
SSD: Single Shot
MultiBox Detector

Wei Liu(1), Dragomir Anguelov(2), Dumitru Erhan(3), Christian Szegedy(3),
Scott Reed(4), Cheng-Yang Fu(1), Alexander C. Berg(1)

UNC Chapel Hill(1), Zoox Inc.(2), Google Inc.(3),
University of Michigan(4)

VGGNet
Titan X Pascal

VGGNet
Titan X Pascal

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

All with VGGNet pretrained on ImageNet,
batch_size = 1 on Titan X

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

SSD300
74% mAP / 46 fps

6.6x faster

All with VGGNet pretrained on ImageNet,
batch_size = 1 on Titan X

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

SSD300
74% mAP / 46 fps

6.6x faster

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

SSD300
74% mAP / 46 fps

SSD512
77% mAP / 19 fps

11% better

All with VGGNet pretrained on ImageNet,
batch_size = 1 on Titan X

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

SSD300
74% mAP / 46 fps

6.6x faster

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

SSD300
74% mAP / 46 fps

SSD512
77% mAP / 19 fps

11% better

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps SSD300

74% mAP / 46 fps

YOLO, Redmon 2016
66% mAP / 21 fps

SSD512
77% mAP / 19 fps

SSD300
77% mAP / 46 fps

SSD512
80% mAP / 19 fps

All with VGGNet pretrained on ImageNet,
batch_size = 1 on Titan X

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

SSD300
77% mAP / 46 fps

SSD512
80% mAP / 19 fps

10 20 30 40 50
Speed (fps)

70

80
VO

C
20

07
 te

st
 m

AP

R-CNN, Girshick 2014
66% mAP / 0.02 fps

Fast R-CNN, Girshick 2015
70% mAP / 0.4 fps

Faster R-CNN, Ren 2015
73% mAP / 7 fps

YOLO, Redmon 2016
66% mAP / 21 fps

SSD300
77% mAP / 46 fps

SSD512
80% mAP / 19 fps

Two-Stage

box proposal + postclassify Single Shot

Classical sliding
windows

Bounding Box Prediction

Classical sliding
windows

Bounding Box Prediction

Is it a cat? No

Is it a cat? No

Discretize the box space densely

Classical sliding
windows

Bounding Box Prediction

SSD and other deep
approaches

Is it a cat? No

Discretize the box space densely

Classical sliding
windows

Bounding Box Prediction

SSD and other deep
approaches

Is it a cat? No

Discretize the box space densely

Classical sliding
windows

Bounding Box Prediction

SSD and other deep
approaches

cat: 0.8 dog: 0.1Is it a cat? No

Discretize the box space densely

Classical sliding
windows

Bounding Box Prediction

SSD and other deep
approaches

Is it a cat? No

Classical sliding
windows

Bounding Box Prediction

Discretize the box space densely

SSD and other deep
approaches

Is it a cat? No

Classical sliding
windows

Bounding Box Prediction

Discretize the box space densely

SSD and other deep
approaches

Is it a cat? No

Classical sliding
windows

Bounding Box Prediction

Discretize the box space densely

SSD and other deep
approaches

dog: 0.4 cat: 0.2Is it a cat? No

Classical sliding
windows

Bounding Box Prediction

Discretize the box space densely

SSD and other deep
approaches

dog: 0.4 cat: 0.2Is it a cat? No

Classical sliding
windows

Bounding Box Prediction

Discretize the box space more coarsely
Refine the coordinates of each boxDiscretize the box space densely

ConvNet

feature map

SSD Output Layer

ConvNet

feature map

SSD Output Layer

small (e.g. 3x3)
conv kernel

ConvNet

feature map

SSD Output Layer

small (e.g. 3x3)
conv kernel

default box

feature map

box
regression

multiclass
probabilities

SSD Output Layer

ConvNet

ConvNet

feature map

box
regression

multiclass
probabilities

SSD Training
• Match default boxes to ground truth boxes to
determine true/false positives.

