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Online Control of Active Camera Networks for Computer Vision Tasks
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Large networks of cameras have been increasingly employed to capture dynamic events for tasks such as
surveillance and training. When using active cameras to capture events distributed throughout a large
area, human control becomes impractical and unreliable. This has led to the development of automated
approaches for online camera control. We introduce a new automated camera control approach that consists of
a stochastic performance metric and a constrained optimization method. The metric quantifies the uncertainty
in the state of multiple points on each target. It uses state-space methods with stochastic models of target
dynamics and camera measurements. It can account for occlusions, accommodate requirements specific
to the algorithms used to process the images, and incorporate other factors that can affect their results.
The optimization explores the space of camera configurations over time under constraints associated with
the cameras, the predicted target trajectories, and the image processing algorithms. The approach can be
applied to conventional surveillance tasks (e.g., tracking or face recognition), as well as tasks employing
more complex computer vision methods (e.g., markerless motion capture or 3D reconstruction).
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1. INTRODUCTION

Many computer vision applications, such as motion capture and 3D reconstruction of
shape and appearance, are currently limited to relatively small environments that can
be covered using fixed cameras with overlapping fields of view. There is demand to
extend these and other approaches to large environments, where events can happen in
multiple dynamic locations, simultaneously. In practice, many such large environments
are sporadic: events only take place in a few regions of interest (ROIs), separated by re-
gions of space where nothing of interest happens. If the locations of the ROIs are static,
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acceptable results can be obtained by straightforward replication of static camera se-
tups used for small environments. However, if the locations of the ROIs are dynamic,
coverage needs to be ensured throughout the entire volume. Using an increasing num-
ber of fixed cameras is impractical due to concerns over increased requirements in
terms of computation and monetary cost, bandwidth and storage.

One practical solution to this problem is using active cameras to cover sporadic
environments. Active cameras have been used in surveillance [Collins et al. 2000] and
in computer vision fields such as motion capture [Davis 2002] and robotics [Davison
and Murray 2002]. What makes them versatile is their capability to change their pan
and tilt settings to aim in the direction of dynamic ROIs, and zoom in or out to best
enclose the ROIs in their field of view. However, this versatility comes at a price: in order
to capture dynamic events, active cameras need to be controlled online, in real time.
Control decisions need to be made as events are happening, and to take into account
factors such as target dynamics and camera capabilities, as well as requirements from
the computer vision algorithms the images are captured for, such as preferred camera
configurations, capture durations and image resolutions.

We present an approach that controls a network of active cameras online, in real
time, such that they capture multiple events taking place simultaneously in a sporadic
environment and produce the best possible images for processing using computer vision
algorithms. We approach camera control as an optimization problem over the space of
possible camera configurations (combinations of camera settings) and over time, under
constraints derived from knowledge about the cameras, the predicted ROI trajectories
and the computer vision algorithms the captured images are intended for. Optimization
methods rely on objective functions that quantify the “goodness” of a candidate solution.
For camera control, this objective function is a performance metric that evaluates
dynamic, evolving camera configurations over time.

The rest of the article is organized as follows. In Section 2 we present a few perfor-
mance metrics and touch on their suitability for use with our method. We also list some
previous camera control methods encountered in surveillance applications. Section 3
details our performance metric, and Section 4 describes our control method.
Section 5 briefly describes how we incorporate task requirements into our approach. In
Section 6 we present experimental results. We discuss some future work and conclude
the article in Section 7.

Note: This article is an extended version of the results presented at ICDSC 2011 [Ilie
and Welch 2011], and builds on research conducted for a doctoral thesis [Ilie 2010]. It
presents the progress made in the meantime, with an emphasis on the practical details
needed to understand, duplicate and extend our results. Readers interested in more
details on the theoretical aspects of our approach are referred to the thesis mentioned.

2. PREVIOUS WORK

2.1. Performance Metrics

Many researchers have attempted to express the intricacies of factors such as place-
ment, resolution, field of view, focus, etc. into metrics that could measure and predict
camera performance in diverse domains such as camera placement [Tarabanis et al.
1995], camera selection and view planning. We list a few performance metrics from
these domains in the following.

Wu et al. [1998] use the the 2D quantization error on the camera image plane to
estimate the uncertainty in the 3D position of a point when using multiple cameras.
They model the quantization error geometrically, using pyramids, and the uncertainty
region as an ellipsoid around the polyhedral intersection of the pyramids. The article
presents a computational technique for determining the uncertainty ellipsoid for an
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arbitrary number of cameras. Finally, the volume of the ellipsoid is used as a perfor-
mance metric. Chen [2002] improves this metric by taking into account probabilistic
occlusion, and applies it to optimally place cameras for motion capture. Davis [2002]
uses the resulting fixed camera arrangement in combination with steering four pan-tilt
cameras for mixed-scale motion recovery. He uses gradient descent to find nearby local
minima and avoid large camera maneuvers, and prediction to alleviate the latency in
camera response time.

Olague and Mohr [2002] present an approach for camera network design to obtain
minimal errors in 3D measurements. Error propagation is analyzed to obtain an op-
timization criterion. The camera projection model is used to express the relationship
between 2D and 3D points, and the error is assumed to come only from image mea-
surements. The covariance matrix of the 3D points is approximated using a Taylor
expansion, and the maximum eigenvalue is used as the optimization criterion. Opti-
mization is performed using a genetic algorithm, incorporating geometric and optical
constraints such as occlusion.

Chowdhury and Chellappa [2004] address the problem of many algorithms selecting
and processing more data than necessary in an attempt to overcome unacceptable
performance in their results. They introduce an information-theoretic criterion for
evaluating the performance of a 3D reconstruction by considering the change in mutual
information between a scene and its reconstructions.

Ram et al. [2006] propose a performance metric based on the probability of accom-
plishing a given task for placing sensors in a system of cameras and motion sensors.
The task is capturing frontal information of a symmetric target moving inside a convex
region. Tasks are first decomposed into two subtasks: object localization and image
capture. Prior knowledge about the sensors is used to assess the suitability of each
sensor for each subtask, forming a performance matrix. Interaction among sensors is
decided using the matrix such that assigning sensors to subtasks leads to maximum
overall performance. Camera performance is evaluated as the probability of capturing
the frontal part of the symmetric object. Object orientation is modeled across a plane
as a uniformly-distributed random variable. Motion sensors are transmitter-receiver
pairs, placed on a grid. A trade-off between grid density and camera field of view is
presented. A performance metric is computed as the capture probability at each grid
point, averaged over the entire grid.

Bodor et al. [2005] compute the optimal camera poses for maximum task observability
given a distribution of possible target trajectories. They develop a general analytical
formulation of the observation problem, in terms of the statistics of the motion in
the scene and the total resolution of the observed actions. An optimization approach is
used to find the internal and external camera parameters that optimize the observation
criteria. The objective function being optimized is directly related to the resolution of
the targets in the camera images, and takes into account two factors that influence it:
the distance from the camera to each target’s trajectory and the angles that lead to
forshortening effects.

Mittal and Davis [2004] compute the probability of visibility in the presence of dy-
namic occluders, under constraints such as field of view, fixed occluders, resolution,
and viewing angle. Optimization is performed using cost functions such as the num-
ber of cameras, the occlusion probabilities, and the number of targets in a particular
region of interest. Mittal and Davis [2008], introduce a framework for incorporating
visibility in the presence of random occlusions into sensor planning. The probability of
visibility is computed for all objects from all cameras. A deterministic analysis for the
worst case of uncooperative targets is also presented. Field of view, prohibited areas,
image resolution, algorithmic (such as stereo matching and background appearance)
and viewing angle constraints are incorporated into sensor planning, then integrated
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with probabilistic visibility into a capture performance metric. The metric is evaluated
at each location, for each orientation and each given sensor configuration, and aggre-
gated across space. The aggregated metric value is then optimized using simulated
annealing and genetic algorithms.

Denzler et al. [Denzler and Brown 2001; Denzler et al. 2001] present an informa-
tion theoretic framework for camera data selection in 3D object tracking and derive a
performance metric based on the uncertainty in the state estimation process. Denzler
et al. [2002] derive a performance metric based on conditional entropy to select the
camera parameters that result in sensor data containing the most information for the
next state estimation. Denzler et al. [2003] present a performance metric for selecting
the optimal focal length in 3D object tracking. The determinant of the a posteriori state
covariance matrix is used to measure the uncertainty derived from the expected condi-
tional entropy given a particular action. Visibility is taken into account by considering
whether observations can be made and using the resulting probabilities as weights.
Optimizing this metric over the space of possible camera actions yields the best actions
to be taken by each camera. Deutsch et al. [2004, 2005] improve the process by using
sequential Kalman filters to deal with a variable number of cameras and occlusions,
predicting several steps into the future and speeding up the computation. Sommer-
lande and Reid add a Poisson process to model the potential of acquiring new targets
by exploring the scene [Sommerlade and Reid 2008b], examine the resulting camera
behaviors when zooming [Sommerlade and Reid 2008a], and evaluate the effect on the
performance of random and first-come, first-serve (FCFS) scheduling policies [Sommer-
lade and Reid 2008c]. The performance metric presented in Section 3 is similar to the
metric by Denzler et al., but it uses a norm of the error covariance instead of entropy
as the metric value, and employs a different aggregation method.

Allen [2007] introduces steady-state uncertainty as a performance metric for optimiz-
ing the design of multisensor systems. In previous work [Ilie et al. 2008] we illustrate
the integration of several performance factors into this metric and envision applying
it to 3D reconstruction using active cameras.

Application domains such as camera placement and selection make use of perfor-
mance metrics custom-tailored to their requirements. While many existing metrics
take into account several quality factors (such as image resolution, focus, depth of
field, field of view, visibility, object distance and incidence angle) that have been shown
to influence performance in a number of tasks, they are not easily generalized to apply
to other tasks. Moreover, many previous approaches focus on just a few of these factors,
and none explicitly describe how to account for all the factors, as well as other factors
that are important in computer vision applications when using active cameras, such as
issues due to the dynamic nature of active cameras (such as mechanical noise, repeata-
bility and accuracy of camera settings), and specific requirements of each computer
vision algorithm (such as preferred camera configurations). Our metric accounts for
these factors, and is general enough to easily apply to both surveillance and computer
vision tasks. In Section 3 we briefly mention where and how each factor is integrated
into our metric. The interested reader can find a more detailed discussion on quality
factors in Chapter 5 of Ilie [2010].

2.2. Camera Control Methods

Camera control methods are typically encountered in surveillance applications, and
many are based on the adaptation of scheduling policies, algorithms and heuristics
from other domains to camera control. We lists a few example methods here.

Costello et al. [2004] present and evaluate the performance of several scheduling
policies in a master-slave surveillance configuration (a fixed camera and a PTZ camera).
Their goal is to capture data for identifying as many people as possible, and it can
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be broken into two objectives: capture high resolution images for as many people as
possible and view each person for as long as possible. The proposed solution is to
observe each target for an empirically-determined period of time, then move on to the
next target, possibly returning to the first target if it is still in the scene. The camera
scheduling problem is considered similar to a packet routing problem: the deadline and
amount of time to serve become known once a target enters the scene. However, the
deadlines are only estimated, serving a target for a preset time does not guarantee the
task is accomplished, and a target can be served multiple times. This can be treated
as a multiclass scheduling problem, with class assignments done based mainly on the
number of times a target has been observed (other factors can be taken into account).
The paper evaluates several greedy scheduling policies. The static priority (always
choose from the highest class) policies analyzed are: random, first come, first serve
(FCFS+), earliest deadline first (EDF+). Dynamic priority policies include EDF, FCFS
and current minloss throughput optimal (CMTO). CMTO assigns a weight to each class,
and tries to minimize the loss due to dropped packets. Scheduling is done by looking
ahead to a horizon (cut) specified by the earliest time a packet will be dropped based on
the packet deadlines. A list is formed with the highest weight packets with deadlines
earlier than the cut, and the packet that results in the most weight served by the cut
is selected. EDF+ is shown to outperform FCFS+ and CMTO in percentage of targets
captured, but is worst in terms of the number of targets captured multiple times.

