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Thesis

 

Inertial navigation and computer vision systems embody complementary fre-
quency and velocity characteristics that motivate the combination of the two ap-
proaches in a completely self-contained system for tracking the three-dimensional 
position and orientation of a moving person or object in a dynamic environment.

 

Abstract

 

This proposal describes a new approach to tracking the three-dimensional posi-
tion and orientation of a moving person or object in a dynamic environment. The 
approach involves using a technique similar to that historically employed in space-
craft navigation whereby sun and star trackers are used to optically aid the space-
craft’s inertial navigation system (INS). Similarly the idea of the hybrid Self-
Tracker is to track the (earthly) position and orientation of a person or object by em-
ploying an INS as the primary means of tracking, and then supplementing that with 
an outward-looking computer vision system (CVS) that when aided by the INS can 
lock on to still targets in a not necessarily static environment.

The novel aspect of this approach is that the complementary behavior of each 
system is leveraged to obtain more accurate and stable tracking information than ei-
ther system alone. With an INS, bias and drift errors become noticeable during pe-
riods of slow movement. However, during such periods these errors could be 
controlled by a CVS which exhibits its best behavior under such conditions. Con-
versely a CVS typically performs worst during rapid movement, precisely the con-
ditions where the INS signal-to-noise ratio is high. In addition, while a typical CVS 
is affected by unrelated motion in an environment, an INS is not and can provide 
assistance with static feature discrimination. Kalman filter theory can be employed 
in weighting each subsystem most heavily in the circumstances where it performs 
best, thus providing more accurate and stable estimates than either system alone.

Advantages of this new approach include: high-rate and low-latency position 
and orientation information across a wide range of motion; operation in a dynamic 
environment; self-contained passive operation.
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1. Introduction

1.1 General Motivation

 

One of the important problems in Virtual Environment (VE) research today is that of providing 
a fast, accurate, and possibly even portable method for reliably tracking a computer user’s real-
world position and orientation. Such tracking is necessary in VE systems because a user must con-
tinually be provided with two-dimensional computer generated images that match the user’s three-
dimensional real-world position and orientation. In certain applications, if the user’s position and 
orientation are not tracked accurately or fast enough, disturbing or even harmful effects can be ob-
served. There are two general VE situations for which we desire fast and accurate position and ori-
entation information.

The first situation has come to be known nominally as 

 

Virtual Reality

 

, where a user becomes 
completely immersed in a computer generated “world” by donning some form of an opaque head-
mounted display system [SUTH68]. In this case, the user’s real-world view is completely replaced 
by an artificial view formed by a sequence of computer generated images. As such, if the changes 
that a user observes in the sequence of computer generated images does not match the changes that 
the user would expect to see based on their internal (biological) sense of changing orientation and 
position, a user can experience discomfort or even sickness. Typically however, tracking problems 
in Virtual Reality systems only pose an inconvenience.

The second situation has come to be known nominally as 

 

Augmented Reality

 

, where a user’s 
view of the real-world is not replaced but instead augmented by computer generated images that 
are superimposed on a user’s otherwise unobstructed real-world view. In this case, the head-
mounted display system is not opaque, but is instead transparent. Here the computer generated im-
ages would appear to float in front of the user, partially obscuring their otherwise natural view. For 
example, a surgeon might some day use an Augmented Reality system as a surgical aid. Here the 
system could be used to provide the surgeon with visual information, e.g. vital statistics or even 
graphical guidance that is superimposed directly on his view of the patient. Tracking problems in 
Augmented Reality systems pose more than an inconvenience—small errors in registration of the 
artificial and real images can severely impact the usefulness of such systems.

In appropriately constrained work spaces, mechanical tracking systems can provide a high de-
gree of speed and absolute accuracy. At the cost of sensitivity to magnetic interference, greater so-
ciability
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 can be afforded by using magnetic devices in place of mechanical linkages [Meyer92]. 
Acoustic tracking systems while insensitive to magnetic interference are sensitive to temperature, 
and provide only position information directly. On the other hand, optical tracking systems can in 
principle offer sufficiently accurate measurements of both position and orientation over relatively 
large working volumes, without many of the problems inherent in magnetic or acoustic tracking 
systems. Current optoelectronic tracking systems are typically limited by line-of-sight require-
ments, they are relatively costly to implement, and once implemented are somewhat inflexible in 
terms of the location and size of the working volume.

One might therefore suppose that an “ideal” tracking system might be built using either com-
puter vision or inertia sensing techniques. Neither of these techniques suffers from the particular 
above-mentioned problems, although each has its own unique problems. For interactive work with 
computers, Bishop’s Self-Tracker [Bishop84] is the classic attempt at the former, while Foxlin has 
attempted to solve the problem with the latter [Foxlin93]. These attempts and other related work 
are discussed further in “Related Work” on page 10. For the moment however, let me proceed to 
motivate my particular hybrid with some basic analysis of the two individual methods.