• Loss = SmoothL1(box param) + Softmax(class prob)

Smooth L1 loss Softmax loss

Related Work

Related Work
MultiBox [Erhan et al. CVPR14]

P(objectness)
for K boxes

Fully
connected

Offsets for
K boxes

Related Work
MultiBox [Erhan et al. CVPR14]

P(objectness)
for K boxes

Fully
connected

Offsets for
K boxes

+ post classify
boxes

Related Work
YOLO [Redmon et al. CVPR16]

multiclass prob
for K boxes

Fully
connected

Offsets for
K boxes

MultiBox [Erhan et al. CVPR14]

P(objectness)
for K boxes

Fully
connected

Offsets for
K boxes

+ post classify
boxes

Related Work
YOLO [Redmon et al. CVPR16]

multiclass prob
for K boxes

Fully
connected

Offsets for
K boxes

Faster R-CNN [Ren et al. NIPS15]

Convolutional

P(objectness) Box offsets

MultiBox [Erhan et al. CVPR14]

P(objectness)
for K boxes

Fully
connected

Offsets for
K boxes

+ post classify
boxes

Related Work
YOLO [Redmon et al. CVPR16]

multiclass prob
for K boxes

Fully
connected

Offsets for
K boxes

Faster R-CNN [Ren et al. NIPS15]

Convolutional

P(objectness) Box offsets

+ post classify
boxes

MultiBox [Erhan et al. CVPR14]

P(objectness)
for K boxes

Fully
connected

Offsets for
K boxes

+ post classify
boxes

Related Work
YOLO [Redmon et al. CVPR16]

multiclass prob
for K boxes

Fully
connected

Offsets for
K boxes

Faster R-CNN [Ren et al. NIPS15]

Convolutional

P(objectness) Box offsets

SSD

Convolutional

Box offsetsmulticlass prob

+ post classify
boxes

MultiBox [Erhan et al. CVPR14]

P(objectness)
for K boxes

Fully
connected

Offsets for
K boxes

+ post classify
boxes

Contribution #1:
Multi-Scale Feature Maps

ConvNet

box
regression

multiclass
scores

Contribution #1:
Multi-Scale Feature Maps

ConvNet

box
regression

multiclass
scores

stride 2
convolution

Contribution #1:
Multi-Scale Feature Maps

ConvNet

box
regression

multiclass
scores

box
regression

multiclass
scores

stride 2
convolution

8⇥ 8 feature map 4⇥ 4 feature map

vs.

8⇥ 8 feature map

SSD

Multi-Scale Feature Maps

8⇥ 8 feature map 4⇥ 4 feature map

vs.

8⇥ 8 feature map

SSD

Multi-Scale Feature Maps

Faster R-CNN Objectness
Proposal, Ren 2015

Prediction source layers from:

mAP

use boundary boxes?

Boxes

38⇥ 38 19⇥ 19 10⇥ 10 5⇥ 5 3⇥ 3 1⇥ 1 Yes No

4 4 4 4 4 4 74.3 63.4 8732

4 4 4 70.7 69.2 9864

4 62.4 64.0 8664

Multi-Scale Feature Maps Experiment

Prediction source layers from:

mAP

use boundary boxes?

Boxes

38⇥ 38 19⇥ 19 10⇥ 10 5⇥ 5 3⇥ 3 1⇥ 1 Yes No

4 4 4 4 4 4 74.3 63.4 8732

4 4 4 70.7 69.2 9864

4 62.4 64.0 8664

Multi-Scale Feature Maps Experiment

Prediction source layers from:

mAP

use boundary boxes?

Boxes

38⇥ 38 19⇥ 19 10⇥ 10 5⇥ 5 3⇥ 3 1⇥ 1 Yes No

4 4 4 4 4 4 74.3 63.4 8732

4 4 4 70.7 69.2 9864

4 62.4 64.0 8664

Multi-Scale Feature Maps Experiment

Prediction source layers from:

mAP

use boundary boxes?

