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ABSTRACT
Many approaches have been proposed to find correlations in binary
data. Usually, these methods focus on pair-wise correlations. In bi-
ology applications, it is important to find correlations that involve
more than just two features. Moreover, a set of strongly correlated
features should be non-redundant in the sense that the correlation
is strong only when all the interacting features are considered to-
gether. Removing any feature will greatly reduce the correlation.

In this paper, we explore the problem of finding non-redundant
high order correlations in binary data. The high order correlations
are formalized using multi-information, a generalization of pair-
wise mutual information. To reduce the redundancy, we require any
subset of a strongly correlated feature subset to be weakly corre-
lated. Such feature subsets are referred to as Non-redundant Inter-
acting Feature Subsets (NIFS). Finding all NIFSs is computation-
ally challenging, because in addition to enumerating feature combi-
nations, we also need to check all their subsets for redundancy. We
study several properties of NIFSs and show that these properties are
useful in developing efficient algorithms. We further develop two
sets of upper and lower bounds on the correlations, which can be
incorporated in the algorithm to prune the search space. A simple
and effective pruning strategy based on pair-wise mutual informa-
tion is also developed to further prune the search space. The effi-
ciency and effectiveness of our approach are demonstrated through
extensive experiments on synthetic and real-life datasets.

1. INTRODUCTION
Finding correlations in high-dimensional binary data has attracted

much research interest in recent years. Various approaches have
been developed, including correlation pattern mining [26, 16, 13],
feature selection [6, 27], finding correlated item pairs [35], and
others. (See Section 2 for a more detailed discussion on related
work.) Although often successful in different applications, these
methods usually focus on pair-wise correlations between features.
Some commonly used pair-wise correlation measurements are mu-
tual information [3], all confidence [26], Pearson correlation [28]
and so on. Methods such as neural networks [23] and multinomial
mixture model [19] have been developed to capture the global cor-
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relations among all features.
In this paper, we study the problem of finding higher order corre-

lations in feature subspaces. Finding these high order correlations
has important applications such as quantitative trait locus (QTL)
finding [15] in genetics. In QTL finding, geneticists want to iden-
tify genomic regions that are associated with a phenotype (or trait)
of interest by using single nucleotide polymorphism (SNP) data.
Each SNP can be treated as a binary feature. It is well known that
many diseases are complex traits, i.e., multiple genes (SNPs) in-
teracting with each other to control the expression of the disease.
Each disease SNP may only have weak correlation with the disease
trait. However, when these disease SNPs are combined together,
their correlation with the disease trait becomes very strong. Finding
multiple SNPs showing strong correlation with phenotype variation
is an active and growing research area in genetics [2, 32].

From the above application, we can see two aspects of the de-
sired correlation patterns. First, the correlation involves more than
two features. Second, the correlation is non-redundant, i.e., remov-
ing any feature will greatly reduce the correlation.

To make the scenario clearer, let’s consider the following simple
example. Suppose X , Y and Z are binary features, where X and
Y are disease SNPs, and Z is the complex disease trait, which is
controlled by X and Y together. Suppose X and Y are indepen-
dent, and Z = X ⊕ Y , where ⊕ denotes exclusive-or (XOR) op-
eration. Clearly, {X, Y, Z} together have strong correlation, since
when combined together, X and Y uniquely determine Z. How-
ever, for each pair of the features, {X, Z}, {Y, Z}, and {X, Y },
there is no correlation. From this example, we can see that the high
order correlation pattern cannot be identified by only examining the
pair-wise correlations.

Besides the application in genetics, the importance of exploring
high order correlations among features has also been demonstrated
in [10, 36]. In [10], a statistic based on Kullback-Leibler diver-
gence [3] is proposed to assess the significance of feature interac-
tions. The multi-way correlations exist in many real-life datasets.
In [36], the authors develop a feature selection method that takes
the interactions among features into consideration, and demonstrate
that the resulting features achieve higher classification accuracy
than features selected without considering such interactions.

We now look at another example where strong correlation exists
only when multiple features are considered together. The dataset in
this example will also be used as the running dataset of this paper.

EXAMPLE 1.1. Figure 1 shows a dataset consisting of 11 bi-
nary features. Let H(X) denote the entropy [3] of feature X , and

Ĩ(Y ; X) =
H(Y ) − H(Y |X)

H(Y )
be the relative entropy reduction of

Y based on X . Consider the three features X1, X2, and X3 in the
table. We have Ĩ(X3; X1) = 21.97% and Ĩ(X3; X2) = 8.62%,



Figure 1: An example dataset

i.e., the relative entropy reduction of X3 given X1 or X2 alone is
small. However, the relative entropy reduction of X3 given both
X1 and X2 is much higher, Ĩ(X3; X1, X2) = 81.59%. Therefore,
X1 and X2 jointly reduce the uncertainty of X3 more than they
do separately. This strong correlation exists only when these three
features are considered together.

Scope and contributions: In this paper, we study the problem
of finding non-redundant high order correlations in binary data. We
formalize these correlation patterns as Non-redundant Interacting
Feature Subsets (NIFSs). In particular, we use an entropy based
correlation measurement, multi-information [34], to measure the
high order correlation among a set of features. An NIFS is a subset
of features satisfying the following two criteria. First, the features
in an NIFS together has high multi-information. Second, all subsets
of an NIFS have low multi-information.

Since the NIFSs satisfy two criteria, the computational challenge
of finding them is also two-folds. First, we need to enumerate fea-
ture combinations to find the feature subsets that have high corre-
lation. Second, for each such feature subset, we need to check all
its subsets to make sure there is no redundancy.