 

1. 

 

Sociability here refers to the ability to simultaneously track multiple targets (e.g. multiple users) in a com-
mon environment.
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1.2 Computer Vision System (CVS) Navigation

 

In order for a passive computer vision system (CVS) or pattern recognition based tracking sys-
tem to operate effectively across a wide range of frequency

 

1

 

 and velocity

 

2

 

, one would want the em-
ployed image processing techniques to be extremely fast. Fast image processing is necessary 
(desired) for a variety of reasons. For example, if the 3-D motion is being estimated by observing 
the affine motion of objects on a monocular 2-D (or 1-D) image plane, fast image processing will 
result in small changes from frame to frame. Such small changes often provide opportunities for 
simplifying approximations. These simplifying approximations then generally result in faster pro-
cessing, hence smaller image changes, faster processing, etc. Such a “spiral of goodness” is de-
scribed by Bishop in [Bishop84]. Even in the case where such simplifying approximations are not 
used, e.g. when directly tracking the 3-D positions of scene points via a stereo camera setup, high 
speed is still required to capture the basic high frequency and high velocity physical motion of (for 
example) one’s head or hand.

Despite our best hopes however, there is a finite limit to the speed with which features in a pair 
of temporally sequential two-dimensional image frames can be compared. In this section we will 
briefly explore this limitation and the resulting impact on the frequency and velocity response of 
the image processing system.

In any implementation of a computer vision based system that processes temporally or spatially 
separated discrete images there will exist a constant minimum amount of time  required to pro-
cess each set of images to generate some form of a motion estimate. The inverse of this minimum 
time determines the Nyquist (sampling) rate of the system, limiting the ideal frequency response 
to half this rate as shown below in Figure 1 below.

 

Figure 1. Ideal frequency response for minimum image processing time 

 

As an example, if our imaging device contains 256x256 pixels and we are able to examine pix-
els serially at a rate of 50MHz, the time required to  examine an entire image (e.g. looking for track-
able features) would be approximately 15 ms

 

3

 

. Further more, in section 3.3 on page 14 we will 
argue that a stereoscopic CVS is necessary to estimate position and orientation. This requirement 
implies processing of two images on each update, increasing our estimate of image processing time 
to 30 ms.This image processing time corresponds to a frame rate of approximately 33 Hz, or a 

 

1. 

 

Consider physical sinusoidal oscillations in one of the six degrees of freedom in our three-dimensional po-
sition and orientation tracker.

 

2. 

 

Linear or angular velocity.

 

3. 

 

Assuming approximately 10 operations (cycles) per pixel. It might be possible to improve feature searches
by using previous feature positions as starting points.

tmin
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physical sinusoidal cutoff frequency of approximately 17 Hz. 

As reasoned by Foxlin [Foxlin93] and measured by Azuma [Azuma94], head motion energy 
above 20 Hz is likely to be very small. It therefore seems that our rough 17 Hz cutoff might suffice. 
Indeed if we could process the images faster, we could improve (raise) this cutoff. However, one 
would also like to implement some filtering to improve the reliability of the CVS estimates

 

1

 

, which 
will lower the cutoff frequency. In any case, it appears that a filtered CVS is suited to providing 

 

low-frequency

 

 estimates of position. In section 3.2 on page 13 we will see specifically why such a 
independent low-frequency estimator of position and orientation so nicely complements an inertial 
navigation system.

Having looked at the frequency characteristics of a stereoscopic computer vision system, we 
point out that the frequency analysis of such a CVS does not tell the entire story. In addition to the 
frequency of the expected motion, we must consider the 

 

velocity

 

 of the expected motion, i.e. the 
magnitude of the anticipated sinusoidal motion.

In Figure 2 below we see sinusoidal waveforms representing two possible physical motion tra-
jectories of the same frequency but different magnitudes. Assuming that the frequency is well be-
low the cutoff represented in Figure 1, what effects do the different velocities have on the ability 
of a computer vision based system to track the motion of an image feature between two temporally 
sequential two-dimensional image frames?

 

Figure 2. Two position waveforms, same frequency, different velocities

 

Consider the simplified two-dimensional (pinhole) camera and scene model shown below in 
Figure 3. As a scene point located distance 

 

d

 

 from the camera translates laterally by a distance 

 

M

 

, 
the image of that scene point translates a distance 

 

m

 

 across the image plane of the camera.

 

1. 