Boxes

38⇥ 38 19⇥ 19 10⇥ 10 5⇥ 5 3⇥ 3 1⇥ 1 Yes No

4 4 4 4 4 4 74.3 63.4 8732

4 4 4 70.7 69.2 9864

4 62.4 64.0 8664

Multi-Scale Feature Maps Experiment

Prediction source layers from:

mAP

use boundary boxes?

Boxes

38⇥ 38 19⇥ 19 10⇥ 10 5⇥ 5 3⇥ 3 1⇥ 1 Yes No

4 4 4 4 4 4 74.3 63.4 8732

4 4 4 70.7 69.2 9864

4 62.4 64.0 8664

Multi-Scale Feature Maps Experiment

Prediction source layers from:

mAP

use boundary boxes?

Boxes

38⇥ 38 19⇥ 19 10⇥ 10 5⇥ 5 3⇥ 3 1⇥ 1 Yes No

4 4 4 4 4 4 74.3 63.4 8732

4 4 4 70.7 69.2 9864

4 62.4 64.0 8664

Multi-Scale Feature Maps Experiment

boundary boxes

Prediction source layers from:

mAP

use boundary boxes?

Boxes

38⇥ 38 19⇥ 19 10⇥ 10 5⇥ 5 3⇥ 3 1⇥ 1 Yes No

4 4 4 4 4 4 74.3 63.4 8732

4 4 4 70.7 69.2 9864

4 62.4 64.0 8664

Multi-Scale Feature Maps Experiment

Prediction source layers from:

mAP

use boundary boxes?

Boxes

38⇥ 38 19⇥ 19 10⇥ 10 5⇥ 5 3⇥ 3 1⇥ 1 Yes No

4 4 4 4 4 4 74.3 63.4 8732

4 4 4 70.7 69.2 9864

4 62.4 64.0 8664

Multi-Scale Feature Maps Experiment

Prediction source layers from:

mAP

use boundary boxes?

Boxes

38⇥ 38 19⇥ 19 10⇥ 10 5⇥ 5 3⇥ 3 1⇥ 1 Yes No

4 4 4 4 4 4 74.3 63.4 8732

4 4 4 70.7 69.2 9864

4 62.4 64.0 8664

Multi-Scale Feature Maps Experiment

Contribution #2:
Splitting the Region Space

ConvNet convolution

SSD300
include { 1

2 , 2} box? 4 4
include { 1

3 , 3} box? 4
number of Boxes 3880 7760 8732

VOC2007 test mAP 71.6 73.7 74.3

Contribution #2:
Splitting the Region Space

ConvNet convolution

Contribution #2:
Splitting the Region Space

ConvNet convolution

Use 38x38 feature map : +2.5 mAP
(conv4_3)

Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

GT

Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

GT DETECTION

Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

• SmoothL1 or L2 loss for box shape
averages among likely hypotheses

GT DETECTION

Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

• SmoothL1 or L2 loss for box shape
averages among likely hypotheses

• Need to have enough default boxes
(discrete bins) to do accurate regression
in each

GT DETECTION

Why So Many Default Boxes?
Faster R-CNN YOLO SSD300 SSD512

Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

• SmoothL1 or L2 loss for box shape
averages among likely hypotheses

• Need to have enough default boxes
(discrete bins) to do accurate regression
in each

• General principle for regressing
complex continuous outputs with deep
nets

GT DETECTION

Handling Many Default Boxes

• Matching ground truth and
default boxes

Handling Many Default Boxes

• Matching ground truth and
default boxes

Handling Many Default Boxes

`

`

GT

• Matching ground truth and
default boxes

Handling Many Default Boxes

`

`

GT Default box

• Matching ground truth and
default boxes

Handling Many Default Boxes

`

`

GT Default box

TP

TP

FP

• Matching ground truth and
default boxes

Handling Many Default Boxes

`

`

GT Default box

TP

TP

FP

?