Qureshi and Terzopoulos [2005a, 2005b, 2007] present a Virtual Vision paradigm
for the design and evaluation of surveillance systems. They use a virtual environment
simulating a train station, populated with synthetic autonomous pedestrians. The
system employs several wide field-of-view calibrated static cameras for tracking and
several PTZ cameras for capturing high-resolution images of the pedestrians. The PTZ
cameras are not calibrated. A coarse mapping between 3D locations and gaze direction
is built by observing a single pedestrian in a preprocessing step. To acquire images of
a target, a camera would first choose an appropriate gaze direction at the widest zoom,
then fixate and zoom in after the target is positively identified. Fixation and zooming
are purely 2D and do not rely on 3D calibration. Local Vision Routines (LVRs) are
employed for pedestrian recognition, identification, and tracking. The PTZ controller
is built as an autonomous agent modeled as a finite state machine, with free, tracking,
searching and lost as possible states. When a camera is free, it selects the next sensing
request in the task pipeline. The authors note that, while bearing similarities to the
packet routing problem as described by Costello et al. [2004], scheduling cameras has
two significant characteristics that set it apart. First, there are multiple “routers” (in
this case, PTZ cameras), an aspect the authors claim is better modeled using scheduling
policies for assigning jobs to different processors. Second, camera scheduling must
deal with additional sources of uncertainty due to the difficulty estimating when a
pedestrian might leave the scene and the amount of time for which a PTZ camera
should track and follow a pedestrian to record video suitable for the desired task.
Third, different cameras are not equally suitable for a particular task, and suitability
varies with time. A weighted round-robin scheduling scheme with a FCFS+ priority
policy is proposed in Qureshi and Terzopoulos [2005a] for balancing two goals: getting
high resolution images and viewing each pedestrian for as long or as many times as
possible. Weights are modeled based on the adjustment time and the camera-pedestrian
distance. The danger of a majority of the jobs being assigned to the processor with the
highest weight is avoided by sorting the PTZ cameras according to their weights with
respect to a given pedestrian and assigning the free PTZ camera with the highest
weight to that pedestrian. Ties are broken by selecting the pedestrian who entered the
scene first. Other possible tie breaking options like EDF+ were not considered because
they require an estimate of the exit times of the pedestrians from the scene, which
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are difficult to predict. The amount of time a PTZ camera spends viewing a pedestrian
depends upon the number of pedestrians in the scene, with a minimum set based on the
number of frames required to accomplish the surveillance task. Weighted scheduling
is shown to outperform nonweighted scheduling.

A common surveillance problem is the acquisition of high-resolution images of as
many targets as possible before they leave the scene. A possible solution is to translate
the problem into a real-time scheduling problem with deadlines and random new target
arrivals. Del Bimbo and Pernici [2005] and Bagdanov et al. [2005] propose limiting the
temporal extent of the schedules, due to the stochastic nature of the target arrivals and
the requirement that a schedule be computed in real time. They also propose taking
into account the physical limitations of PTZ cameras, specifically the fact that zooming
is much slower than panning and tilting. The camera is modeled as an interceptor with
limited resources (adjustment speeds), and the target dynamics are assumed known or
predictable. The overall stochastic problem is decomposed into smaller deterministic
problems for which a sequence of saccades can be computed. The problem of choosing
the best subset of targets for a camera to intersect in a given time is an instance of Time
Dependent Orienteering (TDO): given a set of moving targets and a deadline, find the
subset with the maximum number of targets interceptable before the deadline. TDO
is a problem for which no polynomial-time algorithm exists. The optimal camera tour
for a set of targets is computed by solving a Kinetic Traveling Salesperson Problem
(KTSP): given a set of targets that move slower than the camera and the camera’s
starting position, compute the shortest time tour that intercepts all targets. KTSP has
been shown to be NP-hard. After limiting the schedule duration, KTSP is reformulated
as a sequence of TDO problems. Targets are placed in a queue sorted on their predicted
residual time to exit the scene, and an instance of TDO is solved by exhaustive search
for the first 7−8 targets in the queue.

Naish et al. [Naish et al. 2001, 2003; Bakhtari et al. 2006] propose applying principles
from dispatching service vehicles to the problem of optimal sensing. They first propose
a method for determining the optimal initial sensor configuration, given information
about expected target trajectories [Naish et al. 2001]. The proposed method improves
surveillance data performance by maneuvering some of the sensors into optimal initial
positions, mitigating measurement uncertainty through data fusion, and positioning
the remaining sensors to best react to target movements. As a complement of this work,
the authors present a dynamic dispatching methodology that selects and maneuvers
subsets of available sensors for optimal data acquisition in real time [Naish et al.
2003]. The goal is to select the optimal sensor subset for data fusion by maneuvering
some sensors in response to target motion while keeping other sensors available for
future demands. Demand instants are known a priori, and scheduling is done up to a
rolling horizon of demand instants. Sensor fitness is assessed using a visibility measure
that is inversely proportional to the measurement uncertainty when unoccluded and
zero otherwise. Aggregating the measurements for several sensors is done using the
inverse of the geometric mean of the visibility measures for all the sensors involved. A
greedy strategy is used to assign the best k sensors for the next demand instant, then
to assign remaining sensors to subsequent demand instants until no sensors remain
or the rolling horizon is reached. The sensor parameters are adjusted via replanning
when the target state estimate is updated. In Bakhtari et al. [2006] describe an updated
implementation using vehicle dispatching principles for tracking and state estimation
of a single target with four PTZ cameras and a static overview camera.

Lim et al. [2005, 2007] propose solving the camera scheduling problem using dynamic
programming and greedy heuristics. The goal of their approach is to capture images
that satisfy task-specific requirements such as: visibility, movement direction, camera
capabilities, and task-specific minimum resolution and duration. They propose the
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concept of task visibility intervals (TVIs), intervals constructed from predicted target
trajectories during which the task requirements are satisfied. TVIs for a single camera
are combined into MTVIs (multiple TVIs). Single camera scheduling is solved using
dynamic programming (DP). A directed acyclic graph (DAG) is constructed with a
common source and a common sink, (M)TVIs as nodes, and edges connecting them if
the slack start time of one precedes the other. DP starts from the DAG sink, adjusts the
weights of the edges and terminates when all nodes are covered by a path. Multicamera
scheduling is NP-hard, and is solved using a greedy approach, picking the (M)TVI that
covers the maximum number of uncovered tasks. A second proposed approach uses
branch and bound algorithm that runs DP on a DAG with source-sink subgraphs for
each camera, connected by links from the sinks of some subgraphs to the sources of
others. The greedy approach is shown to have significantly decreasing performance
when the number of cameras increase.

Yous et al. [2007] propose a camera assignment scheme based on the visibility anal-
ysis of a coarse 3D shape produced in a preprocessing step to control multiple Pan/Tilt
cameras for 3D video of a moving object. The optimization is then extended into the
temporal domain to ensure smooth camera movements. The interesting aspect of this
work is that it constructs its 3D results from close-up images of parts of the object being
model, instead of trying to fit the entire object within the field of view of each camera.

Krahnstoever et al. [2008] present a system for controlling four PTZ cameras to
accomplish a biometric task. Target positions are known from a tracking system with
4 fixed cameras. Scheduling is accomplished by computing plans for all the cameras:
lists of targets to cover at each time step. Plans are evaluated using a probabilistic
performance objective function to optimize the success probability of the biometric
task. The objective function is the probability of success in capturing all targets, which
depends on a quantitative measure for the performance of each target capture. The
capture performance is evaluated as a function of the incidence angle, target-camera
distance, tracking performance (worse near scene boundaries), and PTZ capabilities. A
temporal decay factor is introduced to allow repeated capture of a target. Optimization
is performed asynchronously, via combinatorial search, up to a time horizon. Plans
are constructed by iteratively adding camera-target assignments, defining a directed
acyclic weighted graph, with partial plans as nodes and difference in performance as
edge weights. Plans that cannot be expanded further are terminal nodes and candidate
solutions. A best-first strategy is used to traverse the graph, followed by coordinate
ascent optimization through assignment changes. All plans are continuously revised
at each time instant. New targets are added upon detection from monitoring a number
of given entry zones.

Broaddus et al. [2009] present ACTvision, a system consisting of a network of PTZ
cameras and GPS sensors covering a single connected area that aims to maintain visi-
bility of designated targets. They use a joint probabilistic data association algorithm to
track the targets. Cameras are tasked to follow specific targets based on a cost calcula-
tion that optimizes the task-camera assignment and performs hand-offs from camera
to camera. They compute a “cost matrix” C that aggregates terms for target visibility,
distance to maneuver, persistence in covering a target and switching to an already
covered target. Availability is computed as a “forbidden matrix” F. They develop two
optimization strategies: one that uses the minimum number of cameras needed, and
another that encourages multiple views of a target for 3D reconstruction. The task to
camera assignment is performed using an iterative greedy k-best algorithm.

Natarajan et al. [2012] propose a scalable decision-theoretic approach based on a
Markov Decision Process framework that allows a surveillance task to be formulated
as a stochastic optimization problem. Their approach covers mtargets using n cameras,
where n � m, with the goal of maximizing the number of targets observed. They
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discretize both the space of target locations, directions and velocities, and the space of
camera pan tilt and zoom settings. For each camera setting, they precompute the target
locations within the camera’s field of view and at the appropriate distance range to allow
for biometric tasks to be performed on the captured images. Cameras are assumed
independent of each other, as are targets. Target transition probability distributions,
as well as target visibilities given all possible camera states are precomputed. These
assumptions and precomputations result in an online computation time linear in the
number of targets. Simulated (up to 4 cameras and up to 50 targets) and real (3 cameras
and 6 targets) experiments are presented to validate the approach, which is compared
to the approach in Krahnstoever et al. [2008].

Sommerlande and Reid [2010] present a probabilistic approach to control multiple
active cameras observing a scene. Similar to our approach, they cast control as an
optimization problem, but their goal is to maximize the expected mutual information
gain as a measure for the utility of each parameter setting and each goal. The approach
allows balancing conflicting goals such as target detection and obtaining high resolution
images of each target. The authors employ a sequential Kalman filter for tracking
targets in a ground plane. Experiments demonstrate the emergence of useful behaviors
such as camera hand-off, acquisition of close-ups and scene explorations, without the
use of handcrafted rules. A comparison is presented with independent scanning, FCFS,
and random policies, using three metrics: resolution increase, new target detection
latency and trajectory fragmentation. Under the assumption that no observation can
be detrimental, they avoid the camera-target assignment problem by assigning all
cameras to all targets. No attempt is made to reduce the size of the search space.

Another related area for camera control is distributed surveillance, where decisions
are arrived at through contributions from collaborating or competing autonomous
agents. Proponents of distributed approaches argue that overall intelligent behav-
ior can be the result of the interaction between many simple behaviors, rather than
the result of some powerful but complicated centralized processing. Examples of the
some of the issues and reasoning behind distributed processing as implemented in 3rd

generation surveillance systems can be found in [Marcenaro et al. 2001; Oberti et al.
2001; Remagnino et al. 2003].

