











example images from the incorrect activity class predicted by the original spatial network. The middle row visualizes the

78.8% to 81.0%(40.3% accuracy to 44.9% for HMDBS51)
for the [19] network. Subsequently this also results in su-

with the temporal network (base vs amp columns of rows 4
and 5 respectively).!
We also perform a qualitative study to analyze effects of

swer while the original network produces the wrong answer.
Then, we study why the original spatial networks failed to
produce the right answer.

Figure 3 shows some examples in UCF101 dataset. In

video to show the action ‘boxing punching bag’ rather than
’jumping jack’ since there are several punching bags in the

is able to predict the right answer because it focuses on the
moving portions of the image rather than the punching bags.

!Pretrained spatial and temporal networks of [18] are not publicly
available. We did our best to reproduce their result and put the num-
bers from our version, which are slightly lower than original performance.
In addition, [18] applied multitask learning approach witn combined both
UCF101 and HMDB51 datasets when they trained networks for HMDBS51
dataset for better accuracy while we only used HMDBS51 dataset.

We observe similar patterns in other examples. In the sec-
human and tennis racket while the original network mis-

poline and tennis court look visually similar. In the third
column, there are drums in the sample image, confusing

hands and head in the last column, enabling a correct clas-

5.4. Results of multiplicative fusion

We evaluate our multiplicative fusion method compared
to baseline fusion methods. Figure 2 shows various alter-
natives. First, baseline A represents a straight way of com-
bining two CNNs, putting a fully connected layer on top of
concatenated conv5 features followed by a few of fully con-

networks as a linear combination of concatenated conv5
features, which can be easily implemented in the form of
1x1 convolution plus a few of fully connected layers for

proposed multiplicative fusion methods on conv5 and fc7
features respectively.



UCF101 HMDBS51

methods basic VGGI19 basic VGGI19
baseline A 75.3 82.2 37.4 36.9
baseline B 76.0 81.0 39.2 38.7

m-fuse(convs)  82.1 84.4 51.6 52.7
m-fuse(fc7) 834 87.6 52.0 53.3

Table 2: Classification accuracy of fusion networks on
UCF101(splitl) and HMDB51(splitl). The ‘basic’ results
use the spatial network from [18], “VGG19’ results use [19].
Note that using the more advanced spatial model already
significantly improves performances, but our proposed fu-
sion combination techniques improve both versions of the
networks. See Fig. 2 and Sec.5.4

Table 2 shows performance of various fusion methods.
For UCF101 dataset, we achieve performance gains from
75.3% (baseline A) or 76% (baseline B) to 82.1% and
83.4% for our proposed fusion methods on the network
from [18]. For the network from [19], we see improvements
from 82.2% (baseline A) or 81% (baseline B) to 84.4% and
87.6% by our proposed fusion. This is potentially because
our method can avoid overfitting due to the fact that only
pairs of features that two network have agreed upon can
contribute to the final classification. In other words, many
of the features that could lead to do overfitting were effec-
tively suppressed by the multiplicative operation. Note that
the over-fitting problem for baseline fusion methods with
HMDB5I1 dataset are very serious because of the smaller
size of the dataset. With our multiplicative fusion tech-
nique, we can achieve significant performance gains from
39.2% to 52.0% on the network from [18], 38.7% to 53.3%
on the network from [19].

We also performed a qualitative study to analyze the im-
pact of multiplicative fusion networks in similar way in
section 5.3. Figure 4 shows some examples in UCF101
dataset. In the first row, the correct action class was
‘Archery’, which is very difficult to identify since the per-
son and bow are far away in the image making them quite
small in size. Thus, the spatial net predicted ‘CliffDiving’
which has a similar background(the third column in the first
row). The temporal net also confused this example with
‘GolfSwing’ since the motion pattern of arrows and golf
clubs are similar(the second column in the first row). In ad-
dition, both networks are very confident in their beliefs, so
the two-stream network using averaging based fusion also
provided the wrong answer. Our method was able to pre-
dict the correct activity with high belief since it could ef-
fectively suppress the