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Abstract 
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using Bayesian parameter estimation and model selection criteria. We find that using the Kalman filter to 
estimate time varying sensitivities to predetermined risk factors results in significantly improved sector 
return predictability over static or rolling parameter specifications. A simple trading strategy developed 
here using Kalman filter predicted returns as input provides for potentially robust long run profit 
opportunities. 
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1.  Introduction 
 

As the field of finance has struggled to find a successor model to the benchmark CAPM 

specification, the role conditional macroeconomic factors play in determining investor risk 

premia and ultimately equity return predictability has come into greater focus.  One of the 

earliest and most straightforward investigations on the role macroeconomic factors play in 

determining equity returns is that of Chen, Roll and Ross (1986).  Using cross-sectional analysis, 

Chen et al. find that a number of macroeconomic risk factors are significantly priced in the stock 

market.  In another application, Lo and MacKinlay (1997) derive predictive portfolios based on 

lagged macroeconomic variables that lend themselves to dynamic trading strategies.  A further 

indication of the importance of  lagged macroeconomic variables is presented in Ferson and 

Harvey (1999), where conditional lagged fundamental information included in a risk pricing 

model renders sorted portfolio attributes in the popular Fama and French (1993) three factor 

model insignificant.  

 

In addition to the available empirical tests suggesting an important role for conditional 

macroeconomic information in asset pricing, a pricing model based strictly on prior 

macroeconomic information has intuitive and theoretical appeal.  As pointed out by Roll (1977), 

any empirical examination of the standard CAPM is theoretically suspect if the chosen proxy for 

the market portfolio is not truly representative of the entire market.  Even providing for a 

reasonable proxy for the market portfolio, Cochrane (1996) notes that explanations of changes in 

returns over the business cycle based on expected market returns are hardly useful in establishing 

what risk factors cause returns of individual portfolios to vary.  What is surely of greater interest 

over the business cycle are what particular macroeconomic forces drive expected returns. 

 

The other obvious advantage of a factor model incorporating strictly lagged information is the 

potential application to return predictability. In one such exercise, Lo & MacKinlay (1997) find 

that up to 50% of the variation in returns can be explained by lagged economic factors 

introduced through what they term a Maximally Predictable Portfolio.  Any evidence of 

systematic predictability naturally lends itself to questions of market efficiency, however, a 

model based on return reaction to fundamental information is much easier to reconcile with a 
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future cash flow model than much of what is currently in the anomaly literature.  A broad 

competing class in the predictability literature has focused on non-fundamental momentum 

effects that provide some predictability over sorted portfolios.  Jegadeesh and Titman (1993) and 

Lee and Swaminathan (2000) report to find consistent profit opportunities on the order of 1% per 

month employing a basic strategy of buying past winners and selling past losers. 

 

Another question of interest in testing a factor model based on fundamental information is the 

extent to which tangible fundamentals actually drive the stock market.  The late 1990’s is a 

notable period in which the valuation of broad classes of equities de-coupled from traditional 

pricing measures.  The classic dividend discount model of Gordon (1962) extended by Campbell 

and Shiller (1989) posits that the value of an individual equity or broad market index is a 

function of future anticipated cash payments.  Changes in price should move in tandem with 

growth in dividends and expectations of higher dividends in the future.  Pairing this model with 

the experience of the late 1990’s required extraordinary future dividend income growth to 

explain the rapid increase in equity valuations.  Even an extension of the Campbell and Shiller 

model using earnings as a proxy for dividends struggles to account for the run up in equity 

valuations without allowing for substantial future earnings growth significantly greater than 

trend GDP growth.  Despite record 7.5% real earnings growth in the 1990’s, as documented in 

Fama and French (2002), the non-fundamental equity premium, calculated here as real capital 

gains net of real earnings growth, was a substantial 5.22% per year.  The dividend yield by the 

end of the 1990’s fell to as low as 1.1%, indicating a very high level of expected dividend growth 

in the future or a new regime of near zero discount rates.  Therefore, a further question of interest 

is the degree to which observable fundamentals even matter in determining equity returns over 

different stages of the business cycle, or in the case of the late 1990’s, during a possible 

speculative boom. 

 

One of the primary motivating factors in the development of the conditional pricing models of 

Ferson and Harvey (1999), Wu (2001) and Cochrane (1996) is the strong empirical evidence that 

equity market risk premia are time varying.  Each of these conditional beta representations use 

lagged macroeconomic factors to capture time variation.  Another approach to addressing time 

variation in risk factors is to allow the evolution of risk sensitivities to evolve in a Bayesian 
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manner.  Such an approach is made available through application of the Kalman filter with a 

time varying parameter specification.  An example of a time varying parameter model using the 

Kalman filter can be found in Kim and Nelson (1989). 

 

Our interest here is to develop a robust dynamic trading model for economic sectors using 

factors identified as significant in the preceding literature.  Further, the model we develop 

assumes time-variation in factor sensitivities to capture changing risk premia over time.   Time 

variation in factor betas is approached using dynamic updating in the Kalman filter.  The result is 

a highly responsive model that significantly outperforms comparable static and rolling parameter 

specifications. Employing this methodology, we would like a model that is particularly prescient 

at business cycle turning points.   Such a model may provide an important hedge against more 

passive models optimized over the most recent economic regime or long term samples.  The 

model developed here also appears to have important risk pricing properties when contrasted 

with the benchmark CAPM. 

 

The balance of this paper is organized as follows: In Section 2 a time varying parameter factor 

model (TVPFM) using lagged economic factors and industry sectors as portfolios is motivated 

and developed.  Section 3 describes the full Bayesian estimation and model selection criteria 

employed for evaluating the model.  Some preliminary indications from the model output are 

also discussed.  Section 4 investigates the behavior of out of sample risk premia on the predicted 

model sector returns.  In Section 5, the potential profitability of a simple trading strategy using 

the predicted returns of the TVPFM is investigated and discussed.  Section 6 concludes. 

 

2.   A Time Varying Parameter Factor Model 

 

2.1. General Model Specification 

 

We begin with a time series factor model of equity returns.  The factors are assumed to be lagged 

fundamental macroeconomic variables.  The return generating process for each portfolio i is 

expressed as 

1,11, +++ +′= tittti ufr β                        (1) 
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),0(~ 2
, , tSiuti Nu σ , 

 

where for each portfolio return 1, +tir , 1+tβ  is a Kx1 vector of K-1 time varying factor loadings 

and a time varying intercept term, tf  is a Kx1 vector of unity and K-1 lagged macroeconomic 

factors and 1, +tiu is a normally distributed disturbance term with conditional variance to allow 

for heteroskedasticity.  From here forward in this section, for simplified notation, the portfolio 

subscript i is dropped. 

 

We incorporate time variation in the factor sensitivities by modeling each factor sensitivity, or 

beta, as a random walk such that each can be expressed as 

tktktk v ,1,, += −ββ                  (2) 

),0(~ 2
, kvtk Nv σ . 