• Matching ground truth and
default boxes
‣ Match each GT box to closest default box

Handling Many Default Boxes

`

`

GT Default box

TP

TP

FP

?

• Matching ground truth and
default boxes
‣ Match each GT box to closest default box

‣ Also match each GT box to all unassigned
default boxes with IoU > 0.5

Handling Many Default Boxes

`

`

GT Default box

TP

TP

FP

?

• Matching ground truth and
default boxes
‣ Match each GT box to closest default box

‣ Also match each GT box to all unassigned
default boxes with IoU > 0.5

• Hard negative mining

Handling Many Default Boxes

`

`

GT Default box

TP

TP

FP

?

• Matching ground truth and
default boxes
‣ Match each GT box to closest default box

‣ Also match each GT box to all unassigned
default boxes with IoU > 0.5

• Hard negative mining
• Unbalanced training: 1-30 TP, 8k-25k FP

Handling Many Default Boxes

`

`

GT Default box

TP

TP

FP

?

• Matching ground truth and
default boxes
‣ Match each GT box to closest default box

‣ Also match each GT box to all unassigned
default boxes with IoU > 0.5

• Hard negative mining
• Unbalanced training: 1-30 TP, 8k-25k FP

• Keep TP:FP ratio fixed (1:3), use worst-
misclassified FPs.

Handling Many Default Boxes

`

`

GT Default box

TP

TP

FP

?

SSD Architecture

300

VGG16

D
et

ec
tio

ns
:8

73
2

 p
er

 C
la

ss

Classifier : Conv: 3x3x(3x(Classes+4))

N
on

-M
ax

im
um

 S
up

pr
es

si
on

74.3mAP
 46FPS

Classifier : Conv: 3x3x(6x(Classes+4))

SS
D

Extra Convolutional Feature Maps

Conv: 3x3x(4x(Classes+4))

38 19 10

19
10

300 38

5

5

3
1

image

Contribution #3:
The Devil is in the Details

Data Augmentation

Data Augmentation

`

`

Data Augmentation

`

`

`

` `

`

Data Augmentation

`

`

`

` `

`

data augmentation SSD300
horizontal flip 4 4

random crop & color distortion 4
VOC2007 test mAP 65.5 74.3

Data Augmentation

`

`

Data Augmentation

`

`

`

`

`
`

Random expansion creates more
small training examples

Data Augmentation

`

`

`

`

`
`

Random expansion creates more
small training examples

Data Augmentation

data augmentation SSD300
horizontal flip 4 4 4

random crop & color distortion 4 4
random expansion 4

VOC2007 test mAP 65.5 74.3 77.2

Results on VOC2007 test

Method mAP FPS batch size # Boxes Input resolution

Faster R-CNN (VGG16) 73.2 7 1 ⇠ 6000 ⇠ 1000⇥ 600

Fast YOLO 52.7 155 1 98 448⇥ 448
YOLO (VGG16) 66.4 21 1 98 448⇥ 448

SSD300 74.3 46 1 8732 300⇥ 300
SSD512 76.8 19 1 24564 512⇥ 512
SSD300 74.3 59 8 8732 300⇥ 300
SSD512 76.8 22 8 24564 512⇥ 512

Results on VOC2007 test

Method mAP FPS batch size # Boxes Input resolution

Faster R-CNN (VGG16) 73.2 7 1 ⇠ 6000 ⇠ 1000⇥ 600

Fast YOLO 52.7 155 1 98 448⇥ 448
YOLO (VGG16) 66.4 21 1 98 448⇥ 448

SSD300 74.3 46 1 8732 300⇥ 300
SSD512 76.8 19 1 24564 512⇥ 512
SSD300 74.3 59 8 8732 300⇥ 300
SSD512 76.8 22 8 24564 512⇥ 512