Matsuyama and Ukita [2002] describe a distributed system for real-time multitarget
tracking. The system is organized in three layers (inter-agency, agency and agent).
Agents dynamically interchange information with each other. An agent can look for new
targets or and can join an agency which is already tracking a target. When multiple
targets get too close to be distinguishable from each other, the agencies tracking them
are joined until the targets separate.

Qureshi and Terzopoulos [2005b, 2007] apply their Virtual Vision paradigm for the
design and evaluation of a distributed surveillance system. The Local Vision Rou-
tines (LVRs) and state model from the centralized system described in Qureshi and
Terzopoulos [2005a] are still employed. However, cameras can organize into groups to
accomplish tasks using local processing and intercamera communication with neigh-
bors in wireless range. The node that receives a task request is designated as the
supervisor and it broadcasts the request to its neighbors. While camera network topol-
ogy is assumed as known, no scene geometry knowledge is assumed, only that a target
can be identified by different cameras with reasonable accuracy. Each camera com-
putes its own relevance for a task, based on whether it is free or not, how well it can
accomplish the task, how close it is to the limits of its capabilities, and reassignment
avoidance. The supervisor forms a group and greedily assigns cameras to tasks, giving
preference to cameras that are free. Cameras are removed from a group when they
cease to be relevant to the group task. Intergroup conflicts are solved at the super-
visor of one of the conflicting groups as a constraint satisfaction problem, and each
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camera is ultimately assigned to a single task. Communication and camera failures
are accounted for, but supervisor failure is solved by creating new groups and merg-
ing old groups. No performance comparison is attempted between the centralized and
distributed scheduling approaches.

In order to ensure adequate coverage of multiple events taking place in a sporadic,
large environment, active cameras need to be controlled online, in real time, automat-
ically. Many past surveillance approaches that deal with controlling active cameras
are master-slave camera setups, aimed at specific surveillance tasks such as tracking
or biometric tasks such as face recognition. These approaches work well in their do-
mains, but are unable to provide the best imagery for complex computer vision tasks
such as 3D reconstruction and motion capture, because they are not designed to take
into account their specific requirements and the factors that influence their results.
For example, typical surveillance applications usually coordinate cameras only to en-
sure proper hand-offs of targets between them or to prevent redundant assignments
of multiple cameras to the same target. In contrast, our approach is designed for col-
laborative, simultaneous coverage of the same targets by multiple cameras to suit a
specific computer vision task, but is general enough to be easily adapted to surveillance
tasks. Also, while a few previous approaches take into account the time it takes cam-
eras to change configurations (the transition time), none take into account the fact that
some computer vision algorithms require precise camera calibrations, which require
capturing for at least a minimum dwell duration.

When designing our approach, we started with a list of desirable features we
wanted it to exhibit. The following list enumerates a few of the features of our ap-
proach, together with the approaches referenced in this section that also exhibit these
features.

—Evaluate the performance of a camera configuration [Naish et al. 2001, 2003;
Bakhtari et al. 2006; Lim et al. 2005, 2007; Qureshi and Terzopoulos 2005a,
2007; Krahnstoever et al. 2008; Broaddus et al. 2009; Matsuyama and Ukita 2002;
Natarajan et al. 2012; Sommerlade and Reid 2010].

—Deal with static and dynamic occlusions [Lim et al. 2005, 2007; Broaddus et al. 2009;
Sommerlade and Reid 2010].

—Attempt to minimize the time spent by cameras transitioning instead of cap-
turing [Naish et al. 2001, 2003; Bakhtari et al. 2006; Bimbo and Pernici 2005;
Bagdanov et al. 2005; Lim et al. 2005, 2007; Qureshi and Terzopoulos 2005a, 2007;
Krahnstoever et al. 2008].

—Consider and compare present and future configurations Naish et al. 2001, 2003;
Bakhtari et al. 2006; Lim et al. 2005, 2007; Krahnstoever et al. 2008].

—React to to changes in the ROI trajectories [Naish et al. 2001, 2003; Bakhtari et al.
2006; Lim et al. 2005, 2007; Costello et al. 2004; Krahnstoever et al. 2008; Broaddus
et al. 2009; Matsuyama and Ukita 2002; Natarajan et al. 2012; Sommerlade and
Reid 2010].

—Take into account the time it takes for camera settings to change [Naish et al. 2001,
2003; Bakhtari et al. 2006; Bimbo and Pernici 2005; Bagdanov et al. 2005; Lim et al.
2005, 2007; Qureshi and Terzopoulos 2005a, 2007; Costello et al. 2004; Krahnstoever
et al. 2008; Broaddus et al. 2009].

—Deals with new targets entering the scene [Bimbo and Pernici 2005; Bagdanov et al.
2005; Lim et al. 2005, 2007; Costello et al. 2004; Krahnstoever et al. 2008; Broaddus
et al. 2009; Matsuyama and Ukita 2002; Natarajan et al. 2012; Sommerlade and
Reid 2010].

—Can assign one camera to view multiple targets [Costello et al. 2004; Broaddus et al.
2009; Matsuyama and Ukita 2002; Sommerlade and Reid 2010].
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—Can assign multiple cameras to view a single target [Naish et al. 2001, 2003;
Bakhtari et al. 2006; Lim et al. 2005, 2007; Qureshi and Terzopoulos 2005a, 2007;
Krahnstoever et al. 2008; Broaddus et al. 2009; Matsuyama and Ukita 2002;
Sommerlade and Reid 2010].

3. PERFORMANCE METRIC

For many computer vision applications, task performance of a camera configuration
depends on its ability to resolve 3D features in the working volume. We measure this
ability with our performance metric by using the uncertainty in the state estimation
process. The metric is inspired by the performance metric introduced by Allen and
Welch [2005], Allen [2007] and the pioneering work of Denzler et al. [Denzler and
Zobel 2001; Denzler et al. 2001; Denzler and Brown 2001, 2002; Denzler et al. 2002].
In this section we provide short introductions to state-space models and the Kalman
filter, then briefly describe the process by which we compute the uncertainty and arrive
at a numeric value suitable for use in our optimization. The interested reader can find
more details in [Welch et al. 2007; Ilie et al. 2008; Ilie and Welch 2011], and Chapter 5
of [Ilie 2010].

3.1. State-Space Models

State-space models [Kailath et al. 2000] are used in applications such as Kalman
filter-based tracking to mathematically describe the expected target motion and the
measurement system. In state-space models, variables (states, inputs and outputs) are
represented using vectors, and equations are represented as matrices.

The internal state variables are defined as the smallest possible subset of system
variables that can represent the entire system state at a given time. Formally, at time
step t, the system state is described by the state vector x̄t ∈ R

n. For example in the
case of tracking, the user’s 3D position is represented by the vector x̄t = [x y z]T. If
orientation is also part of the state, the vector becomes x̄t = [x y z φ θ ψ]T, where φ,
θ and ψ are roll, pitch and yaw Euler angles (rotation around the x-, y- and z-axis
respectively). The state vector may also be augmented with hidden variables such as
target speed and acceleration, if appropriate, depending on the expected characteristics
of the target motion. Given a point in the state space, a mathematical motion model
can be used to predict how the target will move over a given time interval. Similarly, a
measurement model can be used to predict what will be measured by each sensor, such
as 3D GPS coordinates or 2D camera image coordinates.

3.1.1. Motion Model. A motion model (also called process model) describes the expected
target motion. Traditionally, such models have been described in terms of a physical
parameter that stays constant over time, resulting in models for constant position (CP),
constant velocity (CV) and constant acceleration (CA) [Chang and Tabaczyinski 1984].
These traditional stochastic models are shown in Figure 1.

In the process of stochastic estimation, integrated normally-distributed random noise
is used to replace the constant component of each model. For example, the CV model
becomes x = x0 + vt, with velocity v = ∫

a, and acceleration a is a normally-distributed
variable a ∼ N (0, q). Incorporating this random component into each model results
in the models known as Position (P), Position-Velocity (PV) and Position-Velocity-
Acceleration (PVA), respectively [Welch et al. 2007]. Figure 2 uses integrals to illustrate
the relation between position x with its temporal derivatives and the “driving” noise
source N (0, q) for the P, PV and PVA models.

Choosing the right model for the expected motion plays a crucial role in obtaining
good state estimates. The P model is most appropriate for situations where there is
little to no motion. The PV model is used when the motion is fairly constant. The PVA
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Fig. 1. Traditional motion models, from [Welch et al. 2007].

Fig. 2. Stochastic motion models, from [Welch et al. 2007].

model is used for situations in which there are sudden, rapid changes in speed and
direction. In Section 3.3 of her thesis [Allen 2007], Allen presents a detailed discussion
of these models and gives some examples where they are applied.

For a particular state vector x̄, the change in state over time can be modeled using
deterministic and random components as follows:

x̄t+1 = f (x̄t) + w̄. (1)

The state transition function f is the deterministic component that relates the state
at time step t to the state at time step t + 1. The random variable w̄ ∼ N (0, Q) is called
process noise. In practice, f is linearized about the point of interest x̄ in the state space
by computing the corresponding Jacobian matrix A :

A = ∂

∂ x̄
f (x̄)

∣∣∣
x̄
. (2)

This results in the following discrete-time linear equation:

x̄t+1 = Ax̄t + w̄. (3)

While such linearizations can lead to sub-optimal results, they provide a computa-
tionally efficient means for state estimation (see Allen [2007], Section 6.1.1).

The continuous-time equivalent of Equation (3) is the following:

dx̄
dt

= Acx̄ + qc. (4)

Here Ac is an n × n continuous-time state transition matrix, and q̄c =
[0, . . . , 0,N (0, q)]T is an n× 1 continuous-time process noise vector with corresponding
n×n noise covariance matrix Qc = E{qc qT

c } , where E {} indicates expected value [Welch
et al. 2007].

As the actual noise signal w̄ in Equation (3) is not known, designers typically esti-
mate the corresponding discrete-time covariance matrix Q instead, by integrating the
continuous-time process in Equation (4). The solution to this integration is given in
[Grewal and Andrews 1993] as:

Q =
∫ δt

0
eAct QceAT

c tdt. (5)
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Table I. Parameters for the P, PV and PVA Models

Model x̄ Ac Qc Q

P [x]
[

0
] [

q
]

[q δt]

PV

[
x
_x

] [
0 1
0 0

] [
0 0
0 q

] [
q δt3

3 q δt2

2

q δt2

2 q δt

]

PVA

⎡
⎢⎣ x

_x
ẍ

⎤
⎥⎦

⎡
⎢⎣ 0 1 0

0 0 1
0 0 0

⎤
⎥⎦

⎡
⎢⎣ 0 0 0

0 0 0
0 0 q

⎤
⎥⎦

⎡
⎢⎣

q δt5

20 q δt4

8 q δt3

6

q δt4

8 q δt3

3 q δt2

2

q δt3

6 q δt2

2 q δt

⎤
⎥⎦

Source: [Welch et al. 2007].

Using the corresponding parameters Ac and Qc, matrix Q can be computed for the P,
PV and PVA models [Welch et al. 2007]. Table I shows the continuous-time parameters
(the state x, the transition matrix Ac and the process noise covariance matrix Qc) and
the discrete-time covariance matrix Q for the P, PV and PVA models. Welch and Bishop
[2001] discuss the process of choosing q.