We study the properties of NIFSs and show that they can be used
in developing efficient algorithms. In particular, we show that any
superset of an NIFS cannot be an NIFS. This allows us to prune
the search space whenever an NIFS is found. We develop two sets
of upper and lower bounds on the correlation of an NIFS. One is
based on Han’s inequality [8], and the other is based on Hamming
distances between the features. These bounds can be easily incor-
porated in the algorithm to improve the efficiency. Finally, we de-
velop a pruning strategy based on mutual information, which en-
ables the algorithm to further prune the search space.

We apply our approach to both synthetic and real-life datasets.
The significance of identified patterns is carefully examined using
various approaches.

2. RELATED WORK
There has been a significant amount of work in finding correla-

tions in binary data.
Correlation pattern mining Correlation pattern mining [26,

16, 13] is an extensively studied area in data mining. The algo-
rithms developed for correlation pattern mining typically measure

the correlations between attributes by pairwise mutual information,
measurements based on support, or other statistics, such as Pear-
son correlation. The problem of finding strongly correlated item
pairs is studied in [35]. This method is designed for finding pair-
wise correlations,which is a special case of the problem studied in
this paper. In [9, 14], the authors investigate the problem of finding
itemsets having high or low entropy, which is different from finding
non-redundant interacting features subsets.

Capturing global correlation Many methods have been pro-
posed to capture the global correlations among all the features, such
as principal component analysis (PCA) [11], neural networks [23],
and multinomial mixture model [19]. These methods have been
widely used and shown effective in various applications. However,
these methods are designed to capture the correlations in the full
feature space. Our work in this paper, on the other hand, focuses
on finding the high order correlations hidden in feature subsets.

Feature selection Feature selection methods [18, 6, 27, 36]
try to find a subset of features that are most relevant for a certain
data mining task, such as classification. The selected feature subset
usually contains the features that have low correlation with each
other but have strong correlation with the target feature. Meth-
ods exploiting mutual information between pairs of binary features
are studied in [6, 27]. In [27], the authors propose to use Max-
Relevance and Min-Redundancy (mRMR) as the criteria for feature
selection. The goal is to select non-redundant features that are most
relevant to the dependent feature. However, the model of mRMR is
still based on the mutual information between a pair of features and
does not generalize to higher order correlations. In [36], a feature
selection method utilizing interactions among features is proposed.
This method performs a single pass backward elimination to find a
best feature subset that predicts the class labels well. Our focus in
this paper, however, is to find all non-redundant interacting feature
subsets.

Statistical significance of feature interactions In [10], the
authors propose a Kullback-Leibler (KL) divergence [3] based statis-
tic to measure the interactions among a set of features. The basic
idea is as follows. Given a subset of features, say F , use KL diver-
gence as a statistic to measure the difference between (1) the ob-
served joint probability distribution of F and (2) an estimated joint
probability distribution derived from pair-wise approximations. The
Kirkwood superposition approximation is suggested in the paper as
the estimated distribution. For example, an approximation p̂K(A, B, C)
to the joint probability density function p(A, B, C) is

p̂K(a, b, c) ≈
p(a, b)p(a, c)p(b, c)

p(a)p(b)p(c)
= p(a|b)p(b|c)p(c|a).

One then calculates the P-value of the resulting KL divergence us-
ing a chi-square test, or a bootstrap based percentile. If the P-value
is small, it indicates that there are interactions among features in F .
It has been shown that such interactions exist in many real datasets.
In [10], besides the suggested statistic, no algorithm is presented to
find the these patterns.

Dimension reduction Principal component analysis (PCA)
and singular value decomposition (SVD) [11] are well known di-
mension reduction methods for real-value data. Some research has
been done in designing dimension reduction methods specifically
for binary data [7, 22, 24]. Similar to PCA and SVD, these methods
focus on finding a set of new features that approximate the original
data, but do not consider the problem of finding multiple sets of
interacting features. In [33], a method based on fractal dimension
is proposed to estimate the intrinsic dimensionality of binary data
without actually finding the representative features.

Clustering Clustering methods designed for binary data [5,



17] partition the data points or features into groups based on pair-
wise similarities. These methods can identify groups of features
with strong pairwise correlations, but are not adapted to higher or-
der interactions.

3. PRELIMINARIES
Many statistical measures have been proposed in the data min-

ing literature for measuring pair-wise correlations, such as Pearson
correlation, Spearman correlation, χ2 statistics etc [21]. Although
these measurements are widely used in different applications, they
are not specifically designed for capturing higher order correlations
among a set of features.

The concept of multi-information was first discussed in detail in
[34], though it had been described earlier in [20].

DEFINITION 1. The multi-information of a set of features
{X1, X2, · · · , Xn} is defined as

C(X1, X2, · · · , Xn) =

n
∑

i=1

H(Xi) − H(X1, X2, · · · , Xn),

where H(Xi) is the entropy of Xi.

A multivariate correlation model based on multi-information al-
lows exploration of bivariate as well as and higher order corre-
lations. The multi-information measure is specifically designed
for modelling the feature interactions and has rigorous theoretical
backgrounds. It has been widely used in many domains, such as
biology and physics [31]. Note that the pairwise mutual informa-
tion is a special case of multi-information, with n = 2. Multi-
information is always non-negative and equal to zero only when
X1, . . . , Xn are independent. See [34] for more details.

4. PROBLEM FORMALIZATION
In this section, we formalize the concept of a non-redundant in-

teracting feature subset (NIFS) using multi-information. An NIFS
is a subset of features that have high multi-information when and
only when all features in the subset are considered together. After
defining NIFSs, we study several properties that can be utilized to
design efficient algorithms.