 

It will be argued in section 3.3 that stereoscopic depth computations are necessary to provide independent
CVS estimates of position and orientation. Such depth computations are inherently susceptible to noise and
can be improved by appropriate error modeling and filtering [Matthies86].
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Figure 3. Simplified (pinhole) camera and scene model

 

Conversely, given the camera’s focal length 

 

f

 

, and the measured translation 

 

m

 

 of a feature 
movement across the image plane, the distance 

 

M

 

 through which the physical object corresponding 
to the tracked feature translates, is given by

(1)

The physical motion 

 

M

 

 occurs at some average velocity 

 

v

 

 over a time period 

 

t

 

, i.e. 

 

M=v

 

M

 

t

 

. 
Therefore given the constant minimum amount of time  required to process a pair of tem-
porally sequential 2-D image frames and the image sensor size 

 

µ

 

, the maximum detectable velocity 
corresponding to translation 

 

M

 

 at distance 

 

d

 

 is found from

(2)

This maximum velocity could be associated with a still camera and an object translating 
through distance 

 

M

 

, or as in the case of our outward-looking tracker, with a fixed scene object and 
a camera translating through distance 

 

M

 

.

As an example, let’s examine a computer vision system with an image sensor size of 1 cm, a 
focal length of 35 mm, and our previous estimate of 30 ms to process a pair of images. If our CVS 
is tracking scene objects that are on average 2 meters from the sensor, equation (2) tells us that the 
maximum detectable translational sensor velocity is approximately 19 meters per second.

Figure 4 below plots maximum translational velocity against scene object distance 

 

d

 

 for vari-
ous image processing times 

 

t

 

. To put things in perspective, I have performed some simple experi-
ments and found that the fastest that I can translate my hand through a distance of 1/2 meter is under 
3 meters per second.
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Figure 4. 

 

v

 

M

 

 vs. 

 

d

 

 for example values of 

 

t

 

 

 

from equation (2)

 

However, let us also look at rotational velocity. If we define the origin of rotation to be at the 
principal point of the camera, i.e. the “pinhole” of our simplified camera in Figure 3, then the cam-
era can be rotated a maximum of 

 

α

 

 degrees between processing of image pairs lest currently 
tracked features be lost. The angle 

 

α

 

, the field of view, is defined below in equation (3) where 

 

µ

 

 is 
the physical size of the image sensor, and 

 

f

 

 is the focal length of the camera.

(3)

The maximum rotational velocity 

 

v

 

α

 

 of our CVS is then given by equation (4).

(4)

For the camera parameters above, equation (3) gives us a field of view 

 

α

 

 of approximately 
17 degrees. From equation (4) we see that with our estimate of 30 ms for image processing time, 
this corresponds to a maximum rotational velocity 

 

v

 

α

 

 of approximately 550 degrees per second.

As the response time of the CVS increases (e.g. as a result of filtering), things become worse 
as shown below in Figure 5. To put things in perspective here, note that while typical rotational 
velocities are under 500 degrees per second, Foxlin argued for a rotational velocity specification 
of 1000 degrees per second [Foxlin93].
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Figure 5. 

 

v

 

α

 

 vs. 

 

t

 

 

 

from equation (4)

 

There is also the question of resolution to be considered. As can be seen from equation (2) and 
observed in Figure 4, the farther away a tracked object (i.e. as 

 

d

 

 increases) the higher its allowable 
relative translational velocity. However, from equation (1) we also see that the translation 

 

m

 

 of a 
feature on the image plane is given by equation (5) below as follows.

(5)

If the motion 

 

M=vt

 

 remains constant, then as the distance 

 

d

 

 to an object increases, the observed 
feature translation on the image plane decreases. This reduced translation on the image plane can 
cause problems as it approaches the resolution of the imaging device. For example, for our 1 cm 
256x256 pixel image sensor, the pixels are spaced approximately 39 microns apart. At a scene ob-
ject distance of 1/2 meter, we can resolve approximately 1/2 mm of translation. At 2 meters, the 
translational resolution increases (worsens) to approximately 2 mm. The resolution is affected by 
the focal length also, so if we make the assumption that there will always be interesting objects 
within some specified distance, then fixing 

 

f

 

 appropriately can generally alleviate this problem. In 
addition, sub-pixel processing using grey-scale images can improve the resolution.

Notice also from equation (5) that as either the velocity 

 

v

 

 of motion 

 

M

 

 or the time 

 

t

 

 between 
image frames increases, the translation 

 

m

 

 of the induced image plane feature also increases. Given 
finite sensor dimensions, both 

 

v

 

 and 

 

t

 

 become limiting parameters.

In practice, when designing the computer vision system we would choose components that 
would define some physical limits of 

 

f

 

 and 

 

m

 

, and hence 

 

d

 

 also (maximum 

 

d

 

). From equations (2) 
and (4) we see that the final parameter needed to determine the maximum velocity

 

1

 

 is . Obvi-
ously based on equations (2) and (4) we want to keep  as small as possible in order to track 
image features while moving at higher velocities.

