SSD: Single Shot MultiBox Detector

Wei Liu(1), **Dragomir Anguelov(2)**, Dumitru Erhan(3), Christian Szegedy(3), Scott Reed(4), Cheng-Yang Fu(1), Alexander C. Berg(1)

UNC Chapel Hill(1), **Zoox Inc.(2)**, Google Inc.(3), University of Michigan(4)

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

VGGNet Titan X Pascal

VGGNet Titan X Pascal

Classical sliding windows

Classical sliding windows

Is it a cat? No

Classical sliding windows

Is it a cat? No

Discretize the box space **densely**

Classical sliding windows

Is it a cat? No

Discretize the box space **densely**

Classical sliding windows

Is it a cat? No

Discretize the box space **densely**

Classical sliding windows

Is it a cat? No

Discretize the box space **densely**

Classical sliding windows

Is it a cat? No

Discretize the box space **densely**

Classical sliding windows

Is it a cat? No

Discretize the box space **densely**

Classical sliding windows

Is it a cat? No

Discretize the box space **densely**

Classical sliding windows

Is it a cat? No

Discretize the box space **densely**

SSD and other deep approaches

dog: 0.4 cat: 0.2

Classical sliding windows

SSD and other deep approaches

dog: 0.4 cat: 0.2

Is it a cat? No

Discretize the box space **densely**

Discretize the box space more **coarsely Refine** the coordinates of each box

feature map

feature map

feature map

SSD Training

- Match default boxes to ground truth boxes to determine true/false positives.
- Loss = **SmoothL1**(box param) + **Softmax**(class prob)

MultiBox [Erhan et al. CVPR14]

MultiBox [Erhan et al. CVPR14]

Faster R-CNN [Ren et al. NIPS15]

Contribution #1: Multi-Scale Feature Maps

Contribution #1: Multi-Scale Feature Maps

Contribution #1: Multi-Scale Feature Maps

Multi-Scale Feature Maps

SSD

 8×8 feature map

 4×4 feature map
Multi-Scale Feature Maps

 8×8 feature map

 4×4 feature map

Prediction source layers from:				mA	Р			
						use bounda	ry boxes?	# Boxes
38×38	19×19	10×10	5×5	3×3	1×1	Yes	No	
~	v	v	~	~	~	74.3	63.4	8732
\checkmark	\checkmark	\checkmark				70.7	69.2	9864
	~					62.4	64.0	8664

Prediction source layers from:				mA	Р			
						use bounda	ry boxes?	# Boxes
38×38	19×19	10×10	5×5	3×3	1×1	Yes	No	
~	v	v	~	~	~	74.3	63.4	8732
\checkmark	\checkmark	\checkmark				70.7	69.2	9864
	~					62.4	64.0	8664

Prediction source layers from:				mA	Р			
						use bounda	ry boxes?	# Boxes
38×38	19×19	10×10	5×5	3×3	1×1	Yes	No	
~	v	v	~	~	~	74.3	63.4	8732
\checkmark	\checkmark	\checkmark				70.7	69.2	9864
	~					62.4	64.0	8664

Prediction source layers from					mA	Р		
	I TEAICUC	Source .	layers I.	10111.		u <u>se bounda</u>	ry boxes?	# Boxes
38×38	19×19	10×10	5×5	3×3	1×1	Yes	No	
v	v	v	~	~	~	74.3	63.4	8732
\checkmark	\checkmark	\checkmark				70.7	69.2	9864
	~					62.4	64.0	8664

Contribution #2: Splitting the Region Space

Contribution #2: Splitting the Region Space

		SSD30	0
include $\{\frac{1}{2}, 2\}$ box?		~	~
include $\{\frac{1}{3},3\}$ box?			~
number of Boxes	3880	7760	8732
VOC2007 test mAP	71.6	73.7	74.3

Contribution #2: Splitting the Region Space

Use 38x38 feature map : **+2.5 mAP** (conv4_3)

	Faster R-CNN	YOLO	SSD300	SSD512
# Default Boxes	6000	98	8732	24564
Resolution	1000x600	448x448	300x300	512x512

	Faster R-CNN	YOLO	SSD300	SSD512
# Default Boxes	6000	98	8732	24564
Resolution	1000×600	448x448	300x300	512x512

	Faster R-CNN	YOLO	SSD300	SSD512
# Default Boxes	6000	98	8732	24564
Resolution	1000x600	448x448	300x300	512x512

GT

	Faster R-CNN	YOLO	SSD300	SSD512
# Default Boxes	6000	98	8732	24564
Resolution	1000x600	448x448	300x300	512x512

	Faster R-CNN	YOLO	SSD300	SSD512
# Default Boxes	6000	98	8732	24564
Resolution	1000×600	448x448	300x300	512x512

• SmoothL1 or L2 loss for box shape averages among likely hypotheses

	Faster R-CNN	YOLO	SSD300	SSD512
# Default Boxes	6000	98	8732	24564
Resolution	1000x600	448x448	300x300	512x512

- SmoothL1 or L2 loss for box shape averages among likely hypotheses
- Need to have enough default boxes (discrete bins) to do accurate regression in each