6.6x

Results on VOC2007 test

Method mAP FPS batch size # Boxes Input resolution

Faster R-CNN (VGG16) 73.2 7 1 ⇠ 6000 ⇠ 1000⇥ 600

Fast YOLO 52.7 155 1 98 448⇥ 448
YOLO (VGG16) 66.4 21 1 98 448⇥ 448

SSD300 74.3 46 1 8732 300⇥ 300
SSD512 76.8 19 1 24564 512⇥ 512
SSD300 74.3 59 8 8732 300⇥ 300
SSD512 76.8 22 8 24564 512⇥ 512

Results on VOC2007 test

Method mAP FPS batch size # Boxes Input resolution

Faster R-CNN (VGG16) 73.2 7 1 ⇠ 6000 ⇠ 1000⇥ 600

Fast YOLO 52.7 155 1 98 448⇥ 448
YOLO (VGG16) 66.4 21 1 98 448⇥ 448

SSD300 74.3 46 1 8732 300⇥ 300
SSD512 76.8 19 1 24564 512⇥ 512
SSD300 74.3 59 8 8732 300⇥ 300
SSD512 76.8 22 8 24564 512⇥ 512

10%

Results on VOC2007 test

Method mAP FPS batch size # Boxes Input resolution

Faster R-CNN (VGG16) 73.2 7 1 ⇠ 6000 ⇠ 1000⇥ 600

Fast YOLO 52.7 155 1 98 448⇥ 448
YOLO (VGG16) 66.4 21 1 98 448⇥ 448

SSD300 74.3 46 1 8732 300⇥ 300
SSD512 76.8 19 1 24564 512⇥ 512
SSD300 74.3 59 8 8732 300⇥ 300
SSD512 76.8 22 8 24564 512⇥ 512

Results on VOC2007 test

Method mAP FPS batch size # Boxes Input resolution

Faster R-CNN (VGG16) 73.2 7 1 ⇠ 6000 ⇠ 1000⇥ 600

Fast YOLO 52.7 155 1 98 448⇥ 448
YOLO (VGG16) 66.4 21 1 98 448⇥ 448

SSD300 74.3 46 1 8732 300⇥ 300
SSD512 76.8 19 1 24564 512⇥ 512
SSD300 74.3 59 8 8732 300⇥ 300
SSD512 76.8 22 8 24564 512⇥ 512

Results on VOC2007 test

Method mAP FPS batch size # Boxes Input resolution

Faster R-CNN (VGG16) 73.2 7 1 ⇠ 6000 ⇠ 1000⇥ 600

Fast YOLO 52.7 155 1 98 448⇥ 448
YOLO (VGG16) 66.4 21 1 98 448⇥ 448

SSD300 74.3 46 1 8732 300⇥ 300
SSD512 76.8 19 1 24564 512⇥ 512
SSD300 74.3 59 8 8732 300⇥ 300
SSD512 76.8 22 8 24564 512⇥ 512

Results on VOC2007 test

77.2

77.2
79.8

79.8

Method mAP FPS batch size # Boxes Input resolution

Faster R-CNN (VGG16) 73.2 7 1 ⇠ 6000 ⇠ 1000⇥ 600

Fast YOLO 52.7 155 1 98 448⇥ 448
YOLO (VGG16) 66.4 21 1 98 448⇥ 448

SSD300 74.3 46 1 8732 300⇥ 300
SSD512 76.8 19 1 24564 512⇥ 512
SSD300 74.3 59 8 8732 300⇥ 300
SSD512 76.8 22 8 24564 512⇥ 512