4.1 Definitions
We first define strongly and weakly correlated feature subsets.

The definition of NIFS is based on these two concepts. A set
of features is strongly correlated if the multi-information is above
some user specified threshold. It is weakly correlated if its multi-
information is lower than a user-specified threshold.

DEFINITION 2. A set of features {X1, X2, · · · , Xn} is strongly
correlated if C(X1, X2, · · · , Xn) ≥ β, where β > 0 is a user-
defined threshold. In this case, {X1, X2, · · · , Xn} is called a
Strong-correlated Feature Subset (SFS).

DEFINITION 3. A set of features {X1, X2, · · · , Xn} is weakly
correlated if C(X1, X2, · · · , Xn) ≤ α. where 0 < α < β is a
user-defined parameter. In this case, {X1, X2, · · · , Xn} is called
a Weak-correlated Feature Subset (WFS).

Larger β corresponds to higher correlation and smaller α corre-
sponds to weaker correlation.

EXAMPLE 4.1. Consider the dataset in Figure 1. Let α =
0.25 and β = 0.8. We have {X1, X2, X3}, {X1, X2, X3, X6}
and {X7, X8, X9, X10} are SFSs, since their multi-information is

greater than β, with C(X1, X2, X3) = 0.82, C(X1, X2, X3, X6) =
0.97, and C(X7, X8, X9, X10) = 1.15. On the other hand, {X1, X2}
and {X7, X8, X9} are WFSs, since their multi-information is smaller
than α, with C(X1, X2) = 0.03 and C(X7, X8, X9) = 0.15.

In the example above, although {X1, X2, X3, X6} is an SFS,
its subset {X1, X2, X3} is also an SFS. Therefore, the collection
{X1, X2, X3, X6} is not parsimonious, since one of its subsets has
already shown strong correlation. In order to remove redundancy
from interacting feature subsets, we require that any subset of an
NIFS is weakly correlated.

DEFINITION 4. A subset of features {X1, X2, · · · , Xn} is Non-
redundant Interacting Feature Subset (NIFS) if the following
two criteria are satisfied:
(1) {X1, X2, · · · , Xn} is an SFS; and
(2) every proper subset X ′ ⊂ {X1, X2, · · · , Xn} is a WFS.

EXAMPLE 4.2. Consider the dataset shown in Figure 1.
{X1, X2, X3} is an NIFS, since {X1, X2, X3} is an SFS, with
C(X1, X2, X3) = 0.82, and all its subsets are WFSs: C(X1, X2) =
0.03, C(X1, X3) = 0.22,and C(X2, X3) = 0.22. Similarly,
C(X7, X8, X9, X10) is an NIFS, since it is an SFS, and all its
subsets are WFSs.

Overall goal: Given a binary data set and parameters 0 < α <
β, find all NIFSs.

To find the NIFSs in a dataset, we generate candidate feature sub-
sets by enumerating combinations of the features. In order to verify
if a candidate feature subset is an NIFS, in addition to comput-
ing its own multi-information, we also need to compute the multi-
information for its subsets to make sure that they are WFSs. In the
next section, we establish some properties of NIFSs that can greatly
reduce the computational complexity.

4.2 Properties related to NIFSs
In this subsection, we exploit some general properties of NIFSs

that can be used for the designing of efficient algorithms.

PROPERTY 4.3. (Downward closure property of WFSs) If fea-
ture subset {X1, X2, · · · , Xn} is a WFS, then all its subsets are
WFSs.

PROOF. It suffices to prove that if {X1, X2, · · · , Xn} is a WFS,
then {X1, X2, · · · , Xn−1} is also a WFS. Note that

C(X1, X2, · · · , Xn) − C(X1, X2, · · · , Xn−1)
= H(Xn) − H(X1, · · · , Xn) + H(X1, · · · , Xn−1)
= −H(X1, · · · , Xn−1|Xn) + H(X1, · · · , Xn−1)
= I(X1, X2, · · · , Xn−1; Xn) ≥ 0.

Thus, if C(X1, X2, · · · , Xn) ≤ α, then have
C(X1, X2, · · · , Xn−1) ≤ α.

Therefore, {X1, X2, · · · , Xn−1} is also a WFS.

The significance of Property 4.3 is following. For a candidate
feature subset, in order to justify the second criterion of Defini-
tion 4, we need to check all its subsets. Given a feature subset
X = {X1, X2, · · · , Xn}, there are 2n distinct subsets. Property
4.3 tells us that we only need to compute the multi-information of
the subsets X ′ of X with (n − 1) features. This is because if X ′

is a WFS, then all its subsets are WFSs. This greatly reduces the
complexity of the problem. Among the 2n subsets of X , there are
only n subsets of size (n − 1).

NIFSs do not satisfy upward or downward closure property. How-
ever, it has an interesting property that can help to prune the search
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Figure 2: Enumerating candidate NIFSs

space. That is, if a feature subset is an NIFS, then all its supersets
are not NIFSs.

PROPERTY 4.4. Let X = {X1, X2, · · · , Xn} be an NIFS. Any
Y ⊃ X is not an NIFS.

PROOF. Since X is an NIFS, we have C(X) ≥ β > α. Thus,
for any superset Y of X , ∃X ⊂ Y , such that X is not a WFS. Thus
the second criterion of Definition 4 is not satisfied. Therefore Y is
not an NIFS.

Property 4.4 offers the possibility of developing efficient algo-
rithms for finding NIFSs. If the algorithm finds an NIFS, then its
subtree in the search space can be safely pruned without any further
examination.