 

Assuming the variance parameters are known, the evolution of risk factor sensitivities can be 

estimated in state space form.  Prediction and updating for the state vector of factor loadings 

using the Kalman filter proceeds as follows: 
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where 1
1|11|

−
−−−= tttttt fPK ξ is the Kalman gain. In (3), 1| −ttβ is the expectation of tβ  given 

information up to time t-1, 1| −ttP  is the covariance matrix of 1| −ttβ , 1| −ttη is the prediction error, 
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1| −ttξ is the variance of the prediction error and Q is the diagonal matrix of the variances of the 

shocks to the factor loadings, 2
kvσ , for k = 1 to K.  If ),( 2 Q

tSuσ are known, we can make 

inferences about the behavior of the state vector.  If unknown, ),( 2 Q
tSuσ  can be estimated using 

Bayesian inference as described in Carter and Kohn (1994) and Kim and Nelson (1999).  

Bayesian parameter estimation and model selection criteria are described in greater detail in 

Section 3. 

  

While some conditional pricing models use lagged macroeconomic variables to model variation 

in economic risk premia on sorted portfolio attributes or the market portfolio, we are interested in 

investigating a related but different question. Given the strong evidence for the importance of 

lagged economic information in pricing equities, we would like to measure time variation in 

equity risk sensitivities to macroeconomic factors directly.  

 

The case for persistent time varying second moments in returns on equity market portfolios has 

been discussed in French, Schwert and Stambaugh (1987) and Schwert and Seguin (1990).  To 

address this property of equity returns, a Markov-switching process in the variance of the 

portfolio return error terms is also provided for in the model.  Attention is limited to two discrete 

states over a state variable, tS , where a high variance state exists when 1=tS and a low variance 

state prevails when 0=tS . The error term in (1) follows the distribution: 
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tSut Nu σ  
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As such, tu will be heteroskedastic with conditional variance determined by the unobserved state 

variable tS .  The state variable tS  evolves based on the following transition probabilities: 
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The specification for Markov switching variance presented here closely follows that of Turner, 

Startz and Nelson (1989). 

 

2.2.1.  The Data: The Sectors 
 
The financial instruments used in this study as dependent variables are the ten sector total return 

indices as defined by the Global Industry and Classification Standard (GICS), jointly developed 

by Morgan Stanley Capital International and Standard and Poor’s. The series were downloaded 

through FACTSET. Returns are constructed by taking the difference in the logs of two 

consecutive index levels. The frequency of the series is weekly and the period we examine starts 

on the first week of January 1990 and ends the second week of January 2003. Table 1 presents 

descriptive statistics for the sample period under consideration. 

 

(Insert Table 1 here) 

 

Figure 1 presents the evolution of an initial $100 investment in each of the 10 GICS sector 

indices starting on January 12, 1990. The technology sector experienced the highest return up 

until April 14, 2000, after which point the sector index collapsed. Over the entire sample, the 

highest return was in the Healthcare sector, while the lowest return was found for the Utilities 

sector. 
 
2.2.2.  The Data: The Factors 
 
The factors chosen for the model are done so to maintain a parsimonious framework and to be 

consistent with previous advances in the literature.  The chosen factors are: 

divyield∆ - The change in the dividend yield on the S&P 500 composite index 

∆spread - The change in the spread between the 10 year treasury note yield and the 90 day 

treasury bill yield. 

oil∆ - The percent change in the near month crude oil contract. 

junk∆ - The change in the default spread, defined as the difference between the Moody’s Baa and 

Aaa corporate yield. 
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The dividend yield, corporate spread and term spread have been standard features of prior studies 

investigating the contribution of lagged macroeconomic information in pricing equities.1  The 

price of oil is also of interest to us as a factor, given the strong role oil shocks have played at 

turning points of postwar business cycles.  An investigation by Hamilton (2000), allowing for a 

non-linear response function between GDP and oil disruptions, finds a clear link between 

petroleum supply disruptions and lower GDP.  In an explicit examination of the impact of oil 

prices on equity markets, Jones and Kaul (1996) find that timely oil price information that 

precedes other economic series has a significant effect on real stock returns. 

 

Although our factor model follows no specific theoretical model, it is well grounded in the 

ICAPM of Merton (1973) given that all our chosen variables are anticipated to forecast changes 

in future wealth and consumption flows.  As will be discussed in Section 4, the lagged 

macroeconomic factor model also appears far better at pricing risk than the benchmark two 

parameter CAPM. 

 

2.3. Testing Time-Variation 
 
Pesaran and Timmermann (2002) argue that despite the empirical evidence indicating a time 

varying relationship between state variables and returns, research concentrating on the prediction 

of stock returns, still, to a large extent, employs models with time invariant parameters. Pesaran 

and Timmermann employ a simple reversed CUSUMQ test to identify structural change points 

and proceed to estimate a model relating S&P 500 monthly returns to a pre-specified set of 

lagged macroeconomic variables using only data after the most recent break has occurred. They 

find that the forecasting ability of their model greatly improves upon a comparable static 

specification, as well as a variety of alternative structural change models. Our proposed 

conditional model for predicting sector returns based on lagged fundamentals, although similar 

in spirit to theirs, explicitly accounts for time variation in the exposures to the state variables as 

well as the error variance in a dynamic Bayesian regression framework.  
                                                           
1 Chen, Roll and Ross (1986) use the level of the term spread in a cross sectional analysis of economic factors and 
stock returns. Lo and MacKinlay (1997) use the dividend yield, term spread and default spread in a predictive model 
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Before we estimate and evaluate the model in detail, we proceed with an exploratory 

investigation of the time varying properties of the data. We are interested in making some 

general statements regarding the stability of a static version of our model with respect both to the 

exposures to the macroeconomic state variables and the error variance. A sufficient condition for 

proposing a dynamic model that explicitly incorporates time-variation in the parameters relating 

financial returns to macroeconomic variables is to show that its static counterpart is unstable, i.e., 

the parameters are subject to structural change. Thus, our purpose is to test for regression 

stability without explicitly estimating the timing of the breaks or the value of the parameters. A 

variety of means for testing and estimating structural break models have been proposed in the 

literature. We concentrate on the testing frameworks developed by Hansen (1992) and Bai and 

Perron (1998, 2001), BP hereafter. Bayesian model selection techniques are explored in a later 

section.  

 

Hansen’s Lc statistic is a Lagrange multiplier test of the null hypothesis of constant parameters 

against the alternative that parameters follow a martingale. The test relies on the assumption of 

stationary regressors and is able to test constancy for both the β ’s and 2
uσ  in the model 

presented at the beginning of this section. As in Hansen (1992), we are interested in testing the 

stability of each parameter individually, as well as the joint stability of the parameters in each of 

the sector regressions. Hansen provides the critical values for these tests. 

BP developed a method for estimating multiple structural breaks in linear regression models. 

