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Two-Stage

box proposal + postclassify Single Shot
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SSD and other deep 
approaches 

dog: 0.4 cat: 0.2Is it a cat? No

Classical sliding 
windows

Bounding Box Prediction

Discretize the box space more coarsely
Refine the coordinates of each boxDiscretize the box space densely
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ConvNet

feature map

box  
regression

multiclass 
probabilities

SSD Training
• Match default boxes to ground truth boxes to 
determine true/false positives. 

• Loss = SmoothL1(box param) + Softmax(class  prob)

Smooth L1 loss Softmax loss



Related Work



Related Work
MultiBox [Erhan et al. CVPR14]

P(objectness) 
for K boxes

Fully  
connected

Offsets for  
K boxes



Related Work
MultiBox [Erhan et al. CVPR14]

P(objectness) 
for K boxes

Fully  
connected

Offsets for  
K boxes

+ post classify 
boxes



Related Work
YOLO [Redmon et al. CVPR16]

multiclass prob
for K boxes

Fully  
connected

Offsets for  
K boxes

MultiBox [Erhan et al. CVPR14]

P(objectness) 
for K boxes

Fully  
connected

Offsets for  
K boxes

+ post classify 
boxes



Related Work
YOLO [Redmon et al. CVPR16]

multiclass prob
for K boxes

Fully  
connected

Offsets for  
K boxes

Faster R-CNN [Ren et al. NIPS15]

Convolutional

P(objectness) Box offsets

MultiBox [Erhan et al. CVPR14]

P(objectness) 
for K boxes

Fully  
connected

Offsets for  
K boxes

+ post classify 
boxes



Related Work
YOLO [Redmon et al. CVPR16]

multiclass prob
for K boxes

Fully  
connected

Offsets for  
K boxes

Faster R-CNN [Ren et al. NIPS15]

Convolutional

P(objectness) Box offsets

+ post classify 
boxes

MultiBox [Erhan et al. CVPR14]

P(objectness) 
for K boxes

Fully  
connected

Offsets for  
K boxes

+ post classify 
boxes



Related Work
YOLO [Redmon et al. CVPR16]

multiclass prob
for K boxes

Fully  
connected

Offsets for  
K boxes

Faster R-CNN [Ren et al. NIPS15]

Convolutional

P(objectness) Box offsets

SSD

Convolutional

Box offsetsmulticlass prob

+ post classify 
boxes

MultiBox [Erhan et al. CVPR14]

P(objectness) 
for K boxes

Fully  
connected

Offsets for  
K boxes

+ post classify 
boxes



Contribution #1:
Multi-Scale Feature Maps

ConvNet

box  
regression

multiclass 
scores



Contribution #1:
Multi-Scale Feature Maps

ConvNet

box  
regression

multiclass 
scores

stride 2  
convolution



Contribution #1:
Multi-Scale Feature Maps

ConvNet

box  
regression

multiclass 
scores

box  
regression

multiclass 
scores

stride 2  
convolution



8⇥ 8 feature map 4⇥ 4 feature map

vs.

8⇥ 8 feature map

SSD

Multi-Scale Feature Maps



8⇥ 8 feature map 4⇥ 4 feature map

vs.

8⇥ 8 feature map

SSD

Multi-Scale Feature Maps

Faster R-CNN Objectness  
Proposal, Ren 2015
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SSD300
include { 1

2 , 2} box? 4 4
include { 1

3 , 3} box? 4
number of Boxes 3880 7760 8732

VOC2007 test mAP 71.6 73.7 74.3
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Contribution #2:
Splitting the Region Space

ConvNet convolution

Use 38x38 feature map : +2.5 mAP  
(conv4_3)



Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

# Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512



Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

# Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512



Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

# Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

GT



Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

# Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

GT DETECTION



Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

# Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

• SmoothL1 or L2 loss for box shape 
averages among likely hypotheses

GT DETECTION



Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

# Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

• SmoothL1 or L2 loss for box shape 
averages among likely hypotheses

• Need to have enough default boxes 
(discrete bins) to do accurate regression 
in each

GT DETECTION



Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

# Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

• SmoothL1 or L2 loss for box shape 
averages among likely hypotheses

• Need to have enough default boxes 
(discrete bins) to do accurate regression 
in each

• General principle for regressing 
complex continuous outputs with deep 
nets

GT DETECTION
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• Matching ground truth and 
default boxes
‣ Match each GT box to closest default box

‣ Also match each GT box to all unassigned 
default boxes with IoU > 0.5

• Hard negative mining
• Unbalanced training: 1-30 TP, 8k-25k FP

• Keep TP:FP ratio fixed (1:3), use worst-
misclassified FPs.

Handling Many Default Boxes

`

`

GT Default box

TP

TP

FP 

?
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Contribution #3:
The Devil is in the Details
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Random expansion creates more 
small training examples

Data Augmentation

data augmentation SSD300
horizontal flip 4 4 4

random crop & color distortion 4 4
random expansion 4

VOC2007 test mAP 65.5 74.3 77.2
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COCO Bounding Box precision

mAP @ IoU 0.5 0.75 0.5:0.95

Faster R-CNN 45.3 23.5 24.2
SSD512* 48.5 30.3 28.8

gain +3.2 +6.8 +4.6
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Figure 2. Two-stage vs. Proposed. (a) The two-stage approach separates the detection and pose estimation steps. After object detection,
the detected objects are cropped and then processed by a separate network for pose estimation. This requires resampling the image at least
three times: once for region proposals, once for detection, and once for pose estimation. (b) The proposed method, in contrast, requires no
resampling of the image and instead relies on convolutions for detecting the object and its pose in a single forward pass. This offers a large
speed up because the image is not resampled, and computation for detection and pose estimation is shared.