EXAMPLE 4.5. Consider the dataset shown in Figure 1. Figure
2 shows the search space for finding NIFSs based on the generic
set-enumeration tree search framework [30]. Once an NIFS is
found by the algorithm, say {X1, X2, X3}, then its subtree can
be pruned as shown in the figure.

For each candidate feature subset, we need to verify both criteria
in Definition 4. In Section 5, using Han’s inequality [8], we develop
upper and lower bounds that can be used to estimate the multi-
information of a candidate before actually calculating it. In Section
6, we further develop upper and lower bounds of multi-information
for a candidate feature subset based on the multi-information of
its parent and sibling nodes in the search space. In Section 7, we
present a pruning strategy based on the mutual information between
pairwise features. The overall algorithm is described in Section 8.

5. BOUNDS BASED ON PAIRWISE COR-
RELATIONS

In this section, we investigate upper and lower bounds on the
multi-information of a candidate feature subset. The bounds in-
volve the pair-wise correlations (mutual informations) of the fea-
tures in the candidate, and are derived from existing inequalities
in the information theory literature. These bounds are used in the
algorithm to provide a range of values of the multi-information of
a candidate without computing the multi-information directly. We
refer to the bounds developed in this section as pairwise correla-
tion propositions.

DEFINITION 5. Let {X1, X2, · · · , Xn} be a set of features,
and for every S ⊆ {1, 2, · · · , n}, denote by X(S) the subset

{Xi : i ∈ S}. Let h
(n)
k =

1
(

n

k

)

∑

S:|S|=k

H(X(S))

k
. Thus h

(n)
k

is the average entropy in bits per symbol of a randomly drawn k-
element subset of {X1, X2, · · · , Xn}.

The following result of Han [8] says that the average entropy
decreases monotonically as the size of the subset increases.

THEOREM 5.1. h
(n)
1 ≥ h

(n)
2 ≥ · · · ≥ h

(n)
n .

Applying Han’s inequity, we can get the following two proposi-
tions. Propositions 5.2 and 5.3 give lower and upper bounds on the
multi-information of a candidate feature set in terms of the pair-
wise multi-information (i.e., mutual information) of its members.
The proofs are omitted due to space limitation.

PROPOSITION 5.2.

C(X1, X2, · · · , Xn) ≥
1

n − 1

∑

i<j

C(XiXj).

PROPOSITION 5.3.

C(X1, · · · , Xn) ≤
n

∑

i=1

H(Xi) − max
i6=j

{H(Xi, Xj)}.

Propositions 5.2 and 5.3 are refereed to as pairwise correlation
propositions, since these bounds depend on the pairwise correla-
tions between the features in the candidate.

6. BOUNDS BASED ON HAMMING DIS-
TANCES

In this section we investigate the effect of adding or replacing a
feature on the multi-information of a candidate feature subset. In
each case, we obtain upper and lower bounds on the change in the
multi-information in terms of Hamming distance between features.
As in the previous section, the bounds obtained in this section are
used to provide a pruning scheme for the algorithm. We call the re-
sult of Section 6.1 the adding proposition, and the result of Section
6.2 the replacing proposition respectively.

Let X = {X1, X2, · · · , Xn} be a node (candidate feature sub-
set) in the search space of NIFSs. The multi-information of X can
be used to estimate the multi-information of two kinds of candidate
feature subsets. The first are X ′ = {X1, X2, · · · , Xn, Xn+1},
i.e., the child nodes of X in the search space. These are candi-
dates that include exactly one more feature than X . The second are
X ′′ = {X1, X2, · · · , Xn−1, Xn+1}, i.e., the sibling nodes of X
in the search space. These are candidates that replace one feature
in X by a new feature. Below we show that the multi-information
of X ′ is bounded by a function of the Hamming distance between
the newly added feature and features in X . Likewise, the multi-
information of X ′′ is bounded by a function of the Hamming dis-
tance between the new feature and the feature being replaced in
X .

Let K be the number of instances (data points) in the dataset.

In what follows, define f(k) =
k

K
log

K

k
, with 0 ≤ k ≤ K and

define f(0) to be 0. Propositions 6.1 and 6.2 are the basis for the
bounds developed in this section. Their proofs are omitted here.

PROPOSITION 6.1. For 1 ≤ c ≤ k ≤ K, we have

−f(K − c) ≤ f(k) − f(k − c) ≤ f(c).

PROPOSITION 6.2. For 1 ≤ k ≤ K, we have

f(k) + f(K − k) ≤ k(f(1) + f(K − 1)).



6.1 Adding a new feature
Suppose that {X1, X2, · · · , Xn} is the current candidate feature

subset, and ∆C = C(X1, · · · , Xn, Xn+1) − C(X1, · · · , Xn).
We develop bounds for ∆C, beginning with Proposition 6.3 and
it’s generalization in Proposition 6.4.

PROPOSITION 6.3. Let X1 and X2 be two features in the dataset.
If the Hamming distance between X1 and X2 is d, then

0 ≤ H(X1, X2) − H(X1) ≤ d(f(1) + f(K − 1)).

PROOF. Let
A′ = −px1

(0) log px1
(0),

B′ = −px1
(1) log px1

(1),

A = −px1x2
(0, 0) log px1x2

(0, 0),

B = −px1x2
(1, 1) log px1x2

(1, 1),

C = −px1x2
(1, 0) log px1x2

(1, 0),

D = −px1x2
(0, 1) log px1x2

(0, 1).