Their testing procedure allows for differentiation in the regression errors, but does not provide 

methods for parametrically estimating this heterogeneity. The determination of break points 

depends on both the distance allowed between break points, as well as the upper bound imposed 

in the number of breaks to be considered. The latter point is less of a drawback in the present 

context as we are only interested in testing for the presence of parameter instability. In BP’s 

methodology there is not a unique test that determines the number of breaks. The statistical 

determination of structural change depends on the values of various test statistics. The first one is 

the supFT(l) test which tests the null hypothesis of no breaks for all the parameters, against the 
                                                                                                                                                                                           
of future returns.  Ferson and Harvey (1999) use the term spread, dividend yield and default spread as instruments in 
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alternative of l breaks, where l<=ub, and ub is the upper bound in the number of breaks imposed 

a priori. Another version of this statistic is what BP call the Wdmax which applies weights to 

supFT(l) so that the marginal p-values are equal across values of l. Alternatively, the number of 

breaks can be determined based on the values of F-statistics that explicitly test the null of l 

breaks against the alternative of l+1 breaks. In other words, this statistic tests whether further 

structural change is present in the data, given that some break points have already been 

identified. As in the previous case, the tests used have non-standard asymptotic distributions. The 

critical value tables are provided by BP. 

 

Table 2 presents results for the individual and joint Lc tests applied to the ten economic sectors. 

For each of the 10 sectors, constancy in the variance of the error terms is rejected, with the 

individual Lc statistic significant at the 1% level. This result is consistent with the extensive 

literature on time-varying variances in financial and economic time-series. The individual test 

results are less clear for the kβ  parameters in equation (2). Specifically, the null of constant 

exposure to changes in the dividend yield is not accepted at the 5% level for the Financials or 

Utilities sectors. Similarly, the null hypothesis is rejected at the same significance level for 

constancy of exposure to the yield spread for the Health Care sector and for the change in the 

price of oil for the Technology sector. The null of parameter stability is also rejected for the 

intercept of the Technology and Telecommunications sectors.  

 

(Insert Table 2 here) 

 

An important result in Table 2 is that the joint Lc statistic rejects stability at the 1% significance 

level for all sectors with the exception of Consumer Staples, for which the null is rejected at the 

5% level. Given these results, it is relevant to consider Hansen’s own observation that joint 

significance tests may be more reliable than single parameter tests, especially when “…the 

shifting error variance induces too much noise into the series for the test to be able to distinguish 

parameter variation from sampling variation”.  

 

                                                                                                                                                                                           
a conditional factor model. 
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Table 3 presents results based on BP’s testing methodology. We have defined the upper bound to 

be 5 breaks. In the construction of the tests, we have allowed for heterogeneity and 

autocorrelation in the residuals, as well as different moment matrices for the regressors across 

segments. The Wdmax(1%) test, which tests the null hypothesis of no breaks against an 

unspecified number of breaks at the 99% level, is significant for all sectors except Consumer 

Staples. The supFT(l) test, evaluating a specified number of breaks versus the null of no breaks 

gives similar results. In particular the null of parameter constancy for all l breaks is rejected at 

the most conservative significance levels for all sectors with the exception of Consumer Staples, 

where once again no break is identified.  The sequential tests also reject parameter constancy, 

although they give a mixed picture about the number of potential breaks. In particular, for the 

Consumer Discretionary, Technology, and Materials sectors the supFT(5|4) test rejects the null of 

4 breaks, in favor of the 5 break alternative. The Industrials, Financials, and Utilities sectors are 

subject to 4 breaks, Healthcare to 3 breaks, while the Energy and Telecommunications sectors 

are subject to 2 breaks. Consumer Staples is the only sector where BP’s result points to the 

existence of a very stable relationship between our set of regressors and the sector’s returns.    

 

(Insert Table 3 here) 

 

While the above discussion is by no mean exhaustive, the instability of factor loadings and return 

variances for the chosen data is statistically established. We propose a model that we believe 

captures the dynamic nature of financial returns and their interaction with a pre-specified set of 

fundamental factors.  

 
 

3. Bayesian Empirical Tests of the TVPFM 
 
3.1. Specifications for Tested Models 
 

With the factors for the TVPFM defined, the return generating process for each sector portfolio 

can now be presented as 

1,1,41,31,21,11,01, +++++++ +∆+∆+∆+∆+= titttttttttti ujunkoilspreaddivyieldr βββββ          (5) 

),0(~ 2
, , tSiuti Nu σ . 



 11

 

The specification in (5) allows for time variation in factor sensitivities and return variances 

consistent with the sector parameter stability diagnostics discussed in the previous section.  To 

further investigate the appropriateness of the specification in (5) to capture these return 

dynamics, we also consider three alternative specifications to independently evaluate the 

importance of time variation in the factor sensitivities and return variances. The capability of 

each model to describe the data is evaluated by calculating marginal likelihood values for each 

model and computing Bayes factors.  The methodology for calculating Bayes factors employed 

here follows that in Chib (1995) and is discussed in further detail below. 

 

The first of the alternative model specifications is a simple factor model with fixed unconditional 

factor sensitivities and fixed unconditional variance.  The first alternative specification is 

1,432101, ++ +∆+∆+∆+∆+= tittttti ujunkoilspreaddivyieldr βββββ        (5a) 

 ),0(~ 2
, iuti Nu σ . 

 

The model in (5a) is intended to serve as a benchmark case. 

 

The second alternative specification is designed to test the importance of the introduction of time 

variation in factor sensitivities while holding the variance term constant.  The second alternative 

specification is given by 

1,1,41,31,21,11,01, +++++++ +∆+∆+∆+∆+= titttttttttti ujunkoilspreaddivyieldr βββββ        (5b) 

),0(~ 2
, iuti Nu σ . 

 
Finally, the third alternative specification is intended to evaluate the importance of incorporating 

heteroskadacticity into the model, holding factor sensitivities fixed.  The third alternative 

specification is 

1,432101, ++ +∆+∆+∆+∆+= tittttti ujunkoilspreaddivyieldr βββββ        (5c) 

 ),0(~ 2
, , tSiuti Nu σ . 
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Estimation of each model is performed using Gibbs sampling Markov chain Monte Carlo 

(MCMC) integration.  A brief outline of the Gibbs sampling sequence for the model in (5) is 

presented in Appendix A.  Details of the output of the Gibbs sampler for the model in (5) are 

presented in greater detail in a later section. Each of the alternative models presented in this 

section are simplified versions of that in (5) with fewer components.  We choose the Bayesian 

methodology for evaluating our model for two primary reasons.  First, the Gibbs sampling 

methodology allows for more stable estimation of multi-parameter non-linear models than does 

typical maximum likelihood estimation.  Secondly, model comparison using marginal likelihood 

values provides a way to compare alternative non-nested model specifications not available in 

the classical framework. From here forward in this section, for simplified notation, the portfolio 

subscript i is dropped. 

 

3.2 Calculating Bayes Factors for Model Comparison 

 

To assess which model explains the data best, marginal likelihood values are calculated for each 

of the models presented in the previous section.  From these marginal likelihood values, Bayes 

factors comparing any of the two models can then be computed as the ratio of the marginal 

likelihood values. 

)(
)(

,
tj

tl
jl Ym

Ym
BF = .                (6) 

where jlBF ,  is the Bayes factor of the posterior odds in favor of model l over model j. 

