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Where We’re Going

• Introduction & Intuition

• The Discrete Kalman Filter

• A Simple Example

• Variations of the Filter

• Relevant Applications & References
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The Kalman filter

• Seminal paper by R.E. Kalman, 1960

• Set of mathematical equations

• Optimal estimator
– minimum mean square error

• Versatile
– Estimation

– Filtering

– Prediction

– Fusion

predictpredict correctcorrect
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Why a Kalman Filter?

• Efficient “least-squares” implementation

• Past, present and future estimation 

• Estimation of missing states

• Measure of estimation quality (variance)

• Robust
– forgiving in many ways

– stable given common conditions
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Some Intuition
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First Estimate

ˆ x 1 = z1

ˆ σ 21 = σ 2
z1

Conditional Density Function

14121086420-2

N(z1,σz1
2 )

z1 σ 2
z1

,
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Second Estimate

Conditional Density Function

z2 σ 2
z2

,

ˆ x 2 = ...?

ˆ σ 22 = ...? 14121086420-2

N(z2,σz2
2 )
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Combine Estimates

= σ z2

2 σ z1

2 +σ z2

2( )[ ] z1+ σ z1

2 σ z1

2 +σ z2

2( )[ ] z2ˆ x 2
= ˆ x 1 + K2 z2 − ˆ x 1[ ]

where
K2 = σ z1

2 σ z1

2 +σ z2

2( )
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Combine Variances

1 σ 2 = 1 σ z1

2( )+ 1 σ z2

2( )2
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Combined Estimate Density

ˆ x =

ˆ σ 2 = σ 2
2

ˆ x 2

14121086420-2

Conditional Density Function

N( σ 2)ˆ x,ˆ 
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Add Dynamics

dx/dt = v + w

where
v is the nominal velocity
w is a noise term (uncertainty)
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Propagation of Density
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Some Details
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Discrete Kalman Filter

Maintains first two statistical moments

process state (mean)

error covariance

z

y

x
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Discrete Kalman Filter

•A discrete process model
–change in state over time
–linear difference equation

•A discrete measurement model
–relationship between state and measurement
–linear function

•Model Parameters
–Process noise characteristics
–Measurement noise characteristics

The Ingredients
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Necessary Models

measurement
model

dynamic
model

previous state next state

state
measurement

image plane
( u , v )
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The Process Model

x k+1 = Axk + wk

zk = Hxk + vk

Process Dynamics

Measurement
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Process Dynamics

x k+1 = Axk + wk

xk ∈  Rn contains the states of the process

state vector
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Process Dynamics

nxn matrix A relates state at time step k to 
time step k+1

state transition matrix

x k+1 = Axk + wk
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Process Dynamics

process noise

wk ∈  Rn models the uncertainty of the process

wk ~ N(0, Q)

x k+1 = Axk + wk



UNC Chapel Hill Computer Science Slide 21

Measurement

zk = Hxk + vk

zk ∈  Rm is the process measurement

measurement vector
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Measurement

zk = Hxk + vk

state vector
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Measurement

mxn matrix H relates state to measurement

measurement matrix

zk = Hxk + vk
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Measurement

measurement noise

zk ∈  Rm models the noise in the measurement

vk ~ N(0, R)

zk = Hxk + vk
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State Estimates

a priori state estimate

a posteriori state estimate

ˆ x –k

ˆ xk
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Estimate Covariances

a priori estimate error covariance

a posteriori estimate error covariance

Pk
– = E[(xk- xk

–)(xk - xk
–)T] ˆ ˆ 

Pk = E[(xk- xk)(xk - xk)T] ˆ ˆ 
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Filter Operation

Time update (a priori estimates)

Measurement update (a posteriori estimates)

Project state and covariance forward
to next time step, i.e. predict 

Update with a (noisy) measurement
of the process, i.e. correct 
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Time Update (Predict)

state

error covariance
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Measurement Update (Correct)
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Time Update (Predict)

a priori state and error covariance

ˆ xk+1 = Axk
–

Pk+1 = APk A + Q–
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Measurement Update (Correct)

a posteriori state and error covariance

Kalman gain

ˆ xk = xk  + Kk (zk - Hxk )ˆ ˆ – –

Pk = (I - Kk H)Pk
–

Kk = Pk HT(HPk H
T + R)-1 – –
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Filter Operation