Then, H(X1) = A′ + B′, and H(X1, X2) = A + B + C +
D. It is easy to see that px1

(0) = px1x2
(0, 0) + px1x2

(0, 1), and
px1

(1) = px1x2
(1, 0) + px1x2

(1, 1).
Suppose that px1

(0) = t/K, and px1x2
(0, 1) = s/K. Then,

px1x2
(0, 0) = (t − s)/K and we have

A + D − A′ = f(s) − (f(t) − f(t − s)).
According to Proposition 6.1,

0 ≤ A + D − A′ ≤ f(s) + f(K − s).
Similarly, suppose px1

(1) = u/K, and px1x2
(1, 0) = v/K. Then

px1x2
(1, 1) = (u − v)/K and we have

0 ≤ B + C − B′ ≤ f(v) + f(K − v).
Moreover, Proposition 6.2 implies that

f(k) + f(K − k) ≤ k(f(1) + f(K − 1))
and therefore,

H(X1, X2) − H(X1) ≤ (s + v)(f(1) + f(K − 1)).
Since there are d different positions between X1 and X2, we have
s + v = d and the proof is complete.

The following generalization is easy to derive and its proof is
therefore omitted.

PROPOSITION 6.4. Let

∆H = H(X1, · · · , Xn, Xn+1) − H(X1, · · · , Xn).

If the minimum Hamming distance between Xn+1 and Xi (1 ≤
i ≤ n) is d, then

0 ≤ ∆H ≤ d(f(1) + f(K − 1)).

From Proposition 6.4, it is easy to derive upper and lower bounds
on ∆C.

PROPOSITION 6.5. (Adding Proposition) Let

∆C = C(X1, · · · , Xn, Xn+1) − C(X1, · · · , Xn).

If the minimum Hamming distance between Xn+1 and Xi (1 ≤
i ≤ n) is d, then

H(Xn+1) − d(f(1) + f(K − 1)) ≤ ∆C ≤ H(Xn+1).

The bounds provided in Proposition 6.5 can be used to estimate
the multi-information of the child nodes of a candidate feature sub-
set based on the Hamming distances between the features in the
candidate and the newly added features.

6.2 Replacing a feature
Suppose that the current candidate feature subset is

{X1, X2, · · · , Xn}. In this section, we develop the bounds of
multi-information for its sibling nodes in the search space, i.e., for
candidate {X1, X2, · · · , Xn−1, Xn+1}.

In Propositions 6.6 and 6.7, we establish bounds on the change in
joint entropy when replacing a feature in the candidate set by a new
one. Bounds on multi-information are established in Proposition
6.8. In this subsection, we use ∆H denote the entropy difference,
i.e.,

∆H = H(X1, · · · , Xn) − H(X1, · · · , Xn−1, Xn+1).

PROPOSITION 6.6. If the Hamming distance between Xn+1 and
Xn is 1, then

|∆H| ≤ f(1) + f(K − 1).

The proof of Proposition 6.6 is similar to that of Proposition 6.3
and thus omitted. Proposition 6.6 can easily be generalized to yield
the following proposition, whose proof is omitted.

PROPOSITION 6.7. If the Hamming distance between Xn+1 and
Xn is d, then

|∆H| ≤ d(f(1) + f(K − 1)).

From Proposition 6.7, it is easy to obtain bounds for ∆C.

PROPOSITION 6.8. (Replacing Proposition) Let

Hδ = H(Xn+1) − H(Xn),

∆C = C(X1, · · · , Xn) − C(X1, · · · , Xn−1, Xn+1).

If the Hamming distance between Xn+1 and Xn is d, then

Hδ − d(f(1) + f(K − 1)) ≤ ∆C ≤ Hδ + d(f(1) + f(K − 1)).

The bounds in Proposition 6.8 can be used to estimate the multi-
information of sibling nodes of a candidate feature subset using
the Hamming distances between the new features and the features
being replaced.

As a brief summary of this section, Propositions 6.5 and 6.8 es-
tablish theoretic bounds on the multi-information for the child and
sibling nodes of a candidate feature subset based on the Hamming
distance between features. These two propositions are referred to
as adding proposition and replacing proposition respectively.

7. PRUNING CANDIDATES BY MUTUAL
INFORMATION

In Section 5, it is shown that the mutual information between fea-
ture pairs can be used to bound the multi-information of candidate
feature subsets. In this section, we show that mutual information
can also be used as a pruning strategy in the process of enumerating
of candidate feature subsets.

The basic idea is simple. Suppose that the mutual information
between two features {Xi, Xj} is greater than α, i.e., {Xi, Xj} is
not a WFS. Then due to the downward closure property (Property
4.3) of WFSs, any superset of {Xi, Xj} cannot be an NIFS, since
it has a subset {Xi, Xj} that is not a WFS. Therefore, all supersets
of {Xi, Xj} can be safely pruned.

EXAMPLE 7.1. Consider the example dataset shown in Figure
1. To be consistent with previous examples, let α = 0.25 and



X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

∅ ∅ X4 X3 X3 X10 ∅ ∅ ∅ X5 X5

X5 X10 X6 X10

X11 X11

Table 1: Feature pairs with mutual information larger than α
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Figure 3: The possible relative positions of upper bound, lower
bound, α, and β

β = 0.8. Table 1 shows the feature pairs whose mutual infor-
mation is larger than α. For each feature Xi in the dataset, the
features having strong mutual information with Xi are listed in the
corresponding columns. For example, X4 and X5 both have strong
mutual information with X3, i.e., {X3, X4} and {X3, X5} are not
WFSs. Then in the search space, any node containing {X3, X4} or
{X3, X5} can be pruned. This also applies to other feature pairs
in the table. Some candidates that can be pruned using this strategy
are shown in the Figure 2.