3.1.2. Measurement Model. Similarly to the process model, the measurements obtained
from a sensor can be modeled using a deterministic and a random component. The
observation at time step t is the measurement vector zt ∈ R

m . It is related to the state
via the following equation:

z̄t = h (x̄t, āt) + v̄. (6)

The nonlinear measurement function h is the deterministic component that relates
the state x̄t to the measurement z̄t. The vector parameter āt is the action taken at
time step t, which comprises all parameters that affect the observation process. The
action is considered performed before the measurement is taken. The random variable
v̄ ∼ N (0, R) represents the measurement noise. Just as with the state transition
function f , the measurement function h is linearized about the point of interest x̄ in
the state space by computing the corresponding Jacobian matrix H:

H = ∂

∂ x̄
h (x̄)

∣∣∣
x̄
, (7)

The measurement model becomes:

z̄t = Hx̄t + v̄. (8)

In practice, Jacobian matrix H and measurement noise covariance matrix R are
determined through sensor calibration.
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The actual noise signal v̄ is not known or even estimated. Instead, designers typi-
cally estimate the corresponding noise covariance matrix R, and use it to weight the
measurements and to estimate the state uncertainty.

State-space models allow taking into account measurements from multiple, heteroge-
neous sensors. Allen describes such a system in her thesis (Allen [2007], Section 5.2.3).
In Section 6, we present experimental evaluations using a hybrid system that takes
measurements from multiple cameras and GPS sensors.

In the case of a GPS sensor, the measurement function h transforms a 3D point
(latitude, longitude, altitude) into a local 3D coordinate system (x, y, z) used for tracking
or 3D reconstruction. This transformation is a 3 × 3 linear transform H that can be
used directly in Equation (8).

In the case of cameras, the measurement function h is embodied by the camera’s
projection matrix Proj, which projects a homogeneous 3D point [x y z 1]T to a homo-
geneous 2D image pixel [ u′ v′ 1 ]T as follows:

⎡
⎣ u

v

w

⎤
⎦ = Proj

⎡
⎢⎢⎣

x
y
z
1

⎤
⎥⎥⎦ (9)

u′ = u/w (10)
v′ = v/w. (11)

The projection matrix Proj is typically determined through a geometric calibration
process like the one in Zhang [1999]. One common way to define matrix Proj is as
follows:

Proj = K
[
Rot|Tr

]
. (12)

The 3×3 rotation matrix Rot and the 3×1 translation vector Tr represent the camera
extrinsic parameters, and specify the transform between the world coordinate system
and the camera’s coordinate system. The 3 × 4 matrix [Rot|Tr] is the concatenation
of matrix Rot and vector Tr. The intrinsic parameters are represented by matrix K, a
3 × 3 matrix of the form:

K =
⎡
⎣ fx s cx

0 fy cy

0 0 1

⎤
⎦ . (13)

fx and fy are the camera focal lengths, measured in pixels, in the x and y directions.
s is the skew, typically zero for cameras with square pixels. cx and cy are the coordinates
of the image center in pixels.

Since the camera measurement process embodied by the computation of u′ and v′ is
not linear, the following Jacobian is used in Equation (8).

H =

⎡
⎢⎢⎣

∂u′

∂x
∂u′

∂y
∂u′

∂z
∂v′

∂x
∂v′

∂y
∂v′

∂z

⎤
⎥⎥⎦ . (14)

The measurement model is where some performance factors are integrated into the
metric. The camera field of view and image resolution are integrated into the Jacobian
H via the camera projection model. Noise due to focus, mechanical camera components,
and target distance is added into the noise covariance matrix R. The interested reader
is referred to Section 5.4 of Ilie [2010] for more details.
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3.2. The Kalman Filter

The Kalman Filter [Welch and Bishop 2001] is a stochastic estimator for the instanta-
neous state of a dynamic system that has been used both for tracking and for motion
modeling [Krahnstoever et al. 2001]. It can also be used as a tool for performance anal-
ysis [Grewal and Andrews 1993] when actual measurements (real or simulated) are
available. This section provides a brief introduction.

3.2.1. Equations. The Kalman filter consists of a set of mathematical equations that
implement a predictor-corrector type estimator. Its equations can be described using
matrices A, H, Q and R defined in the state-space models in Section 3.1, and the initial
state covariance P0. The equations for the predict and correct steps are as follows.

(1) Time Update (Predict Step).
—Project state ahead:

x̂−
t = f (x̂t−1, t − 1) . (15)

x̂−
t ∈ R

n is the a priori state estimate at time step t, x̂t−1 ∈ R
n is the a posteriori state

estimate at time step t − 1, given measurement ¯zt−1, and f is the state transition
function.
—Project error covariance ahead:

P−
t = At Pt−1 AT

t + Q. (16)
At is the Jacobian matrix of partial derivatives of the state transition function f
with respect to x at time step t.

(2) Measurement Update (Correct Step) – can only be performed if a measurement is
available.
—Compute Kalman gain:

Kt = P−
t HT

t

(
Ht P−

t HT
t + R

)−1
. (17)

Ht is the Jacobian matrix of partial derivatives of h with respect to x at time step t.
Since h is a function of the selected action āt, both Ht and Kt are functions of āt.
—Update state estimate with measurement z̄t:

x̂+
t = x̂−

t + Kt
(
z̄t − h

(
x̂−

t , at
))

. (18)
The expression Kt(z̄t − h(x̂−

t , āt)) is called innovation, and quantifies the change in
state over a single time step.
—Update error covariance:

P+
t = (I − Kt Ht) P−

t . (19)

Note that the a posteriori state covariance P+
t does not depend on the measurement

z̄t. This allows evaluation of P+
t over time in absence of measurements.

3.2.2. Sequential Evaluation. The sequential Kalman filter is a sequential evaluation
method for the Kalman filter. The time update (predict) phase is identical to the one
in the standard Kalman filter. The sequential evaluation takes place in the measure-
ment update (correct) phase. Each sensor s = 1 . . . c is given its own subfilter. The
estimate x̂−

t , P−
t from the predict phase becomes the a priori state estimate for the first

subfilter:

x̂−(1)
t = x̂−

t (20)

P−(1)
t = P−

t . (21)

Each sensor s incorporates its measurement z̄t
(s), as in Equation (18):

x̂+(s)
t = x̂−(s)

t + K(s)
t

(
z̄t

(s) − h(s)(x̂−(s)
t , āt

(s))). (22)
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The output state x̂+(s)
t of each subfilter becomes the input state x̂−(s+1)

t for the next
subfilter:

x̂−(s+1)
t = x̂+(s)

t . (23)

Equations (22) and (23) can be aggregated into a single expression for the entire set
of c subfilters:

x̂+(c)
t = x̂−(1)

t +
c∑

s=1

K(s)
t

(
z̄t

(s) − h(s)(x̂−(s)
t , āt

(s))). (24)

Let C(s)
t be the contribution to the error covariance of each sensor s at time step t,

computed as:

C(s)
t = I − K(s)

t H(s)
t . (25)

The error covariance can be updated with the contribution C(s)
t , as in Equation (19):

P+(s)
t = C(s)

t P−(s)
t . (26)

The output covariance P+(s)
t of each subfilter becomes the input covariance P−(s+1)

t
for the next subfilter:

P−(s+1)
t = P+(s)

t . (27)

Equations (26) and (27) can be aggregated into a single expression for the entire set
of c subfilters:

P+(c)
t =

c∏
s=1

C(s)
t P−(1)

t . (28)

If a sensor does not generate a measurement during a particular time step, the
sequential Kalman filter allows simply skipping incorporating its contribution into
Equations (24) and (28). However, the contribution C(s)

t of each sensor s at time step t
depends on the a priori covariance of subfilter s, so the final a posteriori state x̂+

t = x̂+(c)
t

and covariance P+
t = P+(c)

t depend on the order in which the subfilters are evaluated.
In practice, the effects of ordering are usually ignored.

3.3. Estimating and Predicting Performance

We define the performance of a camera configuration as its ability to resolve features
in the working volume, and measure it using the uncertainty in the state estimation
process. Uncertainty in the state x̄ can be measured using the error covariance P+

t
computed in the Kalman filter Equation (19).

In Ilie et al. [2008], we introduced the concept of surrogate models to allow evaluation
of the metric in state-space only where needed: at a set of 3D points associated with each
ROI. The metric values are aggregated over the state elements in the surrogate model
of each ROI, over each ROI group and over the entire environment. At all aggregation
levels, weights can be used to give more importance to a particular element. The choice
of surrogate model is paramount, as it allows incorporating task requirements into the
metric. Section 5 presents a few examples.

Due to the dynamic nature of the events being captured and the characteristics of
the active cameras used to capture images, time needs to be considered as a dimension
of the search space. Spatial aggregation of metric values over the environment for the
current camera configuration is not sufficient, and future camera configurations need
to be evaluated as well. This results in the performance metric evaluating a plan: a
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temporal sequence of camera configurations up to a planning horizon. The difficulty is
that at each time instant a camera’s measurement can be successful or unsuccessful,
depending on whether the ROI whose position is being measured is visible or not.
Denzler et al. [2002] introduced a way to deal with visibility at each step. Deutsch et al.
[2004] extended this approach to multiple steps into the future using a visibility tree,
and then sped up the evaluation by linearizing the tree and extended the approach to
multiple cameras using a sequential Kalman filter in Deutsch et al. [2006]. We employ
a similar approach, but use a norm of the error covariance P+

t instead of entropy as our
performance metric, and a different method to aggregate it over space and time. As the
metric measures the uncertainty in the state, when comparing camera configurations
smaller values are better.

Our metric computation works in tandem with the Kalman filter that is used to
estimate the ROI trajectories. At each time instant, the filter incorporates the lat-
est measurements from cameras and other sensors, and saves the current estimate
(x−

0 , P−
0 ). This estimate is the starting point for all metric evaluations. To evaluate a

camera plan, we repeatedly perform sequential evaluations of the Kalman filter equa-
tions, stepping forward in time, while using process models to predict ROI trajectories
and updating the measurement models with the corresponding planned camera pa-
rameters. When looking into the future, no actual measurements z̄t are available at
time t, but estimated measurements ẑt = h(x̂−

t , at) can be used instead. Substituting ẑt
for z̄t results in zero innovation. Equation (18) becomes simply:

x̂+
t = x̂−

t . (29)

At each time step, a camera measurement can be successful or not, depending on
a variety of factors such as visibility, surface orientation, etc. If the measurement
is assumed successful, the a posteriori state error covariance P+

t is computed as in
Equation (19). If the measurement is assumed unsuccessful, the measurement update
step cannot be performed, and P+

t = P−
t . The two outcomes can be characterized by

two distributions with the same mean x̂+
t and covariances P+

t and P−
t . Given the

probability that a measurement is successful ms, these distributions can be considered
as components of a Gaussian mixture M [Deutsch et al. 2006]:

M = ms · N (
x̂+

t , P+
t

) + (1 − ms) · N (
x̂+

t , P−
t

)
. (30)

The covariance of the Gaussian mixture M is:

P+′
t = ms · P+

t + (1 − ms) · P−
t = (I − ms · Kt Ht) P−

t (31)

Since the two distributions have the same mean x̂+
t , M is unimodal and can be ap-

proximated by a new Gaussian distribution M′(x̂+
t , P+′

t ), as shown in Deutsch et al.
[2006]. It follows that in order to incorporate the outcome of an observation, one simply
has to compute the success probability and replace the computation of the a poste-
riori error covariance in Equation (19) in the Kalman correct step with the one in
Equation (31). The measurement success probability ms is where performance factors
that affect visibility (such as occlusions and incidence angle) are integrated into the
metric. The interested reader is referred to Section 5.4 of [Ilie 2010] for more details.