3. Model
For an input RGB image, a single evaluation of the

model network is performed and produces scores for cat-
egory, bounding box offset directions, and pose, for a con-
stant number of boxes. These are filtered by non-max sup-
pression to produce the final output. The network is a vari-
ant of the single shot detection (SSD) network from [10]
with additional outputs for pose. Here we present the net-
work’s design choices, structure of the outputs, and training.

An SSD-style detector [10] works by adding a sequence
of feature maps of progressively decreasing spatial resolu-
tion to an image classification network such as VGG [17].
These feature layers replace the last few layers of the image
classification network, and 3x3 and 1x1 convolutional fil-
ters are used to transform one feature map to the next along
with max-pooling. See Fig. 3 for a depiction of the model.

Predictions for a regularly spaced set of possible detec-
tions are computed by applying a collection of 3x3 filters
to channels in one of the feature layers. Each 3x3 filter
produces one value at each location, where the outputs are
either classification scores, localization offsets, and, in our
case, discretized pose predictions for the object (if any) in a
box. See Fig. 1. Note that different sized detections are pro-
duced by different feature layers instead of taking the more
traditional approach of resizing the input image or predict-
ing different sized detections from a single feature layer.

We take one of two different approaches for pose predic-
tions, either sharing outputs for pose across all the object
categories (share) or having separate pose outputs for each
object category (separate). One output is added for each of

N

✓

possible poses. With N

c

categories of objects, there are
N

c

⇥ N

✓

pose outputs for the separate model and N

✓

pose
outputs for the share model. While we do add a 3x3 filter for
each of the pose outputs, this added cost is relatively small
and the original SSD pipeline is quite fast, so the result is
still faster than two stage approaches that rely on a (often
slower) detector followed by a separate pose classification
stage. See Fig. 2 (a).

3.1. Pose Estimation Formulation

There are a number of design choices for a joint detection
and pose estimation method. This section details three par-
ticular design choices, and Sec. 4.1.1 shows justifications
for them through experimental results.

One important choice is in how the pose estimation task
is formulated. A possibility is to train for continuous pose
estimation and formulate the problem as a regression. How-
ever, in this work we discretize the pose space into N

✓

dis-
joint bins and formulate the task as a classification problem.
Doing so not only makes the task feasible (since both the
quantity and consistency of pose labels is not high enough
for continuous pose estimation), but also allows us to mea-
sure the confidence of our pose prediction. Furthermore,
discrete pose estimation still presents a very challenging
problem.

Another design choice is whether to predict poses sepa-
rately for the N

c

object classes or to use the same weights to
predict poses for all classes. Sec. 4.1.1 assess these options.

The final design choice is the resolution of the input im-
age. Specifically, we consider two resolutions for input:
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the detected objects are cropped and then processed by a separate network for pose estimation. This requires resampling the image at least
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Figure 2. Two-stage vs. Proposed. (a) The two-stage approach separates the detection and pose estimation steps. After object detection,
the detected objects are cropped and then processed by a separate network for pose estimation. This requires resampling the image at least
three times: once for region proposals, once for detection, and once for pose estimation. (b) The proposed method, in contrast, requires no
resampling of the image and instead relies on convolutions for detecting the object and its pose in a single forward pass. This offers a large
speed up because the image is not resampled, and computation for detection and pose estimation is shared.
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with additional outputs for pose. Here we present the net-
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of feature maps of progressively decreasing spatial resolu-
tion to an image classification network such as VGG [17].
These feature layers replace the last few layers of the image
classification network, and 3x3 and 1x1 convolutional fil-
ters are used to transform one feature map to the next along
with max-pooling. See Fig. 3 for a depiction of the model.
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produces one value at each location, where the outputs are
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case, discretized pose predictions for the object (if any) in a
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each of the pose outputs, this added cost is relatively small
and the original SSD pipeline is quite fast, so the result is
still faster than two stage approaches that rely on a (often
slower) detector followed by a separate pose classification
stage. See Fig. 2 (a).

3.1. Pose Estimation Formulation

There are a number of design choices for a joint detection
and pose estimation method. This section details three par-
ticular design choices, and Sec. 4.1.1 shows justifications
for them through experimental results.

One important choice is in how the pose estimation task
is formulated. A possibility is to train for continuous pose
estimation and formulate the problem as a regression. How-
ever, in this work we discretize the pose space into N
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dis-
joint bins and formulate the task as a classification problem.
Doing so not only makes the task feasible (since both the
quantity and consistency of pose labels is not high enough
for continuous pose estimation), but also allows us to mea-
sure the confidence of our pose prediction. Furthermore,
discrete pose estimation still presents a very challenging
problem.

Another design choice is whether to predict poses sepa-
rately for the N
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object classes or to use the same weights to
predict poses for all classes. Sec. 4.1.1 assess these options.

The final design choice is the resolution of the input im-
age. Specifically, we consider two resolutions for input:
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Check out the code/models

https://github.com/weiliu89/caffe/tree/ssd

https://github.com/weiliu89/caffe/tree/ssd
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