	Faster R-CNN	YOLO	SSD300	SSD512
# Default Boxes	6000	98	8732	24564
Resolution	1000×600	448x448	300x300	512x512

- SmoothL1 or L2 loss for box shape averages among likely hypotheses
- Need to have enough default boxes (discrete bins) to do accurate regression in each
- General principle for regressing complex continuous outputs with deep nets

Matching ground truth and default boxes

GT

- Matching ground truth and default boxes
 - Match each GT box to closest default box

- Matching ground truth and default boxes
 - Match each GT box to closest default box
 - Also match each GT box to all unassigned default boxes with IoU > 0.5

- Matching ground truth and default boxes
 - Match each GT box to closest default box
 - Also match each GT box to all unassigned default boxes with IoU > 0.5
- Hard negative mining

- Matching ground truth and default boxes
 - Match each GT box to closest default box
 - Also match each GT box to all unassigned default boxes with IoU > 0.5
- Hard negative mining
 - Unbalanced training: 1-30 TP, 8k-25k FP

- Matching ground truth and default boxes
 - Match each GT box to closest default box
 - Also match each GT box to all unassigned default boxes with IoU > 0.5
- Hard negative mining
 - Unbalanced training: 1-30 TP, 8k-25k FP
 - Keep TP:FP ratio fixed (1:3), use worstmisclassified FPs.

SSD Architecture

Contribution #3: The Devil is in the Details

Data Augmentation

Data Augmentation

Data Augmentation

data augmentation	SSI	0300
horizontal flip	v	~
random crop & color distortion		~
VOC2007 test mAP	65 5	743

Random expansion creates more **small** training examples

Random expansion creates more **small** training examples

data augmentation	SSD300		
horizontal flip	v	v	/
random crop & color distortion		\checkmark	\checkmark
random expansion			~
VOC2007 test mAP	65.5	74.3	77.2

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

Method	mAP	\mathbf{FPS}	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300 6.6x	74.3	46	1	8732	$\bigcirc 300 \times 300 \bigcirc$
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512 10%	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

Method	mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VGG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO	52.7	155	1	98	448×448
YOLO (VGG16)	66.4	21	1	98	448×448
SSD300	74.3	46	1	8732	300×300
SSD512	76.8	19	1	24564	512×512
SSD300	74.3	59	8	8732	300×300
SSD512	76.8	22	8	24564	512×512

Method		mAP	FPS	batch size	# Boxes	Input resolution
Faster R-CNN (VG	GG16)	73.2	7	1	~ 6000	$\sim 1000 \times 600$
Fast YOLO		52.7	155	1	98	448×448
YOLO $(VGG16)$		66.4	21	1	98	448×448
SSD300	77.2	74.3	46	1	8732	300×300
SSD512	79.8	76.8	19	1	24564	512×512
SSD300	77.2	74.3	59	8	8732	300×300
SSD512	79.8	76.8	22	8	24564	512×512

Mathad	VOC2007	VOC2012	MS COCO	ILSVRC2014
Method	test	test	test-dev	val2
Fast R-CNN	70.0	68.4	19.7	N/A
Faster R-CNN	73.2	70.4	21.9	N/A
YOLO	63.4	57.9	N/A	N/A

Method	VOC2007 test	VOC2012 test	MS COCO test-dev	ILSVRC2014 val2
Fast R-CNN	70.0	68.4	19.7	N/A
Faster R-CNN	73.2	70.4	21.9	N/A
YOLO	63.4	57.9	N/A	N/A
SSD300	74.3	72.4	23.2	43.4

Method	VOC2007 test	VOC2012 test	MS COCO I test-dev	LSVRC2014 val2
Fast R-CNN	70.0	68.4	19.7	N/A
Faster R-CNN	73.2	70.4	21.9	N/A
YOLO	63.4	57.9	N/A	N/A
SSD300	74.3	72.4	23.2	43.4
SSD512	76.8	74.9	26.8	46.4

Method	VOC2007 test	VOC2012 test	MS COCO test-dev	ILSVRC2014 val2
Fast R-CNN	70.0	68.4	19.7	N/A
Faster R-CNN	73.2	70.4	21.9	N/A
YOLO	63.4	57.9	N/A	N/A
SSD300*	77.2	75.8	25.1	N/A
SSD512*	79.8	78.5	28.8	N/A

COCO Bounding Box precision

COCO Bounding Box precision

mAP @ loU	0.5	0.75	0.5:0.95
Faster R-CNN	45.3	23.5	24.2
SSD512*	48.5	30.3	28.8
gain	+3.2	+6.8	+4.6

• Object detection + pose estimation

• Object detection + pose estimation

[Poirson et al, coming out at 3DV, 2016]

Object detection + pose estimation

[Poirson et al, coming out at 3DV, 2016]

• Single shot 3D bounding box detection

• Object detection + pose estimation

[Poirson et al, coming out at 3DV, 2016]

- Single shot 3D bounding box detection
- Joint object detection + tracking model

Check out the code/models

https://github.com/weiliu89/caffe/tree/ssd

Thank you! Come by our poster O-1A-02