However as stated earlier there is always some finite  no matter how small. Assuming that 
the image processing time is fixed, it is this time that will limit the ideal velocity response

 

2

 

 of the 
tracking system. This ideal limitation is shown below in Figure 6. Once again however equations 
(2) and (4) do not present the whole story. While the ideal response will resemble that of the solid 
line in Figure 6, a more realistic (albeit qualitative) response is shown by the dashed line. The deg-
radation in practice is caused by several factors. Primarily as velocity increases the increasing dis-

 

1. Velocity used in a general sense here, reflecting both translational and rotational velocities
2. Response used as a qualitative indication of the system’s ability to track objects.
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parity between subsequent image frames generally causes increased difficulty in feature 
correspondence and/or optical flow determination, resulting in increasingly unreliable results.

All of these problems are normally further confounded by assumptions made about the envi-
ronment in which the CVS is operating. If one is going to infer self-motion from changes in images, 
one generally needs to assume that all of the observed changes in the images are due to that self-
motion and not to other objects moving in the environment. This static environment assumption is 
usually violated, even if there is only one person in the environment (consider a person’s hand 
moving in front of their face—“Did I move with respect to the hand or did the hand move with 
respect to me?”).

So as we work to make such a system faster and simultaneously less sensitive to noise, we are 
inclined to believe that the estimates offered by a computer vision based tracking system will be 
smoother and more reliable at lower frequencies and velocities, and in environments that are not 
changing independently (i.e. static environments).

Figure 6. Response1 vs. velocity based on equation (2)

1.3 Inertial Navigation System (INS) Navigation

When compared to computer vision based systems, inertial navigation systems (INS) exhibit 
completely complementary behavior in terms of both frequency and velocity response: low relative 
error at high frequencies and velocities, and high relative error at lower frequencies and velocities. 
At low velocities (very slow or no movement) one must in practice contend with pronounced bias 
and drift error (noise). As movement slows, such noise begins to grow with respect to the true sig-
nal. In this section we will briefly explore this behavior and the resulting impact on the response 
of a purely inertial navigation system2.

1. Response used as a qualitative indication of the system’s ability to track objects.
2. For the purpose of this discussion, consider an INS with one or more linear accelerometers and one or more
angular rate (velocity) sensors.
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Figure 7. Transformation of user acceleration to INS-based position estimate

Figure 8. Continuous frequency coefficients for Figure 7 

Models useful in explaining the frequency characteristics of an INS are shown above in 
Figure 7 and Figure 8. In each of the figures the dashed box marked “User” contains a question 
mark to indicate that the user’s acceleration (motion) is unknown. In Figure 7 the dashed box 
marked “INS” shows acceleration measurement noise εa(t) being summed with the ideal user ac-
celeration signal, and the sum then being integrated twice to obtain a position estimate. In Figure 8 
the same box shows the corresponding transfer function coefficients.

The user’s true acceleration is their position twice differentiated, i.e. the user’s acceleration is 
weighted by the square of the frequency (s) of their motion. This acceleration signal is then weight-
ed by the inverse square of the frequency (s) as it is integrated twice in the INS to obtain a position 
estimate. The end result is a unity frequency weighting of the position in the final estimate.

From Figure 8 we also see that any electrical noise εa(t) incurred during the measurement of the 
accelerometer output is weighted solely by the inverse square of the frequency (s) as it is integrated 
twice in the INS. The end result is an inverse square frequency weighting of electrical measurement 
noise in the final position estimate.

In Figure 9 below the estimated position signal, noise, and signal-to-noise ratio for an INS (us-
ing accelerometers) are plotted together against frequency. This figure demonstrates why the prac-
tical application a solely INS-based tracking system is impractical. At low frequencies the position 
estimate noticeably diverges as measurement noise is erroneously interpreted as acceleration. The 
most common sources of low frequency noise are the unavoidable and often time-dependent ran-
dom “DC” (or very low frequency) biases. Such bias errors can cause an INS based tracker to re-
port that a subject is moving even when that subject is completely still, or conversely to report that 
a subject is still when in fact they are slowly moving.

∫ ∫ẋ̂INSẋ̇̂INS x̂INS+
+

INS
εa(t)

User

? Ẋ̇
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Figure 9. Logarithmic plots of typical INS position signal vs. noise (constant velocity)

With respect to velocity we see similar behavior. Velocity sensing devices (e.g. angular rate 
sensors) produce an output voltage that is proportional to the velocity. Therefore as angular veloc-
ity increases in magnitude, the voltage also increases in magnitude, improving the ratio of mea-
sured signal to measurement noise. Conversely as velocity decreases, the magnitude of the device 
output voltage also decreases, increasing the sensitivity to measurement noise in a linear fashion.

