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Abstract— The Unscented Transform (UT) approximates the

result of applying a specified nonlinear transformation to a given

mean and covariance estimate. The UT works by constructing

a set of points, referred to as sigma points, which has the same

known statistics, e.g., first and second and possibly higher mo-

ments, as the given estimate. The given nonlinear transformation

is applied to the set, and the unscented estimate is obtained by

computing the statistics of the transformed set of sigma points.

For example, the mean and covariance of the transformed set

approximates the nonlinear transformation of the original mean

and covariance estimate. The computational efficiency of the UT

therefore depends on the number of sigma points required to cap-

ture the known statistics of the original estimate. In this paper

we examine methods for minimizing the number of sigma points

for real-time control, estimation, and filtering applications. We

demonstrate results in a 3D localization example.

Keywords: Kalman filter, non-linear estimation, unscented fil-
tering.

I. Introduction

Many filtering and estimation algorithms need to be run at
high sample rates. Head trackers, for example, often need to
be run at about 1kHz, and some proposed laser-missile inter-
cept systems require on the order of 1MHz to attain effective
focal dwell times. Because of these stringent requirements,
rapid computational algorithms are required. Probably the
best-known and most widely implemented nonlinear estimator
is the extended Kalman filter (EKF) [1, 2]. The EKF applies
the Kalman filter to nonlinear systems by simply linearising all
the nonlinear models so that the traditional linear Kalman filter
equations can be applied. In so doing, the EKF inherits many
of the computational efficiency advantages associated with the
linear Kalman filter. Unfortunately, the EKF suffers two well-
known problems: First, the required Jacobian matrices, i.e., the
matrix/linear approximations of nonlinear functions, can be ex-
tremely difficult and error-prone to derive. Second, the EKF
linearized approximations can be extremely inaccurate and lead
to filter instability [3].

Many different algorithms have been developed to compen-
sate for one or both of the EKF’s major limitations. A general
class of algorithms, commonly referred to as Particle filters, has
recently received increased attention. The most common type of
particle filter, the Monte Carlo filter, uses a finite set of samples
from an assumed probability distribution and then transforms
each sample independently with an expectation that the col-
lective statistics of the ensemble set of samples will accurately
reflect the statistics of the evolving system of interest. Parti-
cle filters partially surmount the two major disadvantages of the
EKF in that they can apply a “black box” nonlinear transforma-
tion to each sample without any need for Jacobian derivations,

and they are provably more accurate than linearization as the
number of samples approaches infinity (at least under certain
assumptions).

Although sampling methods avoid some difficulties, they in-
troduce others. For example, the number of samples required
to achieve reliable estimates can be many thousands in a two
or three dimensional problem [4], and many millions as the di-
mensionality increases, e.g., for a 6-dimensional position and
velocity filtering problem. This incurs several orders of magni-
tude more computational effort than that required by an EKF.
In addition to computational expense, it is well-known that the
accuracy of Monte Carlo estimates degrades rapidly as a sam-
ple set of points is successively transformed. This degradation
is due to the fact that even a relatively large number of sample
points does not perfectly approximate the underlying distribu-
tion, and deviations in the approximation tend to become mag-
nified after successive nonlinear transformations. Additional
mechanisms, such as periodic re-sampling, have been used to
reduce this problem [4–6], but there still remains a large trade-
off between computational expense (number of sample points)
and stability.

A radical departure from random sampling came with the ad-
vent of the Unscented Transform (UT) [7–10]. The UT works by
constructing a set of points, referred to as sigma points, which
is deterministically constrained to have the same known statis-
tics, e.g., first and second moments, as a given measurement
or state estimate. A specified nonlinear transformation can be
applied to each sigma point, and the unscented estimate can
be obtained by computing the statistics of the transformed set.
For example, the mean and covariance of the transformed set
approximates the nonlinear transformation of the original mean
and covariance estimate. The deterministic component of the
UT avoids the random sampling errors introduced by Monte
Carlo and other sampling methods and therefore dramatically
reduces the number of points required to achieve the same trans-
formation accuracy.

As was discussed in [9], given only an n-dimensional mean
and covariance estimate, with no other error distribution infor-
mation, a set of n + 1 sigma points can be constructed that
fully captures all of the known statistics of the error distribu-
tion, i.e., its mean and covariance. This set of sigma points can
be regarded as one element of the set of all possible distributions
that could possibly underly the given mean and covariance esti-
mate. Given that there is no additional information on which to
select one candidate distribution over another, the set of n+ 1
sigma points can be used to generate a transformed estimate
that cannot in general be improved: There is no other avail-
able information to be captured by the inclusion of additional
points, and there is no “distribution of distributions” (e.g., as



resulting from additional assumptions such as scale-invariance
of the limiting distribution) from which samples can be drawn
to further improve the estimate.