8. THE ALGORITHM
In this section, we present the overall algorithm. In Section 5

and Section 6, we have established upper and lower bounds on the
multi-information of a feature set based on mutual informations and
Hamming distances. Before calculating the multi-information of a
node in the search space, we first check its upper and lower bounds.
The pairwise correlation propositions (Propositions 5.2 and 5.3)
can be applied whenever the algorithm examines a new node. The
adding proposition (Proposition 6.5) can be applied to the child
nodes of a candidate feature subset and the replacing proposition
(Proposition 6.8) can be applied to the siblings.

There are six possible relative positions of the upper and lower
bounds with respect to α and β, shown in Figure 3. We now ex-
amine these possibilities and how the algorithm uses the upper and
lower bounds to effectively explore the search space.

Suppose that the current candidate feature subset is
V = (Xa, Xa+1, · · · , Xb). Denote the upper and lower bounds of
the multi-information of V by ub(V ) and lb(V ) respectively.

(a) If the lower bound of V , lb(V ) > α, then the subtree of V can
be pruned since any node U in the subtree containing V as its
subset is not a WFS. This situation corresponds to cases (1) -
(3) in Figure 3. If lb(V ) ≥ β (case (1)), then C(V ) ≥ β and

Algorithm 1: Finding NIFSs
Input: binary dataset D, thresholds α and β
Output: all NIFSs in D.

calculate the mutual information and Hamming distances1
between each pair of features in D;
for each node V at the first level of the search space do2

Explore(V );3
end4

Procedure Explore

Input: current candidate feature subset V

if a pair of features in V have high mutual information then1
return; //pruning strategy in Section 72

end3
update ub(V ) and lb(V ) by replacing proposition;4
update ub(V ) and lb(V ) by pairwise correlation proposition;5
if lb(V ) > α then6

if lb(V ) ≥ β then7
if criterion 2 of Definition 4 is satisfied then8

output V ;9
end10

else11
if ub(V ) ≥ β then12

calculate C(V );13
if C(V ) ≥ β then14

if criterion 2 is satisfied then15
output V ;16

end17

end18

end19

end20
return;21

else22
if ub(V ) ≤ α then23

for each child node U of V do24
update ub(U) and lb(U), by the adding25
proposition;
Explore(U );26

end27

else28
calculate C(V );29
if C(V ) ≥ β then30

goto line 15;31
else32

if C(V ) ≤ α then33
goto line 24;34

end35

end36

end37

end38

we can check whether the second criterion of Definition 4 is
satisfied, i.e., whether all subsets of V of size (b−a−1) are
WFSs. If the second criterion is satisfied then V is reported
as an NIFS. In case (2) we need to calculate C(V ) and check
criterion 2. For case (3), since the upper bound ub(V ) < β,
we have C(V ) < β and therefore V is not an NIFS.

(b) If the upper bound ub(V ) ≤ α (case (4)), then there is no need



to calculate C(V ) and we can directly proceed to its subtree.
The pairwise correlation proposition and adding proposition
can be applied to get upper and lower bounds on the multi-
information for each direct child node of V .

(c) If lb(V ) ≤ α and ub(V ) ≥ α then we are in cases (5) and
(6) and must calculate C(V ). If C(V ) ≤ α, then we can
proceed to its subtree and apply the pairwise proposition and
the adding proposition to get the bounds for the child nodes
of V . If α < C(V ) < β, then its subtree is pruned. If
C(V ) ≥ β, and criterion 2 is satisfied, then V is output as
an NIFS. The subtree is then pruned.

(d) The algorithm is performed in depth-first recursion. Whenever
the algorithm finishes examining the current node V and its
subtree, it proceeds to one of V ’s siblings, denoted by V ′.
The replacing proposition can be applied to get upper and
lower bounds on the multi-information of V ′.

The overall algorithm for finding NIFS given in Algorithm 1 and
Procedure Explore. In Procedure Explore, through Line 1 to 3, the
algorithm applies the pruning strategy described in Section 7 be-
fore performing any multi-information calculation. The remaining
part of the procedure utilizes the bounds developed in Section 5 and
Section 6 to prune the search space. Note that for the first node be-
ing searched, its upper bound is some random initial value greater
than β and its lower bound is some random initial value smaller
than α.

Note that in the worse case scenario, the algorithm has to enu-
merate all feature combinations, that is, the size of the search space
is exponential with respect to the number of features. In Section
9, the experimental results show that our algorithm scales quadrat-
icly with respect to the number of features, which demonstrate the
effectiveness of the pruning methods discussed before. Moreover,
the algorithm scales linearly to the number of observations (data
points) in the datasets, since the multi-information of a feature sub-
set can be calculated by scanning all data points once.

9. EXPERIMENTS
We use both synthetic and real-life datasets to evaluate our ap-

proach for finding NIFSs. The algorithm is implemented using
Matlab 7.0.4. The experiments are performed on a 2.4 GHz PC
with 1G of memory running the Windows XP operating system.

9.1 Efficiency evaluation
To evaluate the efficiency of the algorithm, we use a binary SNP

data set derived from 37 strains of BXD mice. The data is available
from the following website: http://www.broad.mit.edu. A SNP is a
DNA sequence variation occurring when a single nucleotide in the
genome differs between members of a species. SNP data associated
with inbred mice are usually binary. We apply our algorithm to 100
randomly chosen SNPs from the dataset.

9.1.1 Runtime analysis
The default setting for efficiency evaluation is as follows. The

number of features (SNPs) is 90, the number of rows is 33, α =
0.2, and β = 0.8. When varying one of the parameters, the other
ones take the default values.