 

The marginal likelihood values for each model are calculated from 

)|*(~
*)(*)|(

)(
t

t
t Y

Yf
Ym

θπ
θπθ

= .               (7) 

Here the numerator on the right side of (7) is the product of the likelihood value of the data at 

*θ  and the prior density at *θ . Here, *θθ =  indicates that the parameter space is evaluated at 

the posterior mean from the initial Gibbs sampling runs as presented in Appendix A. The 

denominator is the simulated posterior density of *θ .   For computational efficiency, the relation 

in (7) can be rewritten in log form as  

)|*(~ln*)(ln*)|(ln)(ln ttt YYfYm θπθπθ −+= .            (8) 
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The log likelihood value for the model in (5) is calculated as 

    )),|(*)|1(),|(*)|0(ln(*)|(ln 22
,1

22

1
,1 10 uvtttuvt

T

t
ttt yfYSpyfYSpYf σσθσσθθ −

=
− =+==∑ ,    (9) 

where ]        [ 222222
54321

′= vvvvvv σσσσσσ . 

 

The prior log density can be expressed as 

*)*,(ln*)(ln*)(ln*)(ln 22 qpuv πσπσπθπ ++= ,          (10) 

where ]   [ 222
10

′= uuu σσσ . 

 

The posterior density is calculated using the method described in Chib (1995) to simulate 

marginal conditional densities.  The log posterior density can be expressed as 

  *)*,,|**,(~ln*),|*(~ln)|*(~ln)|*(~ln 22222
uvtvtutvt YqpYYY σσπσσπσπθπ ++= .      (11) 

 

Derivation of the posterior density for the model in (5) is presented in Appendix B. 

 

Marginal likelihood values for each of the economic sector portfolios for each of the four model 

specifications are presented in Table 4.  For each model, the priors are non-informative and the 

Gibbs sampler is run 8,000 times after 2,000 initial Gibbs runs to realize some convergence for 

the parameters for each step of the simulation.  To evaluate the relative strength of each model, 

we use the guidelines for model comparison in Kass and Raftery (1995).  The guidelines for 

interpreting the log Bayes factors for model l and model j are 

 

jlB ,ln  Evidence against model j 

0 to 1 Not worth more than a bare mention 

1 to 3 Positive 

3 to 5 Strong 

>5 Very Strong 
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In comparing the model in (5b), allowing for time variation in the factor sensitivities, and the 

static specification in (5a), for each economic sector, the model with time variation is strongly 

preferred over the model with static unconditional factor sensitivities.  For each case, the Bayes 

factor exceeds 4, and for 9 of the 10 sectors, the Bayes factor exceeds 5, indicating very strong 

evidence in favor of model (5b) over model (5a). Based on the marginal likelihood values, it is 

also clear that allowing for heteroskedastic errors in (5c) results in a much more probabilistic 

model for each sector than that of the unconditional variance model in (5a).  In this case, the 

Bayes factor favoring model (5c) over model (5a) exceeds 28 for each of the economic sectors. 

 

(Insert Table 4 here) 

 

Finally, it is also shown in table 4 that the model in (5), incorporating both time varying factor 

sensitivities and Markov switching heteroskedastic errors, is preferred to all other models by a 

Bayes factor of at least 3 for eight of the ten economic sectors.  For Consumer Staples and 

Health Care, model (5c) is preferred to model (5). 

 

3.3 Empirical Results for the Fully Specified Model 

 

Table 5 summarizes results from the Bayesian Gibbs sampling estimation of the parameters in 

model (5).  The sample period for the simulation is January 12, 1990 to June 10, 2002.  For each 

model for each parameter, the posterior mean, median and standard deviation are reported. For 

each sector there is strong evidence for persistent volatility regimes as indicated by the values for 

p and q greater than 0.9 for each of the tested portfolios. The standard error terms, 
kvσ , are 

generally of small size, indicating a slow evolution process for the factor loadings. 

 

(Insert Table 5 here) 

 

Given the estimated parameters, inference and prediction of the state vector, Tβ , can proceed.  

Because we are ultimately interested in the predictability of portfolio returns, we would like to 

focus on the behavior of out of sample factor loadings as opposed to the backward looking path 
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of factor loadings once parameters for the full sample are estimated.  To accomplish this, we 

begin generating Tβ  at observation 250 based on model parameters estimated through 

observation 250.  For 250β to 299β , Tβ  is generated based on the parameters estimated for the 

sample ending at t = 250.  To capture any additional parameter instability, the parameters are 

estimated again for the sample ending at t = 300. 300β to 349β are then generated based on the 

parameters estimated for the sample ending at t = 300.  This sequence of re-estimating the 

parameters every 50 periods is then repeated through t = 650.  Ultimately a sample of Tβ  is 

estimated for 250β  to 678β . 

 

Examples of the paths of the factor loadings are presented in Figure 2.  In the Energy, Industrials, 

and Materials sectors, the change in the price of oil would be anticipated to be an important 

determinant of expected returns. Figure 2a shows the time path of the 'real time' sensitivity of the 

Energy sector’s expected return to the oil factor. The figure indicates that the energy sector does 

not always respond to lagged changes in the price of oil in the same fashion. There are three 

distinct regimes over the past eight years in its evolution. The loading was negative and almost 

constant until the fall of 1997, when it turned and remained on a positive trend until the start of 

2000. A positive sensitivity, in terms of our forecasting model would imply that a positive 

change in the lagged price of oil would, ceteris paribus, signal a higher conditional expected 

return for the Energy sector. Since then, the loading has once again turned negative and its 

magnitude has increased.  

 

The change in the dividend yield would be expected to play some role in forecasting 'cyclical' 

sectors, such as Consumer Discretionary, Financials, Industrials, and Materials. Figure 2b shows 

the time path of the sensitivity to the dividend yield factor for the Financials sector. The sector 

has had a consistently positive exposure to the factor, which increased in magnitude following 

the market breakdown in 2000. The positive return sensitivity to changes in the dividend yield 

with respect to the Financials sector ‘peaked’ in April 2002, and while the exposure to the factor 

has come down since, it is still higher than the level observed prior to 1999. 
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For the Utilities sector, the loading on the default spread factor is negative for most of the 

estimation period, as can be seen in Figure 2c. The sensitivity reversed signs for a brief period 

leading up to the end of the bull market. Since then the sensitivity has turned negative, and the 

absolute level has increased substantially. The behavior is consistent with the sector’s under-

performance. Utility firms had large exposure to the credit market following the 1990’s. After 

2000, default spreads widened with adverse effects for the sector. Although Bayes factor tests 

prefer the constant sensitivity specification to the dynamic one, the time-variation in the loading 

on changes in the yield curve, show an interesting evolution when considering the forecast of 

expected returns in the Healthcare sector. A shift from a negative sensitivity regime to a positive 

one is evident in early 1999. Since then, a positive change in the slope of the curve is associated 

with higher conditional expected returns.  

 

Time variation of the intercept terms is displayed in figures 2e and 2f for the Technology and 

Telecommunications sectors respectively. The path of the intercept terms in both sectors, and 

especially in Technology, mirrors the fate of the sector, pre and post the market collapse in mid-

2000. The variation of the intercept term could be explained by either the omission from our 

model of additional factors that help forecast expected returns, or the existence of momentum 

effects in the market. This issue is addressed in more detail in a later section. 