Although the n+1 sigma point UT can be used to optimally
approximate the nonlinear transformation of a given mean and
nonsingular covariance when no other other assumptions can be
made, there are many practical circumstances in which other in-
formation is available. For example, virtually all filtering and
control applications involve the use of a measuring process that
introduces errors that can be empirically characterized to some
extent. Thus, the mean, the covariance, and some information
about the third central moment (the skew) and the fourth cen-
tral moment (the kurtosis) may be known. Incorporating this
information may require more sigma points, but it can also sig-
nificantly improve the accuracy of the transformed estimate.

A large class of error processes associated with calibrated
measuring devices exhibit symmetries about a set of principal
measurement axes, e.g., range and bearing. Such symmetries
provide information about the third central moment of the un-
known distribution: Specifically, the skew is zero. The minimal
set of n+ 1 sigma points does not capture this information (its
skew is not generally zero), but a symmetric set of 2n sigma
points can be trivially generated from the square root of the
given covariance matrix to match the first three moments of
the assumed symmetric error distribution. The inclusion of an-
other (weighted) sigma point can then be used to capture in-
formation about the kurtosis of the distribution, e.g., resulting
from an assumption of Gaussianity. The improvement in accu-
racy of symmetric unscented transformations over linearization
is reported in [7–12].

Very recently, methods analogous to the UT approach have
been derived from a central difference perspective [13]. These
methods have been used to increase the amount of assumed
kurtosis information that can be exploited, but with some in-
crease in computational expense. However, even the marginally
more efficient 2n + 1 symmetric UT is unable to satisfy real
time constraints for a variety of extremely high data rate ap-
plications. Therefore, in this paper we pursue reduced sigma
point UT parameterizations that capture distribution informa-
tion comparable to that of the 2n + 1 symmetric UT, but use
computational resources comparable to the minimal n+ 1 UT.
These parameterizations (which should have analogs for central
difference methods) offer high accuracy for high data rate con-
trol, estimation, and filtering problems. The structure of this
paper is as follows. Section II reviews the unscented transform
and describes the symmetric point selection method. Section III
describes the simplex set and derives the minimal skew set. The
performance of this point selection algorithm is studied in Sec-
tion IV. Conclusions are drawn in Section V.

II. Background

A. Problem Statement

Let x be an n-dimensional random variable with (a not nec-
essarily Gaussian) probability density function px(x), mean x̄

and covariance Pxx. A second random variable y is related to
x through the nonlinear transformation

y = f [x] (1)

The objective is to calculate the mean ȳ and covariance Pyy of
y.

B. The Unscented Transform

The Unscented Transform (UT) builds on the principle that
it is easier to approximate a probability distribution than it is

to approximate an arbitrary nonlinear function. A set of p+ 1
weighted points S = {Wi,X i} are deterministically so that they
obey a condition of the form

g [S, px(x)] = 0.

where g [·, ·] determines what information should be captured
about x. It is possible to meet this condition and still have
some degree of freedom in the choice of the points. This ambi-
guity can be resolved by assigning a penalty function c [S, p(x)]
to the different solutions. The purpose of this function is to
incorporate features which are desirable, but do not necessarily
have to be met. As the value of the penalty function increases,
the solution becomes less desirable.

The sigma point set which is used is that which is most desir-
able and confirms to the necessary conditions. In other words,
the sigma points are given by the solution to the equation

min
S

c [S, px(x)] subject to g [S, px(x)] = 0.

Given the set of points, each point is instantiated through the
nonlinear function, Y i = f [X i]. The appropriate statistics for
Pyy are then calculated from the set {Wi,Yi}.

In this paper, we are concerned with the propagation of the
first two moments through the nonlinear transformation. There-
fore, the constraint equation is

g [S, px(x)] =





∑p
i=0−1

∑p
i=0WiX i − x̄

∑p
i=0Wi {X i − x̄} {X i − x̄}T −Pxx





and the mean and covariance of the transformed set are

ȳ =

p
∑

i=0

WiYi (2)

Pyy =

p
∑

i=0

Wi {Yi − ȳ} {Yi − ȳ}T . (3)

In [7] we examined the following symmetrically-distributed
set of points which match the mean and covariance:

X 0 (k | k) = x̂ (k | k)
X i (k | k) = x̂ (k | k) +

(

√

(n+ κ)P (k | k)
)

i

X i+n (k | k) = x̂ (k | k)−
(

√

(n+ κ)P (k | k)
)

i
W0 = κ/(n+ κ)
Wi = 1/{2(n+ κ)}
Wi+n = 1/{2(n+ κ)}

(4)

where κ ∈ <,
(

√

(n+ κ)P (k | k)
)

i
is the ith row or column of

the matrix square root of (n+ κ)P (k | k) and Wi is the weight
that is associated with the ith point. κ scales the third and
higher order terms of this set and, if (n+ κ) = 3, it is possible
to match some of the fourth order terms when x is Gaussian [10].