Time Update
(Predict)

Measurement

(Correct)
Update



UNC Chapel Hill Computer Science Slide 33

A Simple Example

Estimating a Constant
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Estimating a Constant

A = 1

H = 1

A , H , Pk , R , zk , and Kk  are
all scalars.  In particular,
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Process Model

x k+1 = xk

zk = xk + vk

Process Dynamics

Measurement
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Time Update

a priori state and error covariance

ˆ xk+1 =  xk
–

Pk+1 = Pk
–
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Measurement Update

a posteriori state and error covariance

Kalman gain

ˆ xk = xk  + Kk (zk - xk )ˆ ˆ – –

Pk = (1 - Kk )Pk
–

Kk = Pk / (Pk + R) – –
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Simulations

ˆ zk and xk Pk
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Variations of the Filter

• Discrete-Discrete (a.k.a. “discrete”)

• Continuous-Discrete

• Extended Kalman Filter



UNC Chapel Hill Computer Science Slide 40

Continuous-Discrete

• The Process (Model)
– Continuous model of system dynamics

– Discrete measurement equation

• Why, When, How
– Flexibility in prediction

– Irregularly spaced (discrete) measurements

– At measurement, integrate state forward (e.g. 
Runge-Kutta integrator)



UNC Chapel Hill Computer Science Slide 41

Extended Kalman Filter

• Nonlinear Model(s)
– Process dynamics: A becomes a(x,w)

– Measurement: H becomes h(x,z)

• Filter Reformulation
– Use functions instead of matrices

– Use Jacobians to project forward, and to relate 
measurement to state
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Relevant Applications

• Rebo
Rebo, Robert K. 1988. “A Helmet-Mounted Virtual Environment 
Display System,” M.S. Thesis, Air Force Institute of Technology.

• Azuma
Azuma, Ronald. 1995. “Predictive Tracking for Augmented 
Reality,” Ph.D. dissertation, The University of North Carolina at 
Chapel Hill, TR95-007.
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Relevant Applications

• Friedmann et al.
Friedmann, Martin, Thad Starner, and Alex Pentland.  1992. 
“Device Synchronization Using an Optimal Filter,” Proceedings of 
1992 Symposium on Interactive 3D Graphics (Cambridge MA) 
57–62

• Liang et al.
Liang, Jiandong, Chris Shaw, and Mark Green.  “On Temporal-
Spatial Realism in the Virtual Reality Environment,”  Proceedings 
of the 4th annual ACM Symposium on User Interface Software & 
Technology, 19-25
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Relevant Applications

• Van Pabst & Krekel
Van Pabst, Joost Van Lawick, and Paul F. C. Krekel. “Multi 
Sensor Data Fusion of Points, Line Segments and Surface 
Segments in 3D Space,” TNO Physics and Electronics Laboratory, 
The Hague, The Netherlands. [cited 19 November 1995]. 
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SCAAT

• Tracking Latency & Rate

• Simultaneity Assumption

• SCAAT
– Observability

– Family of unobservable systems

– Calibration

– VE Tracking, GPS, etc.
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Kalman Filter Papers...

• Kalman
Kalman, R. E. 1960. “A New Approach to Linear Filtering and 
Prediction Problems,” Transaction of the ASME—Journal of Basic 
Engineering, pp. 35-45 (March 1960).

• Sorenson
Sorenson, H. W. 1970. “Least-Squares estimation: from Gauss to 
Kalman,” IEEE Spectrum, vol. 7, pp. 63-68, July 1970.
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Some Books

Brown
Introduction to Random Signals and Applied Kalman Filtering (2nd)

Gelb
Applied Optimal Estimation

Jacobs
Introduction to Control Theory

Lewis
Optimal Estimation with an Introduction to Stochastic Control Theory

Maybeck
Stochastic Models, Estimation, and Control, Volume 1
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Further Information

• Welch & Bishop
Welch, Greg and Gary Bishop. 1995. “An Introduction to the 
Kalman Filter,” The University of North Carolina at Chapel Hill, 
TR95-041

http://www.cs.unc.edu/~welch/kalmanLinks.html