 

4.  Cross Sectional Regression Results 
 
As a general test of how well the time varying parameter model describes return behavior across 

portfolios, we propose a series of cross-sectional tests against the benchmark Sharpe-Lintner-

Black Capital Asset Pricing Model (CAPM).  Despite the many shortcomings of the CAPM, 

some discussed earlier in Section 1, in its basic form, it should be expected to explain a 

significant component of the variation in returns across sector portfolios.  In contrast to a model 

estimated using lagged information, one might entertain the prior that a model with only lagged 

information would be at a disadvantage to a model such as the CAPM that incorporates 

contemporaneous information. 

 
We consider the cross-sectional regression 
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1,,1,2,1,11,01, +++++ +++= titittittti uMr λβλλ  ,          (12) 
 
where ti,β is the time series regression coefficient for each sector i from the CAPM estimated 

through time t. tiM ,  is the predicted return for each sector i at time t estimated by the time 

varying parameter model (TVPFM) in (5) using factors and parameters through time t. t,0λ is the 

intercept and t,1λ and t,2λ are slope coefficients on the estimated market betas and the predicted 

returns of the time varying parameter model.  This form of cross-sectional regression is 

comparable to that performed by Ferson and Harvey (1999) where a predicted return calculated 

with lagged macroeconomic factors is included in a cross-sectional test of the Fama and French 

three factor model. Results of a number of cross-sectional regressions are presented in Table 6 

using the method presented in Fama-MacBeth (1973). 

 

(Insert Table 6 here) 

 

In Panel A, estimates for the CAPM betas and predicted returns from OLS regressions on lagged 

macro factors are generated using expanding samples from the first week in January 1990 

through time t.  Cross-sectional regressions are performed for each time t, from the week ending 

October 14, 1994 to the week ending January 10, 2003, for a total of 429 regressions.  These 

expanding sample estimates represent the full unconditional estimates for the CAPM betas and 

factor model predicted returns through time t.  In the regression including only market betas, 

there is little evidence supporting the proposition that the CAPM significantly explains the cross-

section of returns for the selected sector portfolios.  In the second regression in Panel A, the 

predicted returns from the expanding sample OLS factor model do little better describing the 

cross-section of returns, with an insignificant coefficient of similar magnitude to that on the 

market portfolio. 

 

Given the strong evidence presented here for time varying risk sensitivities in the TVPFM, it is 

also of interest to test if the sector CAPM can be improved by allowing for time variation in the 

market beta.  A number of studies of late have attempted to prop up the CAPM in the face of 

relentless attack by models that incorporate portfolio attributes as well as the market portfolio.  
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Most well developed are those models incorporating conditional factors, including those 

presented here, to capture time varying risk.  Ferson and Harvey (1991) use conditional 

information in the estimation of parameters in cross-sectional regression tests of the CAPM and 

later use conditioning information to calculate parameters in time series regressions in Ferson 

and Harvey (1999).  Jaganathan & Wang (1996) augment the CAPM by including human capital 

in addition to the market portfolio.  A CAPM model with time varying random walk coefficients 

estimated using the Kalman filter can be interpreted as a truly agnostic dynamic model with no 

preference as to which exogenous macroeconomic variables govern the time varying risk 

premium on the market portfolio.  For consistency the Bayesian beta CAPM proposed also 

allows for heterodkedastic errors. 

 

As presented in Panel B, allowing for Bayesian time variation in the market beta does little to 

improve the explanatory power of the market portfolio in the cross-section.   For both regressions 

in Panel B, there is only weak evidence of a positive market risk premium.   As in Panel A, 

results when the predicted returns from an expanding sample OLS factor model are included 

provide little support for the notion that lagged macro factors describe a significant amount of 

the variation of sector returns in the cross section either. 

 

An initial attempt to test the influence of parameter time variation in a predicted returns model in 

the cross-section is examined in Panel C.  Here, time series regressions for the CAPM and the 

lagged macroeconomic factor predicted returns are performed using rolling regressions over the 

previous 50 weeks of data.  In the first cross-sectional regression, again, time variation 

introduced by rolling regressions does nothing to improve the ability of the CAPM betas to 

describe sector returns.  Allowing for time variation in the predicted return regressions, however, 

increases the apparent risk premium and improves the significance of the predicted returns in 

explaining the cross section of portfolio returns. 

 

In Panels D and E, cross sectional regressions are performed using the TVPFM predicted returns 

from (5) as regressors.  In each case the size of the apparent risk premium is greater than that 

observed in the rolling regression example at a similar level of significance.  In each case the t-
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score on 2λ  is greater than 2.  The contribution of the market portfolio in the regressions in 

panels D and E is smaller and less significant than that of the TVPFM predicted returns. 

 

These tests lead to two initial conclusions.  First, for the sample period of weekly returns 

examined, there is little evidence that the CAPM provides a good measure of the variation in 

sector returns.  Second, failure to allow for time variation in return sensitivity to macroeconomic 

information can lead to the spurious conclusion that lagged macroeconomic information is not 

priced either.   These tests provide further evidence that sector returns have a significant 

predictive component that can be captured in part by the TVPFM model developed here.   

 
 
5. A Dynamic Trading Strategy Based on the TVPFM 
 
5.1. Description of Trading Strategy 
 
Given the strong evidence of a predictable component in sector returns priced by the TVPFM, it 

is of interest to see if the step ahead model forecasts can be exploited profitably.  To test for this 

possibility, we propose a basic trading strategy of sorting the ten S&P 500 sectors based on the 

predicted returns of the TVPFM.  At the end of each period t, a long position will be purchased 

in the weighted constituents of the sector with the highest predicted positive return.  Like wise, a 

short position is taken in the weighted constituents of the portfolio with the lowest predicted 

negative return.  We impose the constraint that no long position will be taken in a sector portfolio 

with a negative predicted return and no short position will be taken in a sector portfolio with a 

positive predicted return. 

 

Returns for the dynamic sector allocation strategy are calculated assuming available capital at 

each period t is evenly distributed between a long portfolio that is purchased, and in collateral 

against the portfolio of shares being sold short.  In the event of a vector of all positive (negative) 

predicted returns, only a long (short) strategy will be pursued with one half the amount of capital 

at risk as in the case of balanced long and short portfolios. 

 

In addition to testing the trading strategy on the model developed in Section 2, we also 

investigate the profitability of four additional lagged factor model specifications.  The alternative 
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strategies are chosen in part to simulate different rates of parameter responsiveness to new 

information.  The first of the alternative strategies is an expanding sample beta estimation in 

which unconditional model parameters are estimated by OLS at each time t based on the full 

sample up to time t beginning at t = 250 and continuing through the end of the sample.  For the 

second strategy, estimates of unconditional model parameters are re-estimated every 50 periods 

using the full sample.  The final two additional strategies are rolling beta specifications, the first 

using a sample from t-249 to t at each time t and the second using a shorter sample of t-49 to t at 

each time t.  For each case, predicted returns for each portfolio at each time t are generated by 

ttittiti frE |,1,, ][ β′=+ ,               (13) 

where tti |,β is the latest vector of portfolio factor loadings conditional only on information 

through time t. 

 

Geometric returns and Sharpe ratios for the five strategies are presented in Table 7.  For each of 

the strategies, with the exception of the TVPFM generated positions, there is at least one 

negative year.  The discrete rolling OLS strategy has the poorest yearly return and Sharpe ratio 

while the Kalman filter estimated TVPFM has the highest return and Sharpe ratio.  The TVPFM 

outperforms the other strategies most dramatically in the last three years of the sample, following 

the March 2000 market peak. A comparative look at the cumulative returns for each strategy is 

presented in Figure 3.  