This algorithm has favorable computational properties com-
pared to the EKF1. The most significant difference in the com-
putational costs arises from the fact that the EKF requires the
calculation of the Jacobian matrix whereas the unscented trans-
form requires 2n+1 function evaluations. Indeed, the computa-
tional costs of the UT are directly proportional to the number of
sigma points which are used. Therefore, minimising the num-
ber of sigma points minimizes the computational costs. Such
considerations are crucial if the process model is expensive to
calculate or if real-time performance is required.

1Equation 3, for example, uses about the same number as calculations (2n3) as

pre- and post-multiplying Pxx by the Jacobian of f [·]. Calculating the matrix

square root with the Cholesky Decomposition takes about n3/3 calcuations [14].
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III. The Simplex Sigma Points

In two dimensions the largest possible affinely independent
set of points that can be constructed forms a triangle. The gen-
eralization of the triangle to n dimensions is a simplex with n+1
vertices. For example, a 3-dimensional simplex is a tetrahedron.
A set of fewer than n+ 1 points in n dimensions will always lie
on a subspace of less than n dimensions, so the covariance of
the set is singular. For example, any two points in two dimen-
sions are co-linear and therefore have a covariance of rank <
2, and any three points in three dimensions are co-planar and
have a covariance of rank < 3. This implies that n+ 1 affinely
independent sigma points is necessary and sufficient to form a
simplex with a given mean and nonsingular covariance. This
can be illustrated by noting that, from the properties of outer
products of vectors,

min(p+ 1, n) ≥ rank

[

p
∑

i=0

Wi (X i − x̄) (X i − x̄)T
]

.

When Pxx is full-rank, at least n sigma points are required.
However, this result explicitly factors out the role of the mean
and an additional sigma point is required, giving a total of n+1
points. Any set of n + 1 affinely independent points can be
translated and linearly transformed to have a given mean and
covariance. For example, a canonical simplex with zero mean
and identity covariance can be transformed by a desired co-
variance and then translated by a desired mean. However, the
resulting set of points can be reflected across any one of the
principal covariance axes without affecting the mean or covari-
ance (the outer produce of each point is unaffected by a sign
change on any of its elements), so this provides some degrees of
freedom for capturing additional statistics about a distribution.
In this paper we examine the use of these degrees of freedom to
encode information about the third central moment leading to
a minimal skew set of simplex points.

A. The Minimal Skew Simplex Points

The minimal skew sigma points are chosen to match the first
two moments of x and to minimize the third order moments
(skew). The reason for minimising the skew arises from the ob-
servation that since only the first two moments are distributed,
no information about the (a)symmetry of the distribution is
maintained. Because the distribution can be skewed in any di-
rection the average error will be minimized if the distribution is
assumed to be symmetric.

Let X
j
i be the ith sigma point in the set for the jth dimen-

sional space. It is assumed, without loss of generality2, that
x̄ = 0 and Pxx = I (the n× n identity matrix).

First consider the problem of choosing a set of points which
capture mean and covariance in a single dimension, e1. Three
points are used: X 1

0 = [0], X 1
1 = [−x1] and X 1

2 = [x2]. The
weights for these points areW0,W1 andW2. From the condition
that the means and covariances must be x̄ and Pxx,

W0 +W1 +W2 = 1 (5)

−W1x1 +W2x2 = 0 (6)

W1x
2
1 +W2x

2
2 = 1 (7)

These conditions are not sufficient to uniquely define a set of
points and so the further condition that the skew or third order

2A random variable z′ with mean 0 and covariance I can be transformed to a

random variable z with mean z̄ and covariance Pzz through the linear transfor-

mation z = z̄ + (
√

Pzz)z′ where (
√

Pzz) is a matrix square root of Pzz .

moments are zero is added,

S111 = −W1x
3
1 +W2x

3
2 = 0. (8)