Results on More Datasets

Results on More Datasets

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

YOLO 63.4 57.9 N/A N/A

Results on More Datasets

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

YOLO 63.4 57.9 N/A N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

YOLO 63.4 57.9 N/A N/A
SSD300 74.3 72.4 23.2 43.4

Results on More Datasets

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

YOLO 63.4 57.9 N/A N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

YOLO 63.4 57.9 N/A N/A
SSD300 74.3 72.4 23.2 43.4

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

YOLO 63.4 57.9 N/A N/A
SSD300 74.3 72.4 23.2 43.4
SSD512 76.8 74.9 26.8 46.4

Results on More Datasets

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

YOLO 63.4 57.9 N/A N/A

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

YOLO 63.4 57.9 N/A N/A
SSD300 74.3 72.4 23.2 43.4

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

YOLO 63.4 57.9 N/A N/A
SSD300 74.3 72.4 23.2 43.4
SSD512 76.8 74.9 26.8 46.4

Method VOC2007
test

VOC2012
test

MS COCO
test-dev

ILSVRC2014
val2

Fast R-CNN 70.0 68.4 19.7 N/A
Faster R-CNN 73.2 70.4 21.9 N/A

YOLO 63.4 57.9 N/A N/A
SSD300* 77.2 75.8 25.1 N/A
SSD512* 79.8 78.5 28.8 N/A

COCO Bounding Box precision

COCO Bounding Box precision

mAP @ IoU 0.5 0.75 0.5:0.95

Faster R-CNN 45.3 23.5 24.2
SSD512* 48.5 30.3 28.8

gain +3.2 +6.8 +4.6

Future Work

• Object detection + pose estimation

Future Work

• Object detection + pose estimation

Figure 2. Two-stage vs. Proposed. (a) The two-stage approach separates the detection and pose estimation steps. After object detection,
the detected objects are cropped and then processed by a separate network for pose estimation. This requires resampling the image at least
three times: once for region proposals, once for detection, and once for pose estimation. (b) The proposed method, in contrast, requires no
resampling of the image and instead relies on convolutions for detecting the object and its pose in a single forward pass. This offers a large
speed up because the image is not resampled, and computation for detection and pose estimation is shared.

3. Model
For an input RGB image, a single evaluation of the

model network is performed and produces scores for cat-
egory, bounding box offset directions, and pose, for a con-
stant number of boxes. These are filtered by non-max sup-
pression to produce the final output. The network is a vari-
ant of the single shot detection (SSD) network from [10]
with additional outputs for pose. Here we present the net-
work’s design choices, structure of the outputs, and training.

An SSD-style detector [10] works by adding a sequence
of feature maps of progressively decreasing spatial resolu-
tion to an image classification network such as VGG [17].
These feature layers replace the last few layers of the image
classification network, and 3x3 and 1x1 convolutional fil-
ters are used to transform one feature map to the next along
with max-pooling. See Fig. 3 for a depiction of the model.

Predictions for a regularly spaced set of possible detec-
tions are computed by applying a collection of 3x3 filters
to channels in one of the feature layers. Each 3x3 filter
produces one value at each location, where the outputs are
either classification scores, localization offsets, and, in our
case, discretized pose predictions for the object (if any) in a
box. See Fig. 1. Note that different sized detections are pro-
duced by different feature layers instead of taking the more
traditional approach of resizing the input image or predict-
ing different sized detections from a single feature layer.

We take one of two different approaches for pose predic-
tions, either sharing outputs for pose across all the object
categories (share) or having separate pose outputs for each
object category (separate). One output is added for each of

N

✓

possible poses. With N

c

categories of objects, there are
N

c

⇥ N

✓

pose outputs for the separate model and N

✓

pose
outputs for the share model. While we do add a 3x3 filter for
each of the pose outputs, this added cost is relatively small
and the original SSD pipeline is quite fast, so the result is
still faster than two stage approaches that rely on a (often
slower) detector followed by a separate pose classification
stage. See Fig. 2 (a).

3.1. Pose Estimation Formulation

There are a number of design choices for a joint detection
and pose estimation method. This section details three par-
ticular design choices, and Sec. 4.1.1 shows justifications
for them through experimental results.