Figure 4(a) shows that the runtime of our algorithm is approx-
imately quadratic to the number of features in the dataset. This
demonstrates the effectiveness of the pruning methods, as the po-
tential search space is exponential to the number of features. Fig-
ure 4(b) shows that the runtime is linear to the number of data

points (rows). The reason is that the overhead of computing multi-
information for a candidate feature subset is roughly linear to the
number of data points. Figure 4(c) and Figure 4(d) show the run-
time when varying α and β. We observe that the effect of both
parameters on the runtime is close to linear.

Figure 5(a) and 5(b) examine the effectiveness of the pruning
strategies. The effects of pruning using the upper and lower bounds
discussed in Section 5 and Section 6 are shown in Figure 5(a). (The
pruning method discussed in Section 7 is not considered in this fig-
ure.) We observe that the bounds based on Hamming distances are
more effective than the bounds developed using Han’s inequality.
This is because the bounds based on Han’s inequality only consider
the entropy of individual features and feature pairs. One the other
hand, the bounds based on Hamming distances take the distance
relationship between the features into consideration, and are based
on the joint entropy of a set of features. Hence, they provide bet-
ter pruning effects. Figure 5(b) shows the results of applying the
pruning strategy based on mutual information presented in Section
7. Clearly, this strategy provides further effective pruning of the
search space.

9.1.2 Tuning the parameters
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Figure 6: Cumulative distributions of multi-information

Here we present a simple heuristic that can be used to select the
parameter values of the algorithm. Based on the experiments, most
of NIFSs discovered by our algorithm are of size 3. Accordingly,
we explored the distribution of the multi-information of feature sets
of size 3, and the distribution of the (minimum) difference between
the multi information of a feature set of size 3 and its size 2 subsets.
In each case, the distributions are estimated by randomly selecting
3 features from the available data 10,000 times. The resulting cu-
mulative distribution functions (CDFs) are shown in Figures 6(a)
and 6(b). Based on these CDFs, we suggest setting the value of
β so that 30% − 50% sampled patterns have multi-information
greater than β. The value α can be set so that the 30% − 50%
of the sampled patterns have multi-information difference greater
than (β − α).

The same procedure can be used with feature sets larger than 3.
Note that whenever the users are interested in NIFSs with stronger
correlations, the parameters should take higher values.

9.2 Effectiveness evaluation
We use both synthetic and real-life datasets to examine the effec-

tiveness of our method.

9.2.1 Finding embedded patterns
We generate a synthetic dataset of 150 points and 15 features in

the following way. The dataset is first populated with randomly
generated 0’s and 1’s (fair coin flips) for each one of the 15 fea-
tures. Then we embed three patterns into the dataset. The embed-
ded patterns are X10 = X5 ⊕ X15, X2 = (X4 ⊕ X8) ⊕ X13,
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Figure 5: Pruning effects

and X3 = (X6 ⊕ X7) ⊕ (X9 ⊕ 11). Additional noise is added
by flipping each element in the dataset with probability 0.02. We
apply the algorithm on this dataset. All the three and only the three
embedded patterns are identified with α = 0.2 and β = 0.8.

For the purpose of comparison, we further examine two related
approaches for finding correlation patterns. One approach is corre-
lation pattern mining [26, 16, 13]. Another one is a feature selec-
tion method called Max-Relevance and Min-Redundancy (mRMR)
[27].

9.2.1.1 Comparison with correlation pattern mining.

We study two commonly used interesting measurements in cor-
relation pattern mining, i.e., all confidence and coherence [26, 16,

13]. We find that it is very hard to set appropriate thresholds for
these two measurements in order to find the embedded patterns.
The embedded patterns will be missed if the thresholds are too
high. On the other hand, too many irrelevant patterns will be iden-
tified if the thresholds are too low. We take a closer look of these
two criteria by examining their distributions. We take the pattern
X3 = (X6 ⊕ X7) ⊕ (X9 ⊕ 11) for example. We enumerate all
size 5 patterns and plot their all confidence and coherence distri-
butions in Figure 7(a) and 7(b). The red line in these two figures
indicate the all confidence value and coherence value of the pattern
X3 = (X6 ⊕ X7) ⊕ (X9 ⊕ 11). As shown in the figures, both
values of the embedded pattern are on the left tails of their distri-
butions. Therefore, if we set the thresholds low enough to find the
embedded pattern, a large number of irrelevant patterns will also be



Dependent feature Features selected by mRMR
X10 {X12, X11}
X2 {X15, X14, X9}
X3 {X5, X12, X7, X6}

Table 2: Features selected by mRMR

identified. This indicates that all confidence and coherence are not
suitable measurements for finding high order correlations.

9.2.1.2 Comparison with mRMR.
mRMR [27] is a feature selection method, which seeks a feature

subset that maximizes the relevance to the dependent feature (class
label). The relevance is defined as the sum of the mutual informa-
tion between each selected feature and the class label. To reduce
the redundancy, mRMR also tries to minimize the mutual informa-
tion among the selected features. Similar to our approach, mRMR
consider finding minimal redundant feature subset. However, this
approach only consider pair-wise correlations.

To see if mRMR can find the three embedded patterns, we per-
form the following experiments. We apply mRMR three times. In
each time, we take one feature of {X10, X2, X3} out as the de-
pendent feature. Table 2 shows the features selected by mRMR for
each dependent feature. Clearly, the selected features do not corre-
spond to the embedded patterns. The reason is that the two criteria
used by mRMR, relevance and and redundancy, are based on mu-
tual information, which is not effective in detecting the embedded
high order correlation patterns.