These signal-to-noise characteristics provide some insight into why inertia sensing techniques 
are most reliable during relatively high frequency and velocity movement, precisely the opposite 
of a properly filtered CVS. Also, unlike a CVS-based tracker, an INS-based tracker is completely 
insensitive to independent (unrelated) motion in the environment. A final “win” with an INS is that 
the operation is relatively simple and can therefore be very fast. The discrete implementations of 
the integrators shown in Figure 7 are simply adders. These additions can proceed generally as fast 
as measurements can be taken, providing estimates of position and orientation at a very low latency 
and high frequency (the inter-sample time and its inverse respectively).

One unrelated form of INS error is that caused by mechanical misalignment. Misalignment er-
rors cause a portion of the motion along or about one axis to be incorrectly interpreted as motion 
along or about another axis. Such errors can be (if necessary) modeled in a Kalman filter at the cost 
of additional states.

It is the complementary frequency/velocity behavior and environmental sensitivity that leads 
me to believe that a hybrid approach combining a computer-vision based system and an INS based 
system holds great promise in solving the tracking problem in general. Furthermore it is the self-
contained (autonomous) nature of the two individual systems that offers promise in solving the 
self-tracking problem in particular.

100

1 0

1

0 . 1

Frequency

Position Signal
Position Noise
Position S/N

Magnitude
(Log10)



Welch: Hybrid Self-Tracker 10

UNC-Chapel Hill , TR 95-048

2. Related Work

The notion of a Self-Tracker was introduced by Bishop in his dissertation proposal [Bishop82] 
and later in his finished dissertation [Bishop84]. Like Bishop’s pioneering optically based Self-
Tracker my hybrid will offer unrestricted user motion, large working environments, the “sociabil-
ity” of multiple nearby trackers as described by Meyer et al. [Meyer92], and immunity to most tra-
ditional interference. Unlike Bishop’s Self-Tracker which relies on intensity changes in one-
dimensional images as its primary method of tracking, my system would use natural landmarks 
found in two-dimensional images of the environment as secondary information. The observed mo-
tion of natural landmarks in the environment would be used to aid the INS at low frequencies, while 
the primary INS would provide continuous high frequency (low latency) information.

Previous work by Azuma and Bishop [Azuma94] at the University of North Carolina at Chapel 
Hill explored the use of inertia sensing devices to aid an optoelectronic ceiling tracker. Again in 
contrast, I am proposing reversed roles whereby an inertial navigation system (INS) provides the 
primary means of tracking, and a computer vision system provides assistance. Additionally while 
the optoelectronic ceiling tracker requires the placement of light emitting devices throughout the 
working environment, my proposed self-contained system would instead optically control INS er-
ror by observing (looking out at) at a completely unmodified environment in a passive manner. 

Foxlin [Foxlin93] implemented an orientation-only system that employs inertia sensing devic-
es aided by inclinometers and flux-gate compasses. While significant results were demonstrated, 
his system provides estimates of orientation only. In addition, his INS aid is available only during 
certain presumed randomly occurring pauses in user motion. In contrast, the computer vision por-
tion of the proposed hybrid Self-Tracker would provide both orientation and position aid to the 
INS, at regularly timed intervals.

Gillis [Gillis91] proposed and simulated a system for real-time estimation of angular motion 
only. In his system, the outputs from nine linear accelerometers and three orthogonal gyroscopes 
are ensemble-averaged, with statistics being collected in the process. These statistics are then used 
by the estimator to compute an estimate for the 3-D angular velocity of a rigid body. This proposed 
system, using a linear Gaussian estimator (not unlike a Kalman filter), offered estimates of angular 
velocities only. In his system, low-frequency results were improved by ensemble averaging the 
measurements from multiple inertial devices.

 In addition to providing six degrees of freedom, robustness, a wide range of motion, and a re-
duced latency not found in previous work, my proposed hybrid (the INS in particular) tracker offers 
an inherent basis for the motion predictions shown to be necessary by Azuma [Azuma95] to reduce 
the side-effects of overall (non-tracker) system latencies.
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3. Proposed Implementation

3.1 System Design

I propose using a slightly modified Kalman filter to appropriately weight the redundant infor-
mation from the INS and the CVS. A classical application of the Kalman filter is embodied in an 
aided inertial navigation system [Brown92]. In such a system the Kalman filter can be tuned to 
weight each subsystem most heavily in the region of the frequency spectrum where it provides the 
most reliable data, and conversely to suppress each subsystem where it is most prone to errors. In 
my modified Kalman filter the low frequency and velocity errors inherent in the INS can be con-
trolled by the better performing CVS, while at higher frequencies and velocities the unreliable CVS 
data can be down-played or ignored in favor of the INS data. In addition, the INS data can be used 
by the CVS to single-out and subsequently ignore unrelated motion in the environment.