The solution of Equations 5 to 8 is:

x1 =
1

2
√
W1

, W1 =
1−W0

2
, x2 = x1, W2 = W1

where W0 is a free parameter whose value affects the fourth and
higher moments of the sigma point set. The primary reason for
introducing this degree of freedom is that it is exploited in the
scaled unscented transform. To extend the set to 2D, points 1
and 2 are translated in the e2–direction by −x3 and a new point
— labelled 3 — is added at (0, x3) with weight W3. Points 1
and 2 still obey the appropriate conditions in the e1–direction,
and it is only necessary to ensure that the normalization as well
as the mean and covariance constraints in the e2–direction are
upheld:

W0 + 2W1 +W3 = 1, (9)

−2W1x3 +W3x3 = 0, (10)

2W1x
2
3 +W3x

2
3 = 1. (11)

This set has two further skew terms:

S222 = −2W1x
3
3 +W3x

3
3, S112 = −2W1x

2
1x3.

The minimal skew sigma point selection algorithm minimizes
the skew terms of the extra dimension by an appropriate choice
of W3 and x3. Let S222 = 0. The values of x3 and W3 are W3 =
2W1 and x3 = 1/

√
4W1. However, with this solution S112 =

−1/4
√
W1 and is clearly non-zero. This reflects the fundamental

fact that the sigma points are inherently asymmetric.
This principle is applied to extend the sigma points to an

arbitrary number of dimensions. Suppose a set of points have
been calculated for n dimensions. The sigma points for n + 1
dimensions are

X
n+1
i =















































[

X n
0

0

]

for i = 0

[

X n
i

−xn+1

]

for i = 1, . . . , n+ 1

[

0n

xn+1

]

for i = n+ 2

where 0i is a vector of i zeros.
The value of xn+1 and the sequence of weights are calculated

from the normalization and moment conditions in the (n+1)th
dimension. These constraints are

2W1 +

n+1
∑

i=3

Wi = 1−W0 (12)

Wn+1xn+1 − xn+1

(

2W1 +
n
∑

i=3

Wi

)

= 0 (13)

Wn+1x
2
n+1 + x2n+1

(

2W1 +
n
∑

i=3

Wi

)

= 1 (14)

Wn+1x
3
n+1 − x3n+1

(

2W1 +
n
∑

i=3

Wi

)

= 0 (15)
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1. Choose 0 ≤ W0 ≤ 1.

2. Choose weight sequence:

Wi =















1−W0
2n for i = 1

W1 for i = 2

2i−1W1 for i = 3, . . . , n + 1

3. Initialize vector sequence as:

X
1
0 =

[

0
]

, X
1
1 =

[

− 1√
2W1

]

and X
1
2 =

[

1√
2W1

]

4. Expand vector sequence for j = 2, . . . , n according to

X
j+1
i =



























































[

X
j
0

0

]

for i = 0





X
j
i

− 1√
2Wj



 for i = 1, . . . , j





0j

1√
2Wj



 for i = j + 1

Fig. 1. The Point Selection Algorithm for the Simplex Unscented Trans-

form.

From Equation 13,

Wn+1 = 2W1 +
n
∑

i=3

Wi = 2nW1.

Substituting into Equation 14,

xn+1 =
1√

2Wn+1

.

From Equation 12,

W0 = 1− 2W1 −
n+1
∑

i=3

Wi = 1− 2nW1.

Therefore,

W1 =
1−W0

2n
.

The algorithm is summarized in Figure 1.
It should be noted that, as the number of dimensions n in-

crease, the effects of the third order moments become more
significant. A companion paper presents a general scaling algo-
rithm which preserves the first two moments of the sigma points
but allows third and higher order moments to be scaled by an
arbitrary amount.

We illustrate the performance on the simplex sigma points in
a 3D vehicle localization example.

IV. Example

The position and orientation of a vehicle operating in an un-
even 3D terrain is to be estimated. The vehicle contains onboard
inertial sensors which measure angular velocity about body-
fixed axes (ωx, ωy, ωz) and odometric sensors (which measure
nominal linear speed v). Periodically, the vehicle receives ex-
ternal measurements of its position and orientation (from, for
example, a 3D map-based localization algorithm). Because the
ground is uneven, the bandwidth of the filter must be extremely
high. Therefore, a filter design similar to the one proposed by
Kelly [15] is used: the gyro measurements are also treated as
control inputs to the platform orientation. As a result, the high
frequency content of the inertial data is preserved.

The vehicle state is:

x (k) = [x y z q0 q1 q2 q3 bx by bz s]T .

The position of the center of the vehicle is (x, y, z). The
vehicle orientation is expressed as the unit quaternion q =
(q0, q1, q2, q3). (bx, by, bz) are the gyro biases and s is a slip
parameter which takes account of the slip between the wheels
and the ground. Specifically, if v(k) is the measured speed of
the vehicle at time step k, the actual translational speed of the
vehicle is s(k)v(k). It is assumed that the vehicle only travels
along its body-fixed x-axis.