To aggregate over time, Deutsch et al. [2004, 2006] propose simply using the entropy
value at the horizon. However, this value is very sensitive to the camera configurations
and ROI positions during the last few time steps before the horizon. For example,
when an ROI is occluded in camera view, the uncertainty increases to reflect the
absence of measurements. Depending on the circumstances, such an increase during
the last time steps before the horizon could end up penalizing plans that perform well
during previous time steps. Conversely, a plan where the cameras become unoccluded
during the last time steps before the horizon can end up favored over a plan that
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ALGORITHM 1: Function m = Metric(R, S, H)
Input: set of ROIs R, set of sensors S, planning horizon H
Output: metric value m
m = 0;
for all ROIs r ∈ R do

x−
0 = GetCurrentState (r);

P−
0 = GetCurrentCovariance (r);

mr = 0;
for t = 1 . . . H do

(x−
t , P−

t ) = KalmanPredict(x+
t−1, P+

t−1);
for all sensors s ∈ S do

ApplySettings(splan, t);
(x+

t , P+
t ) = KalmanCorrect(s, x−

t , P−
t );

end
mt = 0;
for all points p in the model of r do

mt = mt + SqrtMaxDiag(P+
t,p) · wp;

end
mr = mr + mt · vt;

end
m = m+ mr · ur ;

end

has the cameras unoccluded up until just before the horizon. To fully characterize the
evolution of the metric value over time, our approach is to aggregate all the values up
to the horizon instead. We use equal weights for all time steps, but different weights
can be employed, for example, to emphasize the first few time steps, when trajectory
predictions are more reliable.

In summary, our performance metric is computed by repeatedly stepping through
the sequential Kalman filter equations and changing relevant state-space model pa-
rameters at each time step. The state is initialized using the current Kalman filter
state estimate. Aggregation over space and time is performed using weighted sums,
with weights being used to give more importance at various levels, such as to a point in
a ROI’s surrogate model, to a ROI, to a ROI group, or to a time instant. Equation (32)
illustrates the general formula for the metric computation.

M =
nROIs∑

r=1

ur

⎛
⎝ H∑

t=1

vt

⎛
⎝ Nr∑

p=1

wp(SqrtMaxDiag(P+
t,p))

⎞
⎠

⎞
⎠ (32)

nROIs is the number of ROIs, Nr is the number of points in the surrogate model of
ROI r, H is the planning horizon. ur, vt and wp are relative weights for each ROI r,
time step t, and model point p, respectively. P+

t,p is the a posteriori covariance for model
point p at time t. Algorithm 1 presents the process in detail.

To convert the error covariance into a single number, the function SqrtMaxDiag ()
returns the square root of the maximum value on the diagonal of the portion of the
error covariance matrix P+

t,p corresponding to the position part of the state. We chose
the diagonal maximum because it results in the smallest position uncertainty in all
three directions of the 3D space. One advantage of using the square root of the highest
covariance in the metric function is that the measurement unit for the metric is the
same as the measurement unit of the state space. For example, if the state consists of
3D point positions measured in meters, the metric value will also be in meters. This
makes it more intuitive for a system user to specify application requirements such as
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the desired maximum error in a particular area where important events take place.
Entropy can also be used to convert the error covariance into a single number, but it is
more expensive to compute, and does not have the same real-world units as the square
root of the diagonal maximum.

The interested reader is referred to Chapter 5 of Ilie [2010] for a detailed discussion
on how we arrived at our performance metric, how it differs from previous approaches,
and how it incorporates quality factors known to influence the performance of camera
configurations.

4. CONTROL METHOD

We define optimization in active camera control as the exploration of the space of
possible solutions in search for the best solution as evaluated by the performance
metric: the minimum state uncertainty. In [Ilie 2010], we showed that exhaustively
exploring the space of combinations of camera pan, tilt and zoom settings is intractable,
even when applying heuristics to reduce the search space size. Instead, we explore
the space of camera-ROI assignments, and compute the best settings corresponding
to each assignment using geometric reasoning: the best results are usually obtained
when the ROI trajectories are enclosed in the camera fields of view as tightly as
possible (see Section 4.4). Evaluating all possible combinations of plans for all cameras
is intractable as well, but this search space features better opportunities to reduce its
size. We performed a careful analysis of the search space complexity, revealing multiple
heuristics that reduce the search space size, and conducted experiments using our
metric to evaluate them. While necessarily limited in scope, the experiments confirmed
that the heuristics were performing as expected. The interested reader is referred to
Chapter 4 of Ilie [2010] for details on how and why we chose the specific set of heuristics
in this section to reduce the size of the search space and ensure real-time performance.

During our analysis of the search space, we found that using proximity to decompose
the optimization problem into subproblems and solving each subproblem indepen-
dently was the heuristic most effective at reducing the search space size. As a result,
our camera control method consists of two components: centralized global assignment
and distributed local planning. The global assignment component groups ROIs into
agencies based on proximity to each other and assigns the appropriate cameras to
each agency. The local planning component is run at the level of each agency, and
is responsible for finding the best plans for all the cameras assigned to that agency.
The main advantage this strategy offers is that the subproblems associated with each
agency can be solved independently, in parallel. Another advantage is the opportunity
to run the two components of our approach at different frequencies: for example, the
global assignment component can be run once every N cycles, while the local planning
component can be run once per cycle at the level of each agency.

We perform a complete optimization during a planning cycle. For simplicity, and
without loss of generality, we set the duration of a planning cycle to 1 second. Our
current implementation, although not parallelized, still runs online, in real time (a
complete optimization per second). During each cycle, the optimization process first
predicts the ROI trajectories up to the planning horizon, then uses them to construct
and evaluate a number of candidate plans for each camera. A plan consists of a number
of planning steps, which in turn consist of a transition (during which the camera
changes its settings) and a dwell (during which the camera captures, with constant
settings). Candidate plans differ in the number and duration of planning steps up to
the planing horizon. We set the planning horizon to the minimum between a predefined
number of seconds (set to ensure real-time performance) and the duration of the longest
possible camera capture, given the camera positions and capabilities and the predicted
ROI trajectories.
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4.1. Notation

Before presenting the algorithms that comprise our method, we introduce a few no-
tation elements. We use standard sets notation: {. . .} is a set, ∅ is the empty set, ⊂
represents a subset, ∈ represents membership, ≡ represents equality, 	= represents
inequality, \ represents set difference, ∪ represents set union, and ∩ represents set
intersection. Sets are denoted by capital letters like A, C, PS, R, R′ and set members
by small letters like a, c, p, r. A set member can be selected by its number. For example,
C [n] is the n-th camera in set C.

Additionally, we use several variables, including the following:

—a plan P is denoted as a set of configurations over time, to which standard set
operations can be applied,

—P [start . . . stop] is plan P between times start and stop,
—Pa is the plan for all cameras in agency a, and Pa,c is the plan for camera c in agency

a,
—a.Current Plan is the current plan for agency a,
—r.T rajectory [t] represents the surrogate model of ROI r at time t, from which points

can be selected, the top and bottom points in particular,
—Ra is the set of ROIs in agency a,
—Ca is the set of cameras assigned to agency a,
—Cavail. is the set of available cameras,
—c.Useful is a Boolean variable that specifies whether a camera c has been designated

as useful or not,
—c.TransitionDuration and c.UninterruptibleDwellDuration are the transition and un-

interruptible dwell durations for camera c,
—c.AspectRatio is the aspect ratio of camera c,
—c.Choices is the set of capture choices (start time and duration) for camera c.

4.2. Global Assignment

The global assignment component accomplishes two tasks: grouping ROIs into agencies
and assigning cameras to each agency. We create agencies by clustering together ROIs
that are close to each other and predicted to be heading in similar directions. We use
predicted trajectories to cluster the ROIs into a minimum number of non-overlapping
clusters of a given maximum diameter.

Standard clustering algorithms such as k-means ([Tan et al. 2005], Chapter 8) are
not immediately applicable, because the ROI trajectories are dynamic. Additionally,
the membership of all ROI clusters needs to exhibit hysteresis to help keep the assign-
ments stable. When an agency’s ROI membership changes, all cameras assigned to it
need to reevaluate their current plans. Since available cameras currently assigned to
other agencies might contribute more to the modified agency, their possible contribu-
tions need to be evaluated as well. If these evaluations result in changes in plans or
assignments, cameras may need to transition, and end up spending less time captur-
ing, which usually results in worse performance. To accommodate these requirements,
we use a proximity-based minimal change heuristic, consisting of three steps.

(1) Assign each unassigned ROI to the agency closest to it if the agency would not
become too large; form new agencies for remaining isolated ROIs.

(2) If any agency has become too large spatially, iteratively remove the ROI furthest
from all other ROIs from it until the agency becomes small enough.

(3) If any two agencies are close enough to each other, merge them into a single agency.

Algorithm 2 presents the process in detail.
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ALGORITHM 2: Function A = ROIClustering(D, H, R, A)
Input: cluster diameter D, horizon H, ROI set R, agencies set A
Output: agencies set A
PredictROIT rajectories (T , H);
for all unassigned ROIs r ∈ R do

dmin = D;
for all agencies a ∈ A do

d = Distance (r, a, H);
if d < dmin then

Ra = Ra ∪ {r};
dmin = d;
amin = a;

end
end
if dmin ≡ D then

a = CreateAgency ();
A = A∪ {a};

end
else

a = amin
end
Ra = Ra ∪ {r}

end
for all agencies a ∈ A do

repeat
{r1, r2} = MostDistant2ROIs (Ra, H);
if Distance (r1, r2, H) > D then

R′ = Ra\ {r1, r2};
if Distance (r1, R′, H) > Distance (r2, R′, H) then

r = r1
end
else

r = r2
end
Ra = Ra\ {r};
AddToClosestAgency (r, D, H, A);
if Ra ≡ ∅ then

A = A\ {a}
end

end
until Distance (r1, r2, H) ≤ D;

end
repeat

{a1,a2} = Closest2Agencies (A);
if Distance (a1, a2, H) ≤ D then

a = Merge (a1, a2);
A = A\ {a1, a2} ∪ {a};

end
until Distance (a1, a2, H) > D;

Once agencies are created, we use a greedy heuristic to assign cameras to each
agency, based on their potential contribution to it. Formal approaches such as linear
programming are not easily applicable because they are not always guaranteed to
provide a solution if the overall problem is infeasible. Only available cameras are
taken into account. A camera is considered available if its state for the next planning
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cycle is the start of a transition or an occlusion. Additionally, a camera’s dwell can be
interrupted if it has lasted longer than a specified minimum duration. The heuristic is
also proximity-based: a camera-agency assignment is evaluated only if the camera is
close enough to the ROIs in the agency. Proximity is evaluated in function IsClose ()
to only try assigning cameras to nearby agencies. The heuristic tries assigning each
available camera to all nearby agencies, searching for the camera-agency assignment
that best improves the metric value for the agency. Improvement is measured using
the ratio maf ter/mbef ore, and the best improvement bi corresponds to the smallest ratio. The
initial value for bi is 1+ε, where ε is a very small number. If a camera does not improve
the metric for any agency, its settings are left unchanged for the duration of the current
cycle. The resulting plans are compared with plans obtained by prolonging the current
plans up to the planning horizon whenever possible, and the greedy assignments are
only applied if they perform better. Algorithm 3 presents the process in detail.