 

(Insert Table 7 here) 

 
5.2. Transaction Costs 
 
A crucial issue that needs to be addressed in the evaluation of model profitability is the drag of 

transaction costs.  Given the specific set of portfolios we are trading, a reasonable estimate of 

these costs can be addressed and is done so here.  From the simulation discussed earlier in this 

section, the average portfolio holding period was 1.48 weeks resulting in approximately 35 

annual liquidations and initiations for the long and short strategies.  To quantify approximate 

costs, we propose a strategy of simulating the sector index by buying constituents comprising 
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75% of the value weighted portfolio.  The average weighted constituent price per sector for 

January 1, 2002 is presented in Table 8. 

 

(Insert Table 8 here) 

 

Assuming an average price of $45 per share, (slightly lower than that for the average portfolio), 

broker commissions of 3 cents per share and one cent of slippage per transaction, we arrive at an 

average transaction cost per week of 0.104%.  The annual drag is approximately 5% per year. 

Once transaction costs are accounted for, the simulated strategy using the Kalman filter 

estimated TVPFM still has a final cumulative return of 177.34% and an annualized Sharpe ratio 

of 0.92.  The next best strategy, using 250 period rolling OLS betas, posted a total cumulative 

return of 69.73% and a Sharpe ratio of 0.44 after accounting for transaction costs. The poorest 

performing strategy after accounting for transaction costs, with a final arithmetic return of –

10.94%, is the discrete rolling beta strategy. 

 
5.3. Monte Carlo Simulations 
 
To investigate the possibility that the results of our simulation were the result of fortuitous 

random sampling, we conduct a simple Monte Carlo experiment. Following Lander, Orphanides, 

and Douvogiannis (1997), we implement parametric bootstrapping techniques in order to obtain 

a distribution of random returns, which in turn could be compared with the ones from our 

econometric specifications. In our original trading rules design, we allowed the possibility to 

invest in long-short, long only, and short only positions. Most often, when the portfolio was not 

invested in a neutral fashion, it would assume a long only position. For example, in the Kalman 

strategy, out of the 155 weeks that the portfolio was invested in only one leg of the long-short 

strategy, in 153 cases, the portfolio was long only. The results are very similar for the other 

specifications as well. Since we need to get comparable returns from the random portfolios, we 

specify a number of weeks, which are randomly selected, when we form long only portfolios. 

The rest of the time we assume a balanced long-short position.  

 

The solid line in Figure 4 graphs the annualized geometric average return from 5,000 random 

rule replications for each design. The dotted lines represent the 5th and 95th percentile of the 
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distribution of these returns. Although all the econometric specifications had actual returns above 

the average random return, it is only the 5yr rolling OLS and the Kalman specifications that 

achieve returns consistent with rejecting the hypothesis of randomness at the 5% level.  

 
5.4. Interpreting the Results of the Trading Strategy 
 
Our results may indicate that increasing uncertainty increases investor focus on observable 

fundamentals.  In addition to the precipitous drop in equities beginning in March 2000, volatility 

increased substantially and remained high through the end of 2002.  In contrast, during a period 

of greater optimism about future dividend growth prospects, signaled by falling earnings and 

dividend yields, lagged or even contemporaneous fundamental data may be discounted in favor 

of a focus on more forward looking measures. 

 

To investigate this hypothesis further, we conduct another series of cross-sectional regressions 

identical to those in Section 4.  In this case, however, the sample is split between the period prior 

and the period following the March 2000 stock market peak.  This follows the recommendation 

of Kan and Zhang (1999) to run split sample regressions to test the stability of risk premia.  

Instability in factor premiums may indicate the presence of useless factors. As presented in Table 

9, the results of additional cross sectional regressions indicate a larger risk premium on the 

predicted returns in the second subset following March 2000 than in the initial sample from 1994 

to 2000.  The larger risk premium estimate is consistent with the conjecture that following the 

market peak, a greater focus was put on fundamental information.  Lack of certainty about 

earnings and future economic prospects results in a higher level of surveillance of economic 

news by investors. 

 

(Insert Table 9 here) 

 

The far more striking result for the cross-sectional regressions in Table 9 is the instability of the 

risk premium on market betas.  In Panels A and B, the CAPM beta risk premia are both large and 

significant for those regressions without the TVPFM predicted returns, consistent with the theory 

underlying the CAPM model.  In the presence of the TVPFM predicted returns, the market risk 

premia are still positive and somewhat less significant.  In Panels C and D the market risk 
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premium becomes negative and mostly insignificant with the exception being a near significant 

negative risk premium for Bayesian market betas in the presence of the TVPFM predicted 

returns.  On the criteria suggested by Kan and Zhang, the return on the value weighted market 

return could be considered a useless factor. 

 

6. Conclusion 

 

The work presented here lends support to previous work laying out the importance of lagged 

macroeconomic information in determining expected investor returns.  Further, we find these 

same macroeconomic factors useful in forecasting returns directly. The information derived from 

recently observed macroeconomic fundamentals appears particularly important at business cycle 

turning points and periods of high economic uncertainty such as the period immediately 

following the equity market peak in March 2000.  Those following the stock market just prior to 

the peak in 2000 no doubt recall an emphasis on new non-traditional measures of valuation quite 

distinct from the macroeconomic and financial factors investigated here.  As noted in Campbell 

and Shiller (1989), a rising P/D ratio is indicative of higher expected returns in the future.  

Therefore, the instruments driving returns in the 1994 to early 2000 sample may have been more 

forward looking measures that are difficult to quantify, and as such cannot be easily introduced 

into a macroeconomic model such as this.  Despite this possible shortcoming, the model does at 

least as well as the traditional CAPM at pricing risk during our weekly sample period, even prior 

to 2000. 
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Appendix A 
Gibbs sampling algorithm for model specified in (5) 

 
Posterior densities of the parameters in (5) are estimated using Gibbs-sampling simulations. The 
parameters to be estimated are },,, , { 22

0
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the parameters has a conjugate prior density, the unsolved parameters of the model can be drawn 
directly from the conditional posterior distributions.  To simplify the notation, portfolio 
subscripts are dropped.  The parameters to be estimated have the following posterior 
distributions: 
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where 11u and 10u are non-informative priors and 11n and 10n are the number of transitions from 
state 1 to state 1 and state 1 to state zero respectively. 
 
 

),(~ 01010000 nunuBetaq ++         (A5) 
 
where 00u and 01u are non-informative priors and 00n and 01n are the number of transitions from 
state zero to state zero and state zero to state 1 respectively. 
 
The algorithm for one iteration of the Gibbs sampler for the model in (5) proceeds as follows:  
 
(i) Generate Tβ from ),,|( 22

, TTuvT YSσσβπ  by running the Kalman filter described in (3), 
where conditional on TS , Tβ is independent of p and q . 

 
(ii) Generate TS  from ),,,,|( 2

TTuT YqpS βσπ  where conditional on Tβ , TS  is independent 
of 2

vσ . 
 