The control inputs are

u (k) = [v ωx ωy ωz]
T .

There are eight process noise terms. These arise from the
measurements of the control inputs as well as the assumption
that the gyro bias and slip values vary according to a random
walk:

v (k) = [δv δωx δωy δωzδḃx δḃy δḃz δṡ]T .

Suppressing the time index k, let

p = ∆T (ωx + δωx − bx)/2

q = ∆T (ωy + δωy − by)/2

r = ∆T (ωz + δωz − bz)/2

n =
√

p2 + q2 + r2

M = I cosn+









0 r −q p
−r 0 p q
q −p 0 r
−p −q −r 0









sinn

n

Therefore the vehicle process model is

x(k + 1) = x+ s(v + δv)(q20 + q23 − q21 − q22)∆T

y(k + 1) = y + 2s(v + δv)(q0q1 + q2q3)∆T

z(k + 1) = z + 2s(v + δv)(q0q2 − q1q3)∆T

q0(k + 1) = M11q0 +M12q1 +M13q2 +M14q0

q1(k + 1) = M21q0 +M22q1 +M23q2 +M23q0

q2(k + 1) = M31q0 +M32q1 +M33q2 +M34q0

q3(k + 1) = M41q0 +M42q1 +M43q2 +M44q0

bx(k + 1) = bx + δḃx∆T

by(k + 1) = by + δḃy∆T

bz(k + 1) = bz + δḃz∆T

s(k + 1) = s+ δṡ∆T

The length of each time step ∆T = 0.002s. A measurement
of the attitude becomes available once in every 500 time steps
(once per second). The measurement consists of the position
and orientation of the vehicle (expressed as a quaternion).

The measurement noise on the control inputs3 are

Ru (k) =









1.0× 10−4 0 0 0
0 9.7× 10−7 4.4× 10−9 2.5× 10−8

0 4.4× 10−9 1.0× 10−6 3.0× 10−8

0 2.5× 10−8 3.0× 10−8 1.1× 10−6









The process noise which acts on the simulated vehicle results
from the drift parameters in the bias states and the slip:

QT (k) = diag(0, 0, 0, 0, 10−6, 10−6, 10−6, 10−6)

3The noises on the gyros were empirically calculated from the measurements

of a Crossbow IMU.
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Fig. 2. The normalized state error for the EKF.

The covariance matrix used in the filter consists of the drift
terms plus the covariance due to the noise in the control input
measurement terms,

Q (k) = QT (k) +

[

Ru (k) 04×4
04×4 04×4

]

The attitude measurement noise is

R (k) = diag(0.25, 0.25, 0.25, 0.001, 0.001, 0.001, 0.001).

When an attitude measurement is received, it is updated us-
ing the Kalman filter and the gyro states are renormalized to
ensure that the norm of the quaternion states is 1.

The results from the EKF are shown in Figure 2. This plots
the normalized state error, which is defined to be:

x̃
T (k | k)P−1 (k | k) x̃ (k | k) .

This is an average calculated over 10 Monte Carlo runs. If
the filter is consistent, the mean value should be the same as
the dimensions of the state (10). Although the results initially
appear consistent, at simulation time of about 160s the normal-
ized error sharply increases, showing that the filter has become
inconsistent. This is a result of accumulated linearization er-
rors. Figure 3 plots the symmetric sigma point result (using
the points drawn by Equation 4). As can be seen, the filter is
consistent and is, in fact, slightly conservative. Figure 4 plots
the results from the simplex transform. Although the general
shape of the curve is different (due to the different set of sigma
points), the mean of this curve still indicates that the estimate
is consistent.

V. Conclusions

This paper has investigated the use of minimal sigma point
distributions to propagate the first two moments of a random
variable through a nonlinear transformation. We have derived
an explicit sigma point solution which, for an n-dimensional
space, requires only n+2 sigma points. The resulting algorithm
has the same predictive capability as the truncated second or-
der filter but without the need to use derivatives or any other
kinds of approximations. This has been demonstrated through
a simulation study which has also demonstrated the utility of
the scaled unscented transformation.

The simulation study also shows that the performance of the
symmetric and simplex sets can be markedly different. In the
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Fig. 3. The results from the symmetric transformation.
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Fig. 4. The results from the simplex transformation.

localization scenario described here, the shape of the normal-
ized error curves were different but both filters were consistent.
However, this is not always the case and, in a related paper,
we describe a method for minimising unwanted effects of higher
order moments [16].
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