Assistive Technologies for Mobility

Greg Welch April 3, 2003

Mobility, Humans, and Machines

and the stand a diver

in the same day to the tax

Tor was from the survey to their

	Today				
	Assist Blind	Coop. Mobility	Intelligent Wheelchair	<i>TAO-7</i>	Robot
Sensing					
Control					
Human					

Assistance for the Blind

THAT A MANAR

P XYIN

Statistics

• Blind and visually impaired $\circ \sim 10$ million people in the U.S. (3%) $\circ \sim 1/2$ are elderly • Legally blind (20/200) $\circ \sim 1.4$ million people in the U.S. $\circ \sim 1/3$ are children

(American Foundation for the Blind)

Mobility, Orientation, and Wayfinding

o Mobility

Getting around while avoiding obstacles
Orientation

Establish and maintain awareness of position relative to landmarks and/or destination

o Wayfinding

Employ spatial orientation to reach a destination—sensing, orienting, and navigating

NavBelt

• Aimed at mobility

• Shoval, Borenstein, and Koren (1994)

• Computer & ultrasonic sensors

• Obstacle detection and avoidance

• Binaural audio feedback to user

• Three modes

• Guide-stereo acoustic steering

- Image-an "acoustic panorama"
- Directional Guidance—relative to user-selected target

• Difficult to use...led to GuideCane...

Talking Signs

- Aimed at orientation
 IR transmitters mark important objects in environment
- Handheld receiver senses, decodes, speaks
 Applications

 Is that my bus?
 - Street crossing
 Starbucks
- Lots of installations

nttp://www.talkingsigns.com

Personal Guidance System

- Aimed at orientation and wayfinding
- Jack Loomis et al. (1994)
- Goals
 - Self-contained navigation
 - Improve spatial orientation
 - Not obstacle avoidance
- Components
 - DGPS and fluxgate compass (head-back)
 - 486 Computer with GIS database
 - Keyboard and spatial audio display...

Auditory Display for the Blind

Loomis, Golledge, and Lkatzky (1998)
 Evaluation of four display modes

 Virtual—compass on head; spatial stereo speech identifying landmark; volume; head-motion parallax

Left/Right—compass on backpack;
 "left," "right," "straight;"

• Bearing—similar to L/R; "straight" and heading in 10° increments

• No compass—successive DGPS; user had to keep moving!

Wearable Interfaces for Orientation and Wayfinding

• Ross and Blasch (2000) o "Environmental flow" o Sounds, smells, temperatures, proprioceptive and vestibular senses o Degradation in the elderly o Objectives • Evaluate three different interfaces o Compare head vs. body reference o Street crossing—tendency to veer

Configurations

• Three display modes

- Sonic "carrot"—stereo tone guides toward landmark; ~Loomis "Virtual"
- Speech interface mono clock-based announcements; ~Loomis "Bearing"

Shoulder tapping device — 3x3 then 3x1 "thumper" array on back; ~Loomis L/R
Two orientation sensing locations
Head or backpack

Apparatus

Street Crossing (Task)

 Typical—detect curb; orient; wait; walk straight

- Traffic sounds help or confuse
- More difficult these days w/ curb ramps
- Atlanta VA Medical Center, three intersections

Experiment

- 15 test subjects

 62-80 (average 68)
 Half legally blind
 Four had hearing problems

 Each crossing at intersections A, B, and C
- Each interface and sensor (random)
 Canes but no guide dogs
 Pre (training) and post (control)

Results

- Tapping won, "carrot" close
 Tapping/body—highest performance and preference
 - "Carrot"/body—high preference but lower performance
 - "Carrot"/head—high performance but lower preference
- Tests with "best" device
 - No improvement in pace
 ~1/3 veering (baseline)

Constructive Exploration

- Schneider and Strothotte (2000)
- Application of "learn by doing"
- Users construct a model of the route
 - Block (~long legos)
 - Guided by computer vision or haptic feedback device

Cooperative Mobility

Guide as opposed to transport

GuideCane (UMich)

Effective Shared Control in Cooperative Mobility Aids

Wasson et al. (2000)
Intelligent wheeled walker

No propulsion
Braking and steering

Hard problem

Guide and support
Human + robotic control
Guidance == expectations

Walkers are used more than any mobility aid other than the cane (National Center for Health Statistics, 1994)

System Components

- Devices
 - Sonar, infrared, wheel encoders
 - Infrared laser scanner
- Multiple control systems
 - Warning system only—vibrating handle
 - Safety braking only-1/d and braked
 - Safety braking + steering 1/d, timeout
 Path following control w/o obstacles

Intelligent Wheelchairs

Goals (Objectives)

- Transportation
- Obstacle avoidance or accommodation
- Robustness to failure (fault tolerant) and graceful degradation
- Sociability and flexibility
- Advanced features
 - Tracking (monitor user)
 - Automative transportation....

The iBot 3000 (Dean Kamen)

NavChair (1990-1995)

- Simon Levine (Director of Physical Rehabilitation at the University of Michigan Hospital)
- Intended for users with sensory, perceptual, or motor impairments
- Avoid obstacles, follow walls, and travel safely
- Vector Field Histogram
 Object Avoidance (2D)
 histogram with polar
 evaluation)

The EasyChair (1985-1986)

• Prof. George Karlin • Purdue University • Wabash Center • Intended for 2-6 year old children with muscular disorders (cerebral palsy) • Williams and Welch's Senior Design Project • Electrical Engineering Technology • Outstanding Project

Motivation

• Children with muscular disorders • Limited opportunities to acquire experience with mobility... • ...limits opportunities to initiate communication with others... • ...limits their learning capabilities.

The System

The Touch Pad (Input)

Tao-1...7 (Applied AI Systems)

- Uses active infrared and ultrasonic sensors for obstacle avoidance and maneuvering in complex environments
- Autonomous mobile platform using behavior-based AI (New AI) techniques
- Seemless [sic] manual override with original joystick control
- Free-space detection and landmark-based navigation using optional vision systems
- Behavior control by voice using optional voice recognition interface
- Generation of voice outputs from behaviors using optional voice synthesis interface
- Comes with basic behavior set using inputs from standard sensors
- Open design for easy addition of user options in hardware/software
- User's own behaviors easily developed using C language and GNU-C compiler

Konn Hachr Hiterature

The End

http://www.cs.unc.edu/~welch/class/mobility/