(iii) Generate 2

kvσ  for k = 1 to 5 from )|( ,
2
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kvσ  is 

independent of Tu Yqp ,,,2σ  and 2
jvσ  for all kj ≠ . 

 
(iv) Generate 2

0uσ from ),,,|( 2
0 TTTu YSh βσπ  where conditional on h, TS  and Tβ , 2
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independent of qp,  and 2
vσ . 

 
(v) Generate h from ),,,|( 2
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uσ is 

independent of qp,  and 2
vσ . 

 
(vi) Generate p from )|( TSpπ  where conditional on TS , p  is independent of all other 

conditioning information. 
 
(vii) Generate q from )|( TSqπ  where conditional on TS , q  is independent of all other 

conditioning information. 
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Appendix B 
Estimation of the posterior density for model in (5) 

 
Simulation of the joint posterior density  
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is performed by generating conditional marginal densities through additional runs of the Gibbs 
sampler, where *θ  is the posterior mean from the initial Gibbs sampling runs.  The conditional 
densities are the terms on the right hand side of (B1).  The sequence of additional Gibbs runs to 
simulate the densities is 
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where the superscript (g) refers to the g-th draw of the current Gibbs run and indicates that the 
conditioning item is variable.  Conditioning items with a * superscript are fixed posterior mean 
values from the initial Gibbs run. 
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Table 1 
Summary Statistics for Sector Returns 

Summary statistics for the returns of the 10 GICS sectors are presented. All sector returns are in log difference 
weekly rates. The sample period for the statistics is January 12, 1990 through January 10, 2003. 
 

  Summary Statistics    
  Mean Median  S.D.  Min  Max 
          

CONS DISCR  0.151 0.262  2.645  -15.074  9.833 

CONS STAPLE  0.187 0.242  2.280  -13.617  10.414 

ENERGY  0.109 0.199  2.665  -13.897  9.634 

FINANCIALS  0.216 0.171  3.105  -12.501  14.729 

HEALTHCARE  0.223 0.165  2.720  -11.553  9.151 

INDUSTRIALS  0.147 0.273  2.543  -19.129  10.838 

TECHNOLOGY  0.197 0.398  4.158  -24.197  14.583 

MATERIALS  0.073 0.145  2.776  -15.054  13.345 

TELECCOMS  0.035 0.195  2.848  -14.190  14.331 

UTILITIES  0.007 0.039  2.330  -14.881  7.988 
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Table 2 
Parameter Constancy Tests 

1,432101, ++∆+∆+∆+∆+=+ tiutshorttoiltspreadtdivyieldtir βββββ  
Results are presented for testing the null of parameter constancy using Hansen’s Lc statistic. All data are in weekly frequency. 
The sample period over which the statistics  are estimated is January 12, 1990 through January 10, 2003. 
 

  β0 β1 β2 β3 β4 σu
2 

    
CONS DISCR Individual Lc 0.212 0.075 0.094 0.116 0.031 3.840*** 

 Joint Lc 4.321***   
    

CONS STAPLE Individual Lc 0.257 0.025 0.126 0.104 0.106 1.344*** 
 Joint Lc 1.875**   
    

ENERGY Individual Lc 0.107 0.076 0.116 0.311 0.117 3.551*** 
 Joint Lc 4.586***   
    

FINANCIALS Individual Lc 0.144 0.4701** 0.156 0.149 0.038 3.183** 
 Joint Lc 3.999**   
    

HEALTH CARE Individual Lc 0.223 0.025 0.670** 0.089 0.054 1.226*** 
 Joint Lc 2.136***   
    

INDUSTRIALS Individual Lc 0.249 0.118 0.153 0.292 0.017 2.456*** 
 Joint Lc 3.437***   
    

TECHNOLOGY Individual Lc 0.355* 0.093 0.059 0.483** 0.069 6.583*** 
 Joint Lc 7.303***   
    

MATERIALS Individual Lc 0.084 0.139 0.060 0.150 0.035 4.010*** 
 Joint Lc 4.628***   
    

TELECOMMS Individual Lc 0.452** 0.019 0.242 0.073 0.127 5.177*** 
 Joint Lc 6.011***   
    

UTILITIES Individual Lc 0.233 0.571** 0.090 0.033 0.291 6.512*** 
 Joint Lc 8.571***   

 
*, **, ***, reject stability at the 10%, 5%, and 1% asymptotic significance levels respectively. 
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Table 4 
Log Marginal Likelihood Results for Tested Models 

 
Log marginal likelihood values for four alternative model specifications are presented for ten industry sectors below. 
 
 
 Model (5) Model (5a) Model (5b) Model (5c) 
SECTOR 
 

    

     
CONS DISCR -1509.16 -1561.00 -1546.66 -1516.65 

CONS STAPLE -1441.81 -1482.44 -1459.90 -1421.54 

ENERGY -1526.62 -1577.42 -1553.16 -1530.91 

FINANCIALS -1624.57 -1681.40 -1653.84 -1631.14 

HEALTH CARE -1557.21 -1593.43 -1570.48 -1545.39 

INDUSTRIALS -1486.91 -1551.76 -1526.59 -1494.67 

TECHNOLOGY -1790.64 -1856.57 -1838.03 -1822.00 

MATERIALS -1545.43 -1605.36 -1583.89 -1552.33 

TELECOMM -1547.12 -1579.09 -1574.32 -1550.19 

UTILITIES -1374.16 -1448.24 -1429.48 -1401.57 
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Table 6 

Cross Sectional Regression Results 
Cross sectional regression results for tests of the importance of the market portfolio and predicted returns based on 
lagged macroeconomic indicators on S&P 500 sector portfolio returns are summarized.  The OLS regression 
coefficients are expressed as percentage per week.  For each cross-sectional regression at time t, the regressors are a 
constant term, the betas from a contemporaneous time series regression on the return on the S&P 500 index at time 
t-1 and a forecasted return estimated with lagged macroeconomic factors through period t-1.  Expanding betas for 
the market portfolio and predicted returns are estimated using data beginning in January 1990.  Rolling CAPM betas 
and predicted returns are estimated using the most recent 50 weeks of data.  Bayesian betas and predicted returns are 
estimated in the time varying parameter model described in section 2. The out of sample forecast period is the week 
ending October 14, 1994 to the week ending January 10, 2003.  The number of cross sectional regressions is 429.  
Fama-MacBeth standard errors are underneath the coefficients in parentheses. 