One important choice is in how the pose estimation task
is formulated. A possibility is to train for continuous pose
estimation and formulate the problem as a regression. How-
ever, in this work we discretize the pose space into N

✓

dis-
joint bins and formulate the task as a classification problem.
Doing so not only makes the task feasible (since both the
quantity and consistency of pose labels is not high enough
for continuous pose estimation), but also allows us to mea-
sure the confidence of our pose prediction. Furthermore,
discrete pose estimation still presents a very challenging
problem.

Another design choice is whether to predict poses sepa-
rately for the N

c

object classes or to use the same weights to
predict poses for all classes. Sec. 4.1.1 assess these options.

The final design choice is the resolution of the input im-
age. Specifically, we consider two resolutions for input:

[Poirson et al, coming out at 3DV, 2016]

Future Work

• Object detection + pose estimation

Figure 2. Two-stage vs. Proposed. (a) The two-stage approach separates the detection and pose estimation steps. After object detection,
the detected objects are cropped and then processed by a separate network for pose estimation. This requires resampling the image at least
three times: once for region proposals, once for detection, and once for pose estimation. (b) The proposed method, in contrast, requires no
resampling of the image and instead relies on convolutions for detecting the object and its pose in a single forward pass. This offers a large
speed up because the image is not resampled, and computation for detection and pose estimation is shared.

3. Model
For an input RGB image, a single evaluation of the

model network is performed and produces scores for cat-
egory, bounding box offset directions, and pose, for a con-
stant number of boxes. These are filtered by non-max sup-
pression to produce the final output. The network is a vari-
ant of the single shot detection (SSD) network from [10]
with additional outputs for pose. Here we present the net-
work’s design choices, structure of the outputs, and training.

An SSD-style detector [10] works by adding a sequence
of feature maps of progressively decreasing spatial resolu-
tion to an image classification network such as VGG [17].
These feature layers replace the last few layers of the image
classification network, and 3x3 and 1x1 convolutional fil-
ters are used to transform one feature map to the next along
with max-pooling. See Fig. 3 for a depiction of the model.

Predictions for a regularly spaced set of possible detec-
tions are computed by applying a collection of 3x3 filters
to channels in one of the feature layers. Each 3x3 filter
produces one value at each location, where the outputs are
either classification scores, localization offsets, and, in our
case, discretized pose predictions for the object (if any) in a
box. See Fig. 1. Note that different sized detections are pro-
duced by different feature layers instead of taking the more
traditional approach of resizing the input image or predict-
ing different sized detections from a single feature layer.

We take one of two different approaches for pose predic-
tions, either sharing outputs for pose across all the object
categories (share) or having separate pose outputs for each
object category (separate). One output is added for each of

N

✓

possible poses. With N

c

categories of objects, there are
N

c

⇥ N

✓

pose outputs for the separate model and N

✓

pose
outputs for the share model. While we do add a 3x3 filter for
each of the pose outputs, this added cost is relatively small
and the original SSD pipeline is quite fast, so the result is
still faster than two stage approaches that rely on a (often
slower) detector followed by a separate pose classification
stage. See Fig. 2 (a).

3.1. Pose Estimation Formulation

There are a number of design choices for a joint detection
and pose estimation method. This section details three par-
ticular design choices, and Sec. 4.1.1 shows justifications
for them through experimental results.

One important choice is in how the pose estimation task
is formulated. A possibility is to train for continuous pose
estimation and formulate the problem as a regression. How-
ever, in this work we discretize the pose space into N

✓

dis-
joint bins and formulate the task as a classification problem.
Doing so not only makes the task feasible (since both the
quantity and consistency of pose labels is not high enough
for continuous pose estimation), but also allows us to mea-
sure the confidence of our pose prediction. Furthermore,
discrete pose estimation still presents a very challenging
problem.