Specifically I propose using a Kalman filter in an indirect feedback configuration [Maybeck79] 
as shown below in Figure 10 to combine the navigation information provided by each subsystem 
in order to obtain results that are more accurate than the results obtained by either subsystem alone. 
In such a configuration, the Kalman filter estimates the difference between the current INS and 
CVS outputs, i.e. it continually estimates the error in the INS by using the CVS as a second (re-
dundant) reference for position and orientation. This error estimate is then used to correct the INS. 
The tuning of the Kalman filter parameters (discussed briefly below) then adjusts the weight of the 
correction as a function of frequency. By slightly modifying the Kalman filter, adaptive velocity 
response can be incorporated also. This can be accomplished by adjusting (in real time) the expect-
ed CVS measurement error (the measurement error covariance) as a function of the magnitude of 
velocity. The dashed line in Figure 10 indicates the use of INS estimates by the CVS to prevent 
tracking of moving scene objects (i.e. unrelated motion in the environment).

In particular, the indirect or error-state implementation is motivated by four factors. First the 
complementary frequency and velocity behavior of the INS and CVS. As is the case in the classi-
cal INS aided system, we wish to weight the INS information heavily in during motion where it is 
most accurate, and to suppress it where it is prone to error. By estimating the INS error (as 
opposed to the total state) with a heavily filtered CVS, we can nicely implement such blending. 

 The second motivating factor is that the Kalman filter is based on the assumed validity of a 
linear system model. Because INS noise (bias and drift error) is typically low frequency, the use 
of a Kalman filter to model the error is more reasonable than modeling INS signals which are non-
linear and (potentially) of high frequency.

Figure 10. Indirect (error state space) feedback configuration

The third motivating factor is that by modeling only the error in the INS data, we avoid the ne-
cessity of a linear model for human motion. While such a model can (must) be used if for example 
one intends to predict user motion as shown to be necessary by Azuma [Azuma94], it is not an in-
herently necessary component of the tracking system.

INS

Kalman
filter

Corrections to INS

INS estimate (corrected)

CVSCVS estimate
(redundant)
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Finally, an implementation such as that shown in Figure 10 provides a method of filtering the 
undesired noise without distorting the desired signal. In particular, note that the INS signal is not 
directly filtered in any way, thus it is not delayed or band-limited. In an implementation that at-
tempts to directly filter the navigation signal, some signal distortion will always be incurred as a 
result of the delay caused by the filter.

The use of the INS data to assist the CVS in discerning unrelated motion in the environment is 
motivated by the fact that the INS is physically unaffected by such independent motion. Also, be-
cause such motion is usually relatively high frequency or velocity in nature, the INS can be relied 
upon to ignore such motion when seen by the CVS.

Following the derivations in Maybeck [Maybeck79] we arrive at the following continuous-
time state equations for a one-dimensional position-only (linear accelerometer) tracker

(6)

where the last term represents the Kalman filter’s error estimates being used as feedback to 
correct the INS estimate of position.

As shown by Maybeck, if the true acceleration is corrupted by white noise  (see Figure 7 
on page 8) and the CVS readings are corrupted by white noise , the steady-state covariance 
matrix P and the Kalman gain matrix K become

(7)

(8)

where

(9)

(10)

and

(11)

in meters per second. The motivation for (11) is to emphasize the fact that in the steady-state, 
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The complete derivation and study of the above equations and statements will not be repeated 
here. See Maybeck for a complete derivation of the above equations and the indirect-feedback fil-
ter configuration, as well as some detailed discussion of the frequency response of the Kalman fil-
ter.

A block diagram of the continuous-time version of the indirect-feedback system mathemati-
cally represented by (6) is shown below in Figure 11. In this continuous differential model, it can 
be seen that the change in position and velocity is being corrected by the Kalman filter’s estimate 
of the INS error. In the actual implementation, the velocity error is integrated as a part of the nor-
mal (inherent) Kalman filter operation so that the actual correction is performed on the position 
and orientation estimates rather than their derivatives.

Figure 11. Indirect feedback filter configuration

If necessary, mechanical misalignment errors (of the inertia sensing devices) can be modeled 
in the main Kalman filter also. A complete accelerometer error model is given in [Maybeck79].

3.2 Inertial Navigation System (INS)
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of the INS would simply be to continually integrate (sum) inertial device measurements in order to 
obtain a continuous estimate of position and orientation. In the process the INS estimates would be 
corrected by subtracting the INS error estimates (estimated by a Kalman filter).

This process would essentially proceed as rapidly as measurements could be obtained. As 
indicated previously, the INS (hence the hybrid tracker) will have a frequency response from zero 
to  where dt is the INS inter-sample time, and a latency of dt.
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3.3 Computer Vision System (CVS)

The implementation of the CVS subsystem will be significantly more complicated in terms of 
both hardware and software, and is as of yet the CVS has not been completely specified.