 
Panel A. Expanding CAPM Betas and Expanding Predicted Returns 

0λ  1λ (market) 2λ (macro) 
-0.0563 0.1874 - 
(0.1975) (0.2292) - 

   
-0.0849 0.1571 0.1502 
(0.1916) (0.2464) (0.3814) 

 

Panel B. Bayesian CAPM Betas and Expanding Predicted Returns 

0λ  1λ (market) 2λ (macro) 
-0.0601 0.1977 - 
(0.1656) (0.2035) - 

   
-0.0925 0.1651 0.1285 
(0.1736) (0.2176) (0.3714) 

 

Panel C. Rolling CAPM Betas and Rolling Predicted Returns 

0λ  1λ (market) 2λ (macro) 
-0.0141 0.1464 - 
(0.1534) (0.1708) - 

   
-0.0670 0.1119 0.2562 
(0.1440) (0.1877) (0.0983) 

 

Panel D. Expanding CAPM Betas and Bayesian Predicted Returns 

0λ  1λ (market) 2λ (macro) 
-0.0086 -0.1546 0.6330 
(0.1935) (0.2566) (0.2706) 

 

Panel E. Bayesian CAPM Betas and Bayesian Predicted Returns 

0λ  1λ (market) 2λ (macro) 
-0.0649 0.0142 0.5611 
(0.1729) (0.2258) (0.2650) 
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Table 7 
Strategy Performance Summary 

Annualized geometric returns and Sharpe ratios for a dynamic sector allocation model using 5 different econometric 
specifications are presented. For each case, total available capital is split evenly between a long portfolio based on 
the highest predicted sector return and a short portfolio based on the lowest predicted sector return. For the 
expanding sample strategy, parameters are updated by OLS every  period beginning at T = 250 using the full 
available sample through time t. For the discrete rolling strategy, parameters are updated by OLS every 50 periods 
for the sample from t-T to t. For the 5yr rolling sample strategy, parameters are updated by OLS weekly using a 
sample from t-T to t. For the 1yr rolling sample strategy, parameters are updated by OLS weekly using a sample 
from t-49 to t. For the Bayesian beta strategy, variance parameters are estimated every 50 periods and the beta 
parameters are updated using the Kalman filter. All results are based on forecasts for period t+1 using parameters 
and data estimated through period t. The total sample is 678 observations. Estimation results for each strategy begin 
in period 250 (October 14, 1994). The starting capital level for each strategy is normalized at 100. 
 

Year Expanding Discrete 1yr 5yr 
Sample Rolling OLS Rolling OLS Rolling OLS Kalman

1995 17.02% 14.88% 15.42% 23.92% 8.20%
1996 7.77% 14.89% -10.88% 3.54% 7.33%
1997 7.67% 6.94% 17.62% 11.87% 20.97%
1998 25.17% 0.92% 13.83% 10.22% 20.07%
1999 12.47% 8.10% 24.98% 9.54% 18.59%
2000 -7.21% -20.00% -0.34% -2.93% 31.52%
2001 -8.99% 5.23% 11.95% 27.15% 25.50%
2002 5.60% -5.14% 3.91% 10.07% 13.42%

6.68% 2.53% 8.41% 10.83% 17.95%

Year Expanding Discrete 1yr 5yr 
Sample Rolling OLS Rolling OLS Rolling OLS Kalman

1995 1.5 1.59 1.41 2.47 0.85
1996 0.78 1.38 -1.12 0.33 0.65
1997 0.91 0.85 2.01 1.35 2.58
1998 1.84 0.07 1.10 0.94 1.83
1999 0.75 0.51 1.77 0.63 1.26
2000 -0.43 -1.01 -0.01 -0.13 1.62
2001 -0.47 0.28 0.62 1.36 1.36
2002 0.3 -0.27 0.24 0.55 0.73

0.46 0.17 0.55 0.72 1.24

Sharpe Ratios Per Year

Average Geometric Return For Period 1995-2002

Average Sharpe Ratios For Period 1995-2002

 
 

 



 38 
 

 Table 8 
Price Per Share of Value Weighted Sector Constituents 

 
The value weighted constituent price per share for the ten S&P 500 GICS primary industry sectors on 
January 1, 2002 are presented.  Prices are calculated as the sum of prices for the constituents comprising 
75% of the sector valuation multiplied by their corresponding weights in the sector portfolio scaled such 
that the weightings sum to unity. 
 
 
 
 

Sector Weighted Price Per Share 
January 1, 2002 

 
Consumer Discretionary Index $46.23
Consumer Staples Index $52.58
Energy Index $51.94
Financial Index $53.74
Health Care Index $53.15
Industrials Index $50.81
Information Technology Index $50.53
Materials Index $39.87
Telecommunication Services Index $36.75
Utilities Index $39.23
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Table 9 

Split Sample Cross Sectional Regression Results 
Cross sectional regression results for tests of the importance of the market portfolio and predicted returns based on 
lagged macroeconomic indicators on S&P 500 sector portfolio returns are summarized for the period of October 14, 
1994 to March 10, 2000 and from March 11, 2000 to January 10, 2003.  The OLS regression coefficients are 
expressed as percentage per week.  For each cross-sectional regression at time t, The regressors are a constant term, 
the betas from a contemporaneous time series regression on the return on the S&P 500 index at time t-1 and a 
forecasted return estimated with lagged macroeconomic factors through period t-1.  Rolling CAPM betas and 
predicted returns are estimated using the most recent 50 weeks of data.  Bayesian betas and predicted returns are 
estimated in the time varying parameter model described in section 2. The number of cross sectional regressions is 
280 in the first sample and 149 in the second sample.  Fama-MacBeth standard errors are underneath the coefficients 
in parentheses. 

 
Sample I: October 14, 1994 to March 10, 2000 

Panel A. Rolling CAPM Betas and Rolling Parameter Predicted Returns 

0λ  1λ (market) 2λ (macro) 
-0.0177 0.3364 - 
(0.1460) (0.1797) - 

   
-0.1048 0.3813 0.2320 
(0.1556) (0.2057) (0.1281) 

 

Panel B. Bayesian CAPM Betas and Bayesian Predicted Returns 

0λ  1λ (market) 2λ (macro) 
-0.0947 0.4419 - 
(0.2018) (0.2452) - 

   
-0.0219 0.3167 0.3769 
(0.2121) (0.2770) (0.3428) 

 

Sample II:  March 11, 2000 to January 10, 2003 

Panel C. Rolling CAPM Betas and Rolling Predicted Returns 

0λ  1λ (market) 2λ (macro) 
-0.0383 -0.2359 - 
(0.2751) (0.3570) - 

   
0.0267 -0.4202 0.2697 

(0.2952) (0.3757) (0.1460) 
 

Panel D. Bayesian CAPM Betas and Bayesian Predicted Returns 

0λ  1λ (market) 2λ (macro) 
0.0383 -0.2814 - 

(0.2985) (0.3607) - 
 

-0.1125 -0.5648 0.8515 
(0.3029) (0.3881) (0.4062) 
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Figure 1 
Sector Index Evolution 

We assume an initial investment of $100 in each of the GICS indices and present the evolution of a buy and hold 
investment for each sector portfolio. 
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Figure 2 
Factor Loadings for Selected Economic Sectors 

The graphs below present the time varying sensitivities for some of the factors in some of the sectors discussed in 
the paper. The complete set of these graphs, is available upon request from the authors. 
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Financials Sector: Time-Varying Exposure to the Dividend Yield Factor
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Figure 2 continued 
Factor Loadings for Selected Economic Sectors 

The graphs below present the time varying sensitivities for some of the factors in some of the sectors discussed in 
the paper. The complete set of these graphs, is available upon request from the authors. 
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Figure 2 continued 
Factor Loadings for Selected Economic Sectors 

The graphs below present the time varying sensitivities for some of the factors in some of the sectors discussed in 
the paper. The complete set of these graphs, is available upon request from the authors. 
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Telecomms Sector: Time-Varying Intercept
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