ALGORITHM 3: Function Pgreedy = GreedyAssignment(A, C, H)

Input: set of agencies A, set of cameras C, horizon H
Output: heuristic plan Pa
Cavail. = FindAvailableAgents (C);
Pcurrent = ∅;
for all agencies a ∈ A do

for all cameras c ∈ Ca do
Pa = BuildPlan(c, a, 1, H, true);
Pcurrent = Pcurrent ∪ Pa;

end
end
Pgreedy = Pcurrent;
for all cameras c ∈ Cavail. do

bi = 1 + ε;
mbef ore = Metric(A, Pgreedy, H);
c.Useful = f alse;
for all cameras c ∈ Cavail. do

if ∼ IsClose (c, a, H) then
continue

end
Pa = BuildPlan(c, a, 1, H, c.agency ≡ a);
AddCameraToAgency (c, a, Pa);
maf ter = Metric(A, Pgreedy ∪ {Pa} , H);
RemoveCameraFromAgency (c, a);
ic,a = maf ter/mbef ore;
if ic,a ≤ bi then

bi = ic,a;
abest = a;
Pbest = Pa;
c.Usef ul = true;

end
end
if c.Useful then

AddCameraToAgency (c, abest, Pbest);
Pgreedy = Pgreedy ∪ Pbest;

end
Cavail. = Cavail.\ {c};

end
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The plans corresponding to each camera-agency assignment are generated heuristi-
cally by assuming the worst-case scenario: the camera is repeatedly set to transition,
then capture for as long as possible, with a field of view as wide as possible. While other
scenarios, in which the camera captures for shorter intervals, may result in better per-
formance by using narrower fields of view, the goal of this heuristic is only to quickly
assess the potential contribution a camera can have to the capture of the ROIs in the
agency it is being assigned to. The heuristic also takes into account predicted static
and dynamic occlusions, and plans transitions during occlusions whenever possible, in
order to minimize the time when the camera is not capturing. Static occlusions are
precomputed off-line for each camera. Dynamic occlusions are computed online, using
the predicted ROI trajectories. Algorithm 4 presents the process in detail.

ALGORITHM 4: Function Pa = BuildPlan(c, a, start, stop, prolong)
Input: camera c, agency a, planning start and stop times, bool prolong
Output: heuristic plan Pa
t = start;
Pa = a.CurrentPlan;
if prolong then

Pa = ProlongCurrentCapture (Pa);
t = EndOfFirstCaptureTime (Pa);

end
Pa = Pa

[
1 . . . t

]
;

while t < stop do
tFoV = WidestFoVCaptureTime (c, a, t, stop);
toccl = NextOcclusionStart (c, a, t, stop);
e = min (tFoV , toccl);
Pa [t . . . e] = ComputeSettings (c, a, t, e);
if tFoV < toccl then

t = e;
else

t = NextOcclusionEnd (c, a, t, stop) − c.T ransitionDuration;
end

end

The number of assignments evaluated is nAgencies ·nCamsavail.. Note that the results
of the assignment process are dependent on the order in which cameras are considered.
If all possibilities were evaluated instead, the complexity would increase to nAgencies ·
nCamsavail. (nCamsavail. + 1) /2, and a formula quadratic in nCamsavail. is often likely to
result in slower than real-time performance.

It is worth noting that two small changes in our global assignment algorithm
make it general enough to apply to camera selection as well. A scenario likely to be
encountered in practice is that the camera infrastructure installed at a site might have
both F fixed cameras and A active cameras, as well as a number D of devices to record
the video streams coming from the cameras. If there are not enough devices to record
all the streams (D < A+ F), a modified assignment approach can be used to decide
which streams to record. The changes would simply be to return after assigning D
cameras and to skip the planning of transitions and dwells for fixed cameras. Selecting
a set of cameras to record would not preclude other algorithms that can run in real
time (such as tracking) from running using all camera streams, or from potentially
contributing their input to our method.
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4.3. Local Planning

Local planning at the level of each agency is concerned with the locally-optimal capture
of the ROIs in the agency. All cameras assigned to each agency capture all member
ROIs, and no further camera-ROI assignment decisions are made at this level. The
planning decisions made at this level are on when and for how long each camera
should dwell (capture), and when it should transition to a new configuration.

The current configuration of each camera, corresponding to the first step in a plan,
is arguably the most important: configurations corresponding to subsequent steps are
revised during subsequent optimization cycles, when the planning method can take
advantage of updated predictions of ROI trajectories. We take advantage of this and
call the resulting planning process myopic: exhaustive exploration of all possible dwell
durations is only done during the first planning step, and heuristic computations are
used for subsequent steps up to the time horizon.

During each evaluation cycle, a decision is made whether to keep the current camera
settings or to transition to a new configuration. We reduce the search complexity by
having the planning process be lazy: only making this decision for the first cycle in
a planning step. Subsequent cycles will simply leave in place the result of the deci-
sion made during the first cycle. The reasoning behind this heuristic is, again, that
the predicted trajectories available during subsequent cycles are less precise, and the
planning process will get a chance to make a decision for each cycle when it becomes
the current cycle, and is provided with updated trajectory estimates.

The interested reader is referred to Chapter 4 of Ilie [2010] for a discussion on
the impact of myopic, lazy, and other planning heuristics on the size of the search
space. While significantly reducing the search space, they can still sometimes result
in too many plans to evaluate for running in real time. We further reduce the number
of candidate plans by planning transitions during occlusions and limiting how many
planning steps of minimum length can fit before the planning horizon. The heuristic
employed for completing plans beyond the first step is the same one used during global
assignment: function BuildPlan (), described in Algorithm 4.

Static occlusions do not depend on the camera parameters, so they are precomputed
for each camera in the variable c.Visib. and used to further reduce the number of
possible plans in the ComputeStaticVisibilities () function. Other restrictions, such as
how many planning steps of minimum length can fit before the planning horizon, can
be taken into account as well in the FindChoices () function.

To achieve online, realtime control, the set of candidate plans can be sorted so that
the most promising plans are evaluated first. One can use prior experimental obser-
vations to derive criteria for quickly judging a plan’s potential without a costly metric
evaluation.

While not a guarantee that the best plan would be chosen on time, we have found
this combination of heuristics to closely approximate an exhaustive search. The final
result of the planning heuristics is a set of candidate plans for each camera. All pos-
sible combinations of candidate plans for all cameras are explored exhaustively using
backtracking. Algorithm 5 presents the local planning procedure, Algorithm 6 details
the backtracking procedure, and Algorithm 7 shows a simple example of how the set of
choices for the first planning step’s end time can be computed.

4.4. Computing Camera Settings

Once the start cycle and capture duration are decided for a planning step in a camera’s
plan, we use geometric reasoning to compute the corresponding camera pan, tilt and
zoom values that ensure optimal coverage of all the ROIs in the agency the camera has
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ALGORITHM 5: Function Pa = LocalPlanning (Ca, a, h)
Input: camera set Ca, agency a, planning horizon h
Output: local plan Pa
Cavail. = FindAvailableAgents (Ca);
for all cameras c ∈ Cavail. do

c.V isib. = ComputeStaticV isibilities (c, a, 1, h);
Pa,c

[
1 . . . h

] = BuildPlan(c, a, 1, h, true);
c.Choices = FindChoices (c, a, 1, h);

end
mbest = Metric ({a} , Pa, h);
Pa = BackT rack (a, Cavail., 0, 0, Pa, h);

ALGORITHM 6: Function Pbest = BackT rack (a, C, cn, n, Pbest, h)
Input: agency a, camera set C, current camera number cn, current choice number n, current

best plan Pbest, horizon h
Output: current local best plan Pbest
cn = cn + 1;
if cn < size (C) then

c = C [cn];
for all choices i ∈ c.Choices do

Pbest = BackT rack (a, C, cn, i, Pbest, h);
end

else
Pa

[
1, c.Choices (n)

] = ComputeSettings (c, a, 1, c.Choices (n));
Pa

[
c.Choices (n) + 1, h

] = BuildPlan(c, a, c.Choices (n) + 1, h, true);
m = Metric ({a} , Pa);
if m < mbest then

mbest = m;
Pbest = Pa;

end
end

ALGORITHM 7: Function S = FindChoices (c, a, start, stop)
Input: camera c, agency a, planning start and stop times
Output: set of choices for the first planning step’s end time S
t = start + c.T ransitionDuration+ c.UninterruptibleDwellDuration;
tFoV = WidestFoV CaptureT ime (c, a, t, stop);
S = ∅;
while t ≤ tFoV do

if ∼ IsOccluded (c, t) then
S = S ∪ {t};

end
end

been assigned to. To speed up computation, we use a 2.5D approximation, illustrated
in Figure 3. Algorithm 8 builds a 2D point set PS from the points at the bottom and the
projections of the points at the top of the surrogate model of each ROI onto the xy plane
as seen from the camera, and computes the camera parameters from 2D angles and
distances in the plane. We found that this approximation provides satisfactory results
in practice.
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Fig. 3. Computing camera settings.

ALGORITHM 8: Function PTZ = ComputeSettings (c, a, start, stop)
Input: camera c, agency a, planning start and stop times
Output: PTZ settings for plan step P [start . . . stop]
PS = ∅;
t = start;
while t ≤ stop do

for all ROIs r ∈ Ra do
p1 = ProjectOntoPlane (r.T rajectory [t] .top);
p2 = r.T rajectory [t] .bottom;
PS = PS ∪ {p1, p2};

end
t = t + 1

end
compute angles αmin and αmax;
compute distances dmin and dmax;
compute angles βmin and βmax;
HFoV = αmax − αmin;
VFoV = βmax − βmin;
if HFoV/VFoV > c.AspectRatio then

HFoV = c.AspectRatio ∗ VFoV;
end
Pan = (αmax+αmin)/2;
T ilt = (βmax+βmin)/2;
Zoom = HFoV/MaxHFoV;
PT Z = {Pan, T ilt, Zoom};

5. INCORPORATING TASK REQUIREMENTS INTO OUR APPROACH

The computer vision algorithm that processes the captured images can be run in re-
altime, and provide feedback to the camera control method. An example of such an
algorithm that can run in realtime is 3D tracking. Alternatively, constraints and re-
quirements can be derived a priori, and more time-consuming computer vision algo-
rithms can be run on the captured images long after the events have taken place. For
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example, 3D reconstruction algorithms can be time-consuming, but rigorously speci-
fying their requirements allows the capture of images that can still guarantee good
results even without real-time feedback. Many task requirements become easy and
intuitive to incorporate into our method due to the performance metric being in state-
space. In this section, we give a few examples of how common task requirements can
be incorporated, grouped by the application domain. The interested reader is referred
to Chapters 5 and 6 of Ilie [2010] for a more detailed presentation of our performance
metric and camera control method, including a discussion on applying them to a variety
of tasks.

5.1. Tracking

The requirements of a tracking application are naturally expressed in state-space. For
example, the user of a tracking system may specify the desired tracking accuracy for
a particular region where events might be more important or more likely to happen,
or for a particular ROI enclosing a person deemed more important. This importance
appears as a weight in the aggregation part of the metric function, and affects the
optimization process.

The state can be modeled as a single 3D point if the user is only interested in the
ROI’s position, or multiple points placed for example at the skeleton joints if the user
desires motion capture. Models can be augmented with local surface orientation if the
user wants to take into account self-occlusion. The state can also be reduced to 2D if
the tracking system employs a ground plane assumption, in which case a single camera
measurement is sufficient to determine the ROI position at any time.