In general, per Bishop’s “spiral of goodness” argument [Bishop84] we want the CVS to operate 
simply and hence rapidly. However, in this hybrid system we want the CVS to provide a completely 
independent and absolute estimate of the 3-D current position and orientation of the tracker, not 
simply a relative estimate of translation. In order to more directly facilitate such independent ab-
solute CVS estimates, I am proposing to use 2-D image sensors as opposed to 1-D sensors. Al-
though 2-D processing will take longer (the algorithms will inevitably be more complex than their 
1-D counterparts) I believe that the 2-D data is both necessary for the hybrid and implementable as 
described later below.

Papers describing the 3-D motion information contained in 2-D optic flow data include work 
by Prazdny [Prazdny83], and Longuet-Higgins Prazdny [Longuet-Higgins80]. A proposal for de-
termining optic flow data was presented by Horn and Schunck [Horn81].

Recently several authors have proposed methods for estimating 3-D “motion” from time-se-
quential 2-D images [Fermüller93][Irani93][Lawn94]. These proposed methods are nice in that 
they are relatively robust and can be implemented with a single camera. In particular, the method 
proposed by Irani [Irani93] et al. might be considered attractive for the tracker’s CVS as it tempo-
rally integrates spatially registered images. In addition to making the motion estimation more ro-
bust, this increases the accuracy by reducing sensitivity to sampling noise.

Each of these methods however can only provide information on five degrees of 3-D motion, 
three parameters describing rotation and two parameters describing the direction of translation—
the focus of expansion or FOE on the image plane. Because the FOE estimate provides the only 
translation information in time-sequential images, and because the FOE only indicates the direc-
tion of translation (on the image plane), such methods will not be sufficient.

Figure 12. Translation ambiguity in single camera images [Nalwa93]

The problem is depicted above in Figure 12. For a given camera translation, the component of 
the motion field (on the image plane) that is due to that translation is invariant under equal scaling 
of the true translational-motion vector component of the scene motion. As a result, translational-
motion vectors on the image plane can be explained by an infinite set of real-world 3-D scene mo-
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tion vectors. Without knowing the distance to the actual scene points, the magnitude of the trans-
lation cannot be determined. This is not the case for rotation—measurements of rotation are not 
dependent on the spatial position of a scene points, only translation [Nalwa93].

As stated earlier, in this hybrid system we want the CVS to provide an absolute redundant es-
timate of the 3-D current position and orientation of the tracker. For this reason, information about 
the magnitude of the translation of scene points is essential. As a result of dependency I believe 
that it will be necessary to directly compute the scene depth of some selected scene features or 
landmarks in order to make direct measurements of spatial position translation. Such direct com-
putation will require the implementation of one or more stereoscopic imaging systems. Having es-
tablished stereo correspondence of a sparse number of feature points, triangulation techniques can 
be used to determine the complete relative 3D position of scene points. Such triangulation tech-
niques (with error analysis) are presented by Roberts and Ganapathy in their 1986 AT&T Bell Labs 
paper [Roberts86]. In addition, Adelson and Wang present ideas for obtaining single lens stereo 
using a plenoptic camera. Such a camera is purported to have higher reliability than its two-camera 
alternative, and would seem to allow a more compact implementation [Adelson92].

While several locally cooperative and parallel mechanisms for establishing overall image cor-
respondence have been proposed, for example [Marr76], it is important to note that such dense 
depth estimates should not be necessary. Instead, stereo image correspondence should be necessary 
only at sparsely selected image features or landmarks. Once the initial stereo correspondence for 
the selected features has been accomplished, the pairs of corresponding stereo image landmarks 
can be “locked on to” and tracked as they appear and disappear from the view of the imaging de-
vices. A relatively simple serial method for finding correspondence between previously selected 
features in a pair of images is suggested in [Ballard82].

Related work has been undertaken at Carnegie Mellon University in cooperation with the 
Wright Research and Development Center (U.S.A.F. Wright-Patterson AFB, Dayton, OH). As a 
part of this work they have published a series of papers (technical reports) detailing algorithms 
used to recover camera motion (again only 5 DOF) in an image stream. In [Tomasi91] the authors 
describe and document a robust method for detecting and tracking point features in a scene. Intu-
itively this is very close to what we are looking for the CVS—a method to “lock on to” landmarks 
in the scene—although we would want to track 3-D landmark motion. A separate Kalman filter 
could be used to reduce sensitivity to noise in the CVS, and the CVS could use the current INS 
estimates to help avoid tracking moving scene objects (dashed line in Figure 10 on page 11).