9.2.2 Colon-cancer susceptibility study
We apply our algorithm to real-life SNP data to find multiple

SNPs that show strong correlations with colon-cancer susceptibil-
ity, for which research has shown that combining two SNPs from
two candidate regions can result in strong correlation [4]. The
two candidate regions we test on include 224 SNPs located from
185MB to 189MB on chromosome 1, and 188 SNPs from 119MB
to 124MB on chromosome 4 [29]. The values of cancer suscep-
tibility range from 0 to 100% indicating the probability of getting
tumor, which are discretized into 5 bins. In total, there are 110 SNP
pairs found showing strong associations with the phenotype when
and only when the two SNPs are considered together.

9.2.2.1 Statistical significance.
We use the approach proposed in [10] to assess the statistical

significance of the patterns identified by the algorithm. The sta-
tistical significance of an identified pattern F , is assessed using
the KL divergence D(P (F )||P̂ (F )), where P (F ) is the observed
joint probability distribution of F , and P̂ (F ) is the approximate
jointed distribution of F which is derived from distributions of fea-
ture pairs in F . An example of the approximation can be found
in Section 2. We bootstrap the dataset 1000 times. Each bootstrap
sample is created by randomly and independently picking instances
from the original dataset with replacement. We then get P ′(F )
which is the observed joint probability distribution of F using the
sample dataset. The P-value of F is Pr(D(P ′(F )||P (F )) >=

D(P (F )||P̂ (F ))). See [10] for the theoretical background for this
method. The distribution of the KL divergence between the prob-
ability mass function (pmf) of the features in an NIFS and its ap-
proximate pmf derived from a pairwise Kirkwood superposition ap-
proximation is assessed by bootstrapping samples from the dataset
1,000 times. The size of each bootstrap sample is the same as the

number of original instances in the dataset.
Figure 8(a) shows the distribution of the P-values. As is clear

from the figure, most of the patterns identified have very low P-
values, and all of them have P-value less than 0.05. This implies
the existence of interactions in the discovered patterns.

9.2.2.2 Biological evidence.
The locations of the identified pairwise SNPs are plotted in Fig-

ure 8(b). The x-axis represents chromosome 1 and the y-axis rep-
resents chromosome 4. Among the SNP pairs identified, two genes
have been previously reported as colon-cancer susceptibility can-
didate genes. One is Dusp10, which is located on chromosome
1 from bp185,735,717 to bp185,776,892. The other one is Nfyc,
which is located on chromosome 4 from bp120,262,892 to
bp120,323,342. The locations of the two genes are plotted in the
figure using red dotted lines. The Dusp10 protein is believed to
play an active role in MAPK phosphatase activity [25]. The MAPK
pathway plays an important role in colon cancers, indicating Dusp10
is a candidate gene for colon-cancer susceptibility. Moreover, [12]
suggests that Nfyc is involved with transcription factor and DNA
binding activity and is involved in the positive regulation of tran-
scription through a direct assay. The remaining SNP patterns have
significance levels similar to the reported genes, and may be worthy
of further examination.

9.2.3 NIFSs as features in CART
Here we give an example showing how NIFSs can help with fea-

ture selection and classification. Note that feature selection method
usually finds one representative feature subset. On the other hand,
the goal of our method is to find all NIFSs in the dataset. Feature se-
lection and classification themselves are a wide research areas and
we do not claim that our method serves as a replacement of any of
them. Our intension here is not to suggest another feature selection
or classification method, but rather, to show that when the interact-
ing features considered together, we can improve the accuracy of
traditional classification and regression tree (CART) [1] methods.

We apply our algorithm on the “zoo” dataset, which is available
at the UC Irvine Machine Learning Repository. The dataset con-
tains 101 animals, each of which has 15 binary features and a cat-
egorical class label. Among the NIFSs identified by the algorithm,
we choose the top-5 NIFSs with the highest multi-information. For
each one of the 5 NIFSs, we combined the features in it as a new
feature, and used these 5 new features as input features of CART.
For example, combining two binary features would generate a new
feature having 4 values.

All features Selected features Combined features
Accuracy 40.59% 73.27% 85.15%

Table 3: Accuracy of CART

Table 3 shows the accuracy of CART measured by the percentage
of correctly classified instances using 10-fold cross validation. The
first column of the table shows the result using the full set of fea-
tures. In the second column is the accuracy when using the original
features in the 5 NIFSs without combining them. The last column
shows the result when the features in each NIFS are combined as
a new feature. Note that the features used for the last two columns
are exactly the same. The only difference is whether these features
are considered together or individually.

As we see from the results, combining features achieves the high-
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Figure 8: results on SNP-phenotype dataset

est accuracy. In the decision tree building process, CART chooses
a single feature in each interaction. The results demonstrates that
choosing multiple interacting features in each iteration of the tree
building process can improve the accuracy of CART.

10. CONCLUSION AND FUTURE WORK
In this paper, we study the problem of finding non-redundant in-

teracting feature subsets (NIFSs) in high dimensional binary data.
We address this problem using an entropy-based correlation mea-
surement, namely the multi-information. We study the properties of
NIFSs, which enable the development of efficient algorithms. We
obtain useful bounds on the multi-information using existing in-
equalities from information theory and additional inequalities based
on the Hamming distance between two features. We also develop
a pruning strategy based on mutual information which effectively
prunes the search space. We evaluate the efficiency of the proposed
algorithm and assess the significance of the discovered patterns us-
ing both synthetic and real-life datasets.

In real life applications, the number of features in the datasets
can be very large. For example, in the study of association be-
tween genetic variations and phenotypes, the number of SNPs can
be up to millions. The large number of features imposes great com-
putational challenge because of the enormous search space of the
feature combinations. Efficient algorithm for analyzing these very
high dimensional datasets are in demand. How to make the algo-
rithm scalable for such large number of features is worth further
investigation.
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