5.2. Surveillance

Surveillance tasks have very diverse goals. Here we give two examples of surveillance
tasks and how they can be accommodated by our approach.

(1) Following a person or object throughout the environment: enclose the person or
object inside a ROI and set its importance higher than the importance of other
ROIs. The camera control method will automatically follow the more important
ROI and exhibit complex behaviors such as coordination and hand-offs between
cameras.

(2) Capturing images of people’s faces for biometric tasks: augment the surrogate
model with points on the person’s face and the person’s movement and/or gaze
direction, and incorporate the incidence angle into the metric computation as a
factor in the probability of making a successful measurement ms in Equations (30)
and (31). To ensure the capture of as many faces as possible, have a single successful
capture drastically decrease the importance of the captured target’s ROI. This will
result in cameras capturing other faces that are comparably more uncertain. As
time passes, repeated captures of the same person’s face if still present in the
environment can be ensured by having the importance of its ROI increase slowly
over time.

5.3. 3D Reconstruction

When the application is a 3D reconstruction method, surrogate models can be adjusted
to better fit the requirements of the particular 3D reconstruction approach. We present
two examples.

(1) Surrogate models for stereo reconstruction could be augmented with local surface
orientation, which can be included in an appropriate aggregation function that uses
the angle between the camera ray and the surface normal. The resulting metric
would give more weight to samples better suited for stereo matching. This change
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results in the metric giving preference to camera configurations that have been
shown to work better in stereo reconstruction: cameras placed relatively close to
each other and aimed in a similar direction.

(2) The default approach of minimizing the uncertainty in the 3D position of a number
of points gives good results in 3D volumetric reconstruction. However, a different
kind of surrogate model for volumetric 3D reconstruction could instead consist of
a medial axis-like representation: a set of 3D centroids and rays to the surface.
The metric to be optimized could then be an aggregation of the uncertainties in
the length of the rays together with the ray lengths themselves, since volumetric
approaches typically seek a 3D model of minimum volume. Both approaches result
in the metric giving preference to camera configurations that have been shown to
work better in volumetric reconstruction: cameras placed uniformly around a ROI,
in an outside-looking-in arrangement.

5.4. New Targets

There are multiple ways of incorporating new persons or objects entering the
environment.

(1) One approach is suggested by previous work in surveillance such as Krahnstoever
et al. [2008], and applies to enclosed environments with a limited number of entry
points. In this case, previous approaches have scheduled cameras to periodically
survey the entry points for any potential new targets. A similar approach can be
straightforwardly applied to our method by having static ROIs enclose the entry
points, and automatically creating new dynamic ROIs enclosing any new targets
when they are detected entering the scene. Given appropriate surrogate models for
each ROI, the camera control method would automatically plan available cameras
to both survey the static ROIs enclosing the entry points and to track the newly
created dynamic ROIs.

(2) Another approach is introduced by Sommerlande and Reid [2008a]. They model the
probability of new targets entering the scene using a background Poisson process,
and integrate the noise injected by the process into the performance metric from
Deutsch et al. [2006]. Since our performance metric is in many respects similar to
the one in Deutsch et al. [2006], this approach is easily applicable to it as well.

(3) A third approach is to have the state of new ROIs bootstrapped by input from
an external system, for example GPS or a tracking system that uses a few static
cameras with wide fields of view to cover the entire scene. This is another area
where state-space models demonstrate their usefulness: besides helping to acquire
new targets, measurements from these external devices can be incorporated into
the sequential evaluation process described in Section 3.2.2, and thus contribute
to reducing the uncertainty in the state.

6. EXPERIMENTAL RESULTS

6.1. Simulation-Based Experimental Results

6.1.1. Experiment Setup. A training exercise was performed by members of the United
States Marines Corp, and captured on-site at the Sarnoff Corporation in Princeton, NJ.
The exercise participants’ trajectories were used to test how an implementation of our
method can control six PTZ cameras to observe six exercise participants.

The exercise scenario was for a squad of four Marines to patrol, cross a danger zone
between two buildings, cordon and search a civilian, neutralize a sniper threat, and
move out to secure an area.

We used the game engine-based simulator from Taylor et al. [2007] to run multiple
simulations using the same input data. The simulator provides means of controlling
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Fig. 4. Overview of the USMC training exercise site as modeled in the simulator.

a number of virtual cameras in a simulated environment and retrieving images from
them.

Figure 4 shows an overview of the exercise site modeled inside the simulator. To
keep the scenario as realistic as possible, we placed six virtual cameras on existing
infrastructure (shown as pillars outlined in blue): four cameras along the building
walls and two cameras on light poles in the parking lot. There were also two shipping
containers, outlined in red, which served as “buildings” during the exercise and helped
us test the impact of static occluders.

The simulator does not provide means of programmatically controlling the virtual
characters, so we used a plug-in architecture from Casper [2007] to extend its function-
ality. We wrote a custom plug-in script to act as a server to which client applications can
connect and send commands. We implemented commands to retrieve a list of available
participants, move a participant to a new position, change a participant’s orientation
and retrieve the current position and orientation of a participant.

For each simulated camera image, the simulator also provides ground truth (silhou-
ettes, bounding boxes, total and visible pixel counts) for the virtual characters in the
image. This feature is aimed at testing image processing algorithms, but we used it
to compute the visibility of a virtual character placed in a particular position as seen
from each of the six cameras used in this experiment. We sequentially placed a virtual
character at positions on a 2D regular grid spanning the area, aimed all cameras at
it, and queried the simulator for the ground truth pixel counts of the virtual character
as seen by each camera. Using this process, we precomputed the visibilities over the
area where the exercise took place and stored them as a per-camera visibility maps.
The visibility at a point (x, y) on the 2D grid for camera c was computed as:

V (x,y)
c = PCvisible

c

PCtotal
c

. (33)

where PCtotal
c and PCvisible

c are the counts of total and visible pixels occupied by the
virtual character in camera c’s image.

Figure 5 shows a top-down view of the exercise site. Camera locations are shown
as blue circles, each accompanied by its visibility map shown as a gray-scale image.
Brighter map values denote higher visibility. The aggregated visibility is also shown
as a gray-scale image overlaid on the top-down satellite view of the site and aligned
to match the area where the exercise took place. The two shipping containers which
served as props during the exercise appear as dark spots of zero visibility that cast
“shadows” in the visibility maps.
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Fig. 5. Top-down view of the exercise site, with aggregated visibility map overlaid on top. Marine tracks
are shown in blue, civilian and sniper tracks are shown in red. Camera positions are also highlighted, with
visibility maps attached.

During the exercise, participant trajectories were captured as GPS (long., lat., alt.)
measurements over time. The approach from Broaddus et al. [2009] was used to capture
images from two PTZ cameras and refine the trajectory estimates. We filtered the
trajectory data to reduce noise, sampled it at every second and used the samples as
input for our implementation, which performed a complete optimization every second.
During experiment runs, we used the 3D GPS points on these input trajectories to
generate simulated 2D measurements in each virtual camera and we also incorporated
them directly into the metric computation as simulated 3D measurements. We added
noise (precomputed for repeatability) to each measurement before incorporating it into
the performance metric computation.

The surrogate model for each exercise participant consisted of two cubic regions, 1m
on the side, stacked on the vertical axis. The coordinates of the center of each region
were included in the state, and a PV state model [Welch et al. 2007] was used in the
Kalman filter-based performance metric evaluation process. To compute the visibility
of each cubic region from each camera, we shot rays from the camera’s center of pro-
jection through seven points associated with the region, and sampled the precomputed
visibility map at the intersection point between the ray and the plane of the visibility
map. The seven sample points were the region center and the six points at ±0.5 meters
in the x, y and z axis directions. The point visibilities were aggregated as follows: the
center point had a weight of 1/2, and the six exterior points each had a weight of 1/12. The
default visibility threshold used to determine whether an object was occluded was 0.75.

6.1.2. Results. We ran multiple simulations using the same input data and tuning the
parameters of our control method. The results we obtained (the interested reader is
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referred to Chapter 7 of Ilie [2010] for more details) led to several observations, some
of which are summarized as follows.

(1) Using active cameras always performed better than using fixed cameras (simulated
by zooming out the active cameras and aiming them at the center of the scene). The
positive effect of higher resolution when controlling the cameras was more than
enough to compensate for the interruptions in capture due to transitions.

(2) Decreasing the frequency at which GPS measurements were incorporated into the
metric (to once every 5 seconds) and eliminating them altogether made the control
method zoom out the cameras to compensate for the higher uncertainty, which
resulted in worse overall performance.

(3) We treated ROIs with visibility less than a threshold as occluded. We varied the
threshold from 0.1 to 1. Increasing the occlusion threshold led to more occlusions,
resulting in plans with captures that were more fragmented by transitions, but the
increased image resolution compensated for some of the performance loss.

(4) Decreasing the planning frequency (we varied it between once every 1 . . . 10 cycles)
to allow for more comprehensive searches resulted in fewer disruptions in cam-
era membership for each agency, but also in an increased number of times when
wrong trajectory predictions led to some ROIs not being captured for some time
intervals.

(5) Increasing the planning horizon length (we varied it from 10 to 28 cycles) and
the clustering diameter (we varied it from 2.5 to 25 meters) led to the heuristic
generating longer captures at larger fields of view and lower resolutions, which
resulted in worse performance.

Figures 6–8 show how our camera control method automatically achieves desirable
complex behaviors: reacting to predicted occlusions, adapting to changes in predicted
ROI motion, and coordinating transitions. Participants are grouped into agencies,
shown as circles with varying shades of gray. Cameras assigned to a particular agency
have their base represented as a square of the same shade of gray. Camera orientation
is shown as a triangle color-coded by the camera state: green when capturing, blue
when in transition. When capturing, camera fields of view are shown as white lines.

In Figure 6, the four Marines are grouped into an agency, and the civilian and the
sniper into a second agency.

At Time = 11, Camera 6 is capturing the Marines, which are approaching the first
building.

At Time = 15, two of the Marines are already behind the first building, and the
other two Marines are predicted to follow them, so Camera 6 becomes increasingly less
useful and is set to transition to where it can provide better coverage.

At Time = 17, the transition has ended, Camera 6 is assigned to a different agency
and capturing the civilian and the sniper.

In Figure 7, the four Marines are grouped into an agency, and the civilian and the
sniper into a second agency.

At Time = 21, the Marines are about to exit the field of view of Camera 3, and the
first Marine is moving fast to cross the danger zone between the two buildings.

To avoid losing track of the fast-moving Marine, at Time = 24, Camera 3 is set to
zoom out in order to cover the predicted trajectory of the Marine.

After crossing the danger zone, the Marine stops and turns around to cover the other
three Marines behind him. Since the new predicted trajectory of the Marine is shorter,
there is no need for Camera 3 to be zoomed out. At Time = 30, Camera 3 is zoomed
back in to cover the Marines at higher resolution.
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Fig. 6. Reacting to predicted occlusions. Top row: top-down views of cameras and exercise participants,
overlaid on top of a satellite image and aggregated visibility map. Bottom row: simulated images for
camera 6.

Figure 8 camera coverage of the exercise participants is the following.
At Time = 42, Cameras 5 and 6 cover the civilian and the sniper. As the civilian

is heading toward the Marines for the cordon search, he exits the field of view of the
cameras, but will soon be covered by the cameras covering the Marines. Cameras 5 and
6 can now zoom in to better cover the sniper. However, while either camera transitioned,
it would leave the other camera covering the sniper by itself. Meanwhile, the Marines
are covered by four cameras, one of which can help cover the sniper.