When actually implementing the CVS, it might be possible to fabricate the CVS completely (or 
almost completely) in silicon. Using such techniques, an array of image sensors can be combined 
with general purpose circuitry in a standard CMOS process. For example, Anders Åström presents 
work with both linear and 2D Smart Image Sensors in his Ph.D. dissertation [Åström93], work that 
is now being pursued commercially by Metolius, Inc. Recently Dickinson et al. presented new 
techniques for fabricating active image sensors in a standard CMOS process [Dickenson95]. One 
benefit of their approach is that access to the image sensor array can be accomplished in a random-
access fashion, i.e. it is not necessary to read the entire array. Such flexibility might very well have 
its place in tracking a limited number of features in the image plane, providing a potentially signif-
icant speedup.
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Figure 13. Mock-up of Tracker Cluster

Figure 13 depicts a rough mock-up of what a tracking cluster might look like. Imaging devices 
and lenses could be constructed as shown below in Figure 14, using a “periscope” lens system to 
extend the focal length as needed. Inertial devices could be buried inside the cluster.

Figure 14. Periscope lens system to extend focal length
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4. Research Plan and Schedule

4.1 Thesis Demonstration

My thesis would be confirmed by showing that the proposed hybrid offers better1 position and 
orientation tracking than either a strictly INS or a strictly CVS self-tracker. The preferred option 
for demonstration is to build in hardware and software a complete working prototype of an INS/
CVS hybrid self-tracker. Less glamorous but sufficient alternative options are also available in the 
event that unforseen complicating circumstances arise, e.g. the unforseen need for custom image 
processing hardware.

4.1.1 Preferred Demonstration Option

The preferred option for demonstrating my thesis will involve several major steps along the 
way—these steps are listed below. The steps are followed by some discussion of less glamorous 
but sufficient alternative options that would be considered in the event of unforseen complicating 
circumstances.

(1) Design and construction of a mechanical test rig, complete with two 
cameras (a stereo setup), angular rate gyros, and linear accelerome-
ters. The rig should also offer a method for connection to a mechan-
ical tracker such as the Faro arm (for “truth” measurements).

(2) Collect a series of camera, gyro, accelerometer, and truth samples 
while moving the test rig through some test motion sequences. In-
clude some sequences with independent motion in the environment.

(3) Implement an INS model that uses the gyro and accelerometer data 
to estimate position and orientation. Simulate and evaluate the INS 
using the collected samples.

(4) Choose and implement a known stereo correspondence algorithm 
for sparse feature tracking by the CVS model.

(5) Implement a complete CVS model that uses the above correspon-
dence algorithm (step 4) to estimate position and orientation. Simu-
late and evaluate the CVS using the collected samples.

(6) Based on the observed performace of the INS and CVS models, de-
termine the initial parameters for the indirect feedback Kalman filter 
implementation, including the adaptive velocity response discussed 
in section 3.1 on page 11.

(7) Implement a complete software model (an off-line simulator) of the 
INS/CVS hybrid using the parameters discussed above in step 6. 
Simulate and evaluate the hybrid using the collected samples.

(8) Optimize the simulator and convert it to a real-time implementation 
of the hybrid tracker using the test jig assembled in step 1.

1. Better quantitatively in terms of mean-squared-error and peak-error during motion sequences that exhibit a
broad range of frequency and velocity characteristics. Better qualitatively in terms of reliability or stability in
the presence of independent motion in the tracking environment.
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4.1.2 Alternative CVS Option

In the event that steps 4 and 5 under the preferred option become unreasonably problematic, 
e.g. they begin to resemble dissertation efforts in their own right, it would be sufficient to approx-
imate the CVS by using the existing optoelectronic ceiling tracker at UNC. In this event, the ceiling 
data would be preturbed or distorted in a manner that results in data with characteristics resembling 
that of a passive CVS as described in section 3.3 on page 14. Steps 6, 7, and possibly 8 could still 
be taken in order to demonstrate the thesis, albeit in a less desirable fashion.

4.1.3 Off-Line Simulation Option

Regardless of the work performed for steps 4 and 5 of the preferred option, if step 8 appears to 
be unrealizable in a reasonable amount of time, the off-line simulation described in step 7 will suf-
fice to demonstrate my thesis. 

4.2 Completion Criteria

My dissertation will be considered complete after meeting each of two major milestones. First, 
one or more of the three thesis demonstration options (section 4.1) must be completed. In the event 
that the results of step 7 seem to contradict my thesis, and I am able to formulate a reasonable ex-
planation for why this is so, these results will suffice to support a modified thesis which contradicts 
the original thesis. Second, all of the normal dissertation criteria must be met, e.g. my defense and 
complete documentation of my work.

4.3 Research Topic Areas

3D Passive Tracking

Stochastic Control Theory

Inertial Navigation

Computer Vision Based Navigation

4.4 Proposed Schedule
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