Another design choice is whether to predict poses sepa-
rately for the N

c

object classes or to use the same weights to
predict poses for all classes. Sec. 4.1.1 assess these options.

The final design choice is the resolution of the input im-
age. Specifically, we consider two resolutions for input:

[Poirson et al, coming out at 3DV, 2016]

Future Work

• Single shot 3D bounding box detection

• Object detection + pose estimation

Figure 2. Two-stage vs. Proposed. (a) The two-stage approach separates the detection and pose estimation steps. After object detection,
the detected objects are cropped and then processed by a separate network for pose estimation. This requires resampling the image at least
three times: once for region proposals, once for detection, and once for pose estimation. (b) The proposed method, in contrast, requires no
resampling of the image and instead relies on convolutions for detecting the object and its pose in a single forward pass. This offers a large
speed up because the image is not resampled, and computation for detection and pose estimation is shared.

3. Model
For an input RGB image, a single evaluation of the

model network is performed and produces scores for cat-
egory, bounding box offset directions, and pose, for a con-
stant number of boxes. These are filtered by non-max sup-
pression to produce the final output. The network is a vari-
ant of the single shot detection (SSD) network from [10]
with additional outputs for pose. Here we present the net-
work’s design choices, structure of the outputs, and training.

An SSD-style detector [10] works by adding a sequence
of feature maps of progressively decreasing spatial resolu-
tion to an image classification network such as VGG [17].
These feature layers replace the last few layers of the image
classification network, and 3x3 and 1x1 convolutional fil-
ters are used to transform one feature map to the next along
with max-pooling. See Fig. 3 for a depiction of the model.

Predictions for a regularly spaced set of possible detec-
tions are computed by applying a collection of 3x3 filters
to channels in one of the feature layers. Each 3x3 filter
produces one value at each location, where the outputs are
either classification scores, localization offsets, and, in our
case, discretized pose predictions for the object (if any) in a
box. See Fig. 1. Note that different sized detections are pro-
duced by different feature layers instead of taking the more
traditional approach of resizing the input image or predict-
ing different sized detections from a single feature layer.

We take one of two different approaches for pose predic-
tions, either sharing outputs for pose across all the object
categories (share) or having separate pose outputs for each
object category (separate). One output is added for each of

N

✓

possible poses. With N

c

categories of objects, there are
N

c

⇥ N

✓

pose outputs for the separate model and N

✓

pose
outputs for the share model. While we do add a 3x3 filter for
each of the pose outputs, this added cost is relatively small
and the original SSD pipeline is quite fast, so the result is
still faster than two stage approaches that rely on a (often
slower) detector followed by a separate pose classification
stage. See Fig. 2 (a).

3.1. Pose Estimation Formulation

There are a number of design choices for a joint detection
and pose estimation method. This section details three par-
ticular design choices, and Sec. 4.1.1 shows justifications
for them through experimental results.

One important choice is in how the pose estimation task
is formulated. A possibility is to train for continuous pose
estimation and formulate the problem as a regression. How-
ever, in this work we discretize the pose space into N

✓

dis-
joint bins and formulate the task as a classification problem.
Doing so not only makes the task feasible (since both the
quantity and consistency of pose labels is not high enough
for continuous pose estimation), but also allows us to mea-
sure the confidence of our pose prediction. Furthermore,
discrete pose estimation still presents a very challenging
problem.

Another design choice is whether to predict poses sepa-
rately for the N

c

object classes or to use the same weights to
predict poses for all classes. Sec. 4.1.1 assess these options.

The final design choice is the resolution of the input im-
age. Specifically, we consider two resolutions for input:

[Poirson et al, coming out at 3DV, 2016]

Future Work

• Single shot 3D bounding box detection

• Joint object detection + tracking model

Check out the code/models

https://github.com/weiliu89/caffe/tree/ssd

https://github.com/weiliu89/caffe/tree/ssd

Thank you!
Come by our poster O-1A-02