At Time = 58, Camera 2 has been reassigned from covering the Marines to covering
the sniper, and Camera 6 can begin to zoom in.

At Time = 65, after Camera 6 has been zoomed in, Camera 5 can begin to zoom in
as well.

Finally, at Time = 68, once both Cameras 5 and 6 are zoomed in and covering the
sniper, Camera 2 is reassigned back to covering the Marines and the civilian.

One important result was that our planning heuristics can produce satisfactory
results and serve as a fall-back when the search space is too large to be explored in
realtime. We varied the number of candidate plans explored by the local planning
component of our method between heuristic (simply using the worst-case, wide field
of view plan generated heuristically by the global assignment, Algorithm 4), selective
(heuristically generate and explore a small number of plans that break up long
captures with wide fields of view into shorter captures with narrower fields of view)
and exhaustive (explore all candidate plans). Selective planning was our default
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Fig. 7. Adapting to changes in predicted ROI motion. Top row: top-down views of cameras and exercise
participants, overlaid on top of a satellite image and aggregated visibility map. Bottom row: simulated
images for Camera 3.

Fig. 8. Coordinating transitions. Top-down views of cameras and exercise participants, overlaid on top of a
satellite image and aggregated visibility map.

exploration method, and it resulted in real-time performance. We designed heuristic
planning as a fallback when the time budget for running in real time was close to
exhausted, but we never had to resort to it in our experiments. Exhaustive exploration
was performed offline when tractable—151 out of 170 planning cycles. Figure 9

ACM Transactions on Sensor Networks, Vol. 10, No. 2, Article 25, Publication date: January 2014.



Online Control of Active Camera Networks for Computer Vision Tasks 25:33

Fig. 9. Metric values over time for various local exploration methods.

Fig. 10. Differences in metric values over time.

Fig. 11. 3D reconstruction results using method from [Guan 2010]. Left: rendering of a single slice of
the reconstructed volume showing occupancy probabilities. Right: rendering of 3D reconstruction results
obtained by thresholding. Also shown are the poses and images of the cameras involved.

shows the results, including the metric values when using static cameras, shown for
comparison.

As expected, the metric values in the case of static cameras are significantly higher,
but part of the price paid for the lower resolution is offset thanks to the fact that there
are no transitions. The three curves corresponding to varying the number of candidate
plans explored are very close to each other, to the point of being indistinguishable at
the scale in Figure 9. Figure 10 shows the differences between the three curves at a
larger scale. The fallback heuristic arrived at the same result as the exhaustive search
for 109 out of 151 cycles, or 72% of the time, and the default selective search did so for
143 cycles, or 94% of the time. For the remaining times when the results were different,
the average difference in the metric values was 0.01m for the fallback heuristic and
0.0087m for the default selective search.

The structure of the performance metric for this experiment, in terms of components
such as the surrogate model and the aggregation function used, is suitable for volu-
metric 3D reconstruction approaches such as the one by Guan [2010]. Figure 11 shows
reconstruction results obtained using simulated images from four cameras captured
at Time = 56, during the cordon search. We generated perfect segmentations by pro-
viding the reconstruction approach with images taken with and without the exercise
participants.
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Fig. 12. The layout of the lab where we tested our camera control method. Camera positions are also
highlighted, with visibility maps attached.

6.2. Laboratory-Based Experimental Results

6.2.1. Experiment Setup. We also applied our camera control method in a laboratory
setup at UNC, using eight Axis 233D PTZ cameras. The environment was a 7.5m× 9m
room, shown in Figure 12. It contained part of a street and an alley between two
buildings. Eight cameras were placed on the ceiling, 7mabove the floor. Visibility maps
were constructed manually for each camera, under the assumption that the building
walls were tall enough to occlude everything behind them. The visibility threshold used
to compute occlusions was 0.75.

The primary objective of this experiment was to verify our camera control method
using real cameras. Consequently, we did not perform image processing to track the
participants. An external tracker (NaturalPoint OptiTrack) was used to provide trajec-
tories in the area outlined in orange in Figure 12, and trajectories were extrapolated
using the last known orientation and speed when participants exited the tracked area.
During the exercise, participant positions were captured by the tracker using head-
worn tracker targets. Similarly to the experiments in Section 6.1, we used the result-
ing 3D points to generate simulated 2D measurements in each camera image and also
incorporated them directly into the metric computation as 3D “GPS” measurements.

We had four members of the United States Marines Corp perform a training exercise
similar to the one in Section 6.1. The exercise scenario was for the Marines to patrol the
street, crossing the danger zone between the two buildings, and to cordon and search a
civilian that was heading down the alley to join two other civilians who were waiting.
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Fig. 13. An overview image taken during the training exercise. The tracked area is marked with white tape.
Building walls were simulated using cloth attached to waist-high posts.

Figure 13 shows all seven participants in an overview image taken during the exercise
when the civilian was being searched.

6.2.2. Camera Calibration. In our simulated experiments, the virtual cameras did not
need to be calibrated: the pan, tilt and zoom setting values computed by our method
using Algorithm 8 could be directly applied to them using nothing more than geometric
transforms between the world and camera coordinate systems. In particular, panning
the virtual cameras meant simply a rotation around the world z axis, and zooming only
meant computing the zoom factor corresponding to a particular field of view. When
using real cameras, this is no longer the case. The Axis 233D cameras are fairly sophis-
ticated in that they accept pan and tilt values in degrees, and apply these values with
great precision (repeatability). Experiments confirmed that the camera-reported pan
and tilt setting values were accurate. Repeated geometric calibrations performed using
the method in Zhang [1999] at various levels of zoom confirmed that reported zoom val-
ues were precise as well. Camera-reported zoom values were not simple ×1,×2, . . . ,×n
multipliers, but a straightforward linear transform applied to them yielded such values,
and we found the transform to be repeatable across our six cameras.

The remaining problem was that the cameras’ pan and tilt rotations were around
arbitrary axes which could not be manually aligned with the corresponding world axes.
We devised a procedure to calibrate the cameras by computing the rotation matrix
between the camera and world coordinate systems. We first performed a geometric
calibration to determine each camera’s extrinsics, in particular its center of projection
(COP) in world coordinates. We manually aimed each camera at a number of 3D points
with known world coordinates, and recorded the camera-reported pan and tilt values,
which we then mapped to a set of 3D points on an unit sphere centered at the camera’s
COP. We intersected the lines from each world 3D point to the COP with the same
unit sphere, obtaining a second set of 3D points. The rotation matrix we needed was
obtained by taking the two sets of 3D points on the unit sphere and computing the
rotation around the COP required to align them.

This rotation matrix and the linear transform for the zoom values rendered the
Axis 233D cameras as easy to control as the virtual cameras used in the experiments
in Section 6.1.
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Fig. 14. Example camera images captured during the exercise, overlaid on top of a composite visibility map.

6.2.3. Results. While unable to run comparisons between results obtained using vary-
ing parameters like we did in Section 6.1, we performed multiple runs of the exercise
scenario. Figure 14 shows example camera images taken during the exercise at the
same time as the overview image in Figure 13, when the civilian was being searched.
The images are overlaid on top of a composite visibility map, and attached to the icons
representing the cameras that captured them. Participants are grouped into agencies,
shown as circles with varying colors. Cameras assigned to a particular agency have
their base represented as a square of the same color. Camera orientations are shown
as triangles, and camera fields of view are shown as white lines.

We consistently observed desirable camera behaviors, including the ones summarized
here.

(1) As soon as new participants entered the scene and were detected by the tracker,
they were added to agencies and cameras were reallocated to cover them.

(2) Continuous agency coverage was maintained by appropriately adjusting the cam-
eras’ pan, tilt and zoom settings. Adjustments were done in a staggered fashion
between cameras covering the same agency, such that the time intervals when the
group was not being captured by as many cameras as possible were minimized.

(3) When an agency split, cameras were reallocated to ensure continuous coverage of
the resulting agencies.

(4) Cameras were switched between agencies when their contribution to the coverage
of an agency was better than their contribution to the agency they were currently
covering.
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(5) Continuous ROI coverage was maintained even when ROIs moved quickly or over
relatively large distances by anticipating their trajectory and preemptively adjust-
ing the cameras’ pan, tilt and zoom settings.

7. CONCLUSIONS AND FUTURE WORK

We presented a new online camera control approach that treats camera control as an
optimization problem. For the objective function, we developed a versatile performance
metric that can incorporate both performance factors and application requirements. To
reduce the size of the search space and arrive at an implementation that runs in real
time, our camera control method breaks down the optimization problem into subprob-
lems. We first employ a proximity-based minimal change heuristic to decompose the
problem into subproblems and a greedy heuristic to assign cameras to subproblems
based on evaluating candidate plans. We then solve each subproblem independently,
generating and evaluating candidate plans as time allows.

We have discussed how our approach can be easily adapted to include require-
ments from various computer vision tasks. We demonstrated our approach in simulated
and laboratory experiments, during which we have shown cameras exhibiting behav-
iors that facilitate the application of computer vision algorithms to the images they
captured.

We plan on working on replacing the simulated camera measurements obtained from
the external tracker with actual measurements from image tracking. We are especially
interested in the situation where image tracking is to be performed with the same
cameras that are controlled by our approach, which requires the camera control to
balance the requirements of the computer vision application with the requirements of
image tracking. We are also studying the impact of imprecise geometric calibration and
camera settings precision and accuracy on our control method.

We are working on using knowledge about the environment to correct erroneous
trajectory predictions. For example, if a Kalman filter-based trajectory prediction has
a target passing through a wall, the prediction could be corrected to have the target
stop in front of the wall or walk along it instead.

Our current implementation uses a proximity heuristic for grouping ROIs into agen-
cies, and a greedy heuristic for assigning camera agents to agencies. We chose our
heuristics after a careful analysis of the computational complexity of an exhaustive
search and using our metric to evaluate alternatives, with the overarching goal of re-
ducing search space size while still providing a reasonable solution. A thorough analysis
of the impact of these heuristics on the solution, as well as a comparison with other ap-
proaches, are needed to fully gauge their effectiveness. It would be interesting to explore
other clustering algorithms and evaluate the performance of our method when using
them. A formal method such as linear programming could be used for assigning cameras
to agencies, when feasible, and our heuristic could be run only when such methods fail.
A promising direction to explore in clustering would be to allow overlaps, i.e. to allow
an ROI to be a member of multiple agencies. Additionally, the current greedy assign-
ment scheme exclusively assigns an agent to an agency. There may be situations when,
with a small change in its settings, a camera could cover the ROIs in another agency
nearby. In such situations, it may be beneficial to explore sharing an agent among mul-
tiple agencies. Sharing agents would require a protocol for agencies to cooperate when
computing the camera parameters for agents that are shared with other agencies.

The main strategy our approach employs to reduce the search space size is decom-
posing the problem into subproblems and solving the subproblems at the level of each
agency. Our current implementation solves the subproblems sequentially, in a single
thread. We are working on a parallel implementation that would allow us to evaluate
more candidate plans, increasing the chance that the provided solution is the global
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optimum. Another possible research direction is decentralizing our approach further by
having “smart” cameras locally estimate their own contribution to each ROI or agency.
In the current implementation, the global assignment process is centralized. Distribut-
ing the assignment process by making it collaborative is likely to reduce computation
loads in large camera networks, possibly at the expense of increased bandwidth re-
quired for collaboration, as well as possible additional system latency and weaker
optimal performance guarantees.
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