entry will decrease
and the accessing time of the indexing structure will increase. In the worst case,
if the number of entries is larger than the number of SNPs, then there is no
advantage to build the indexing structure. We will investigate algorithms for
large sample datasets in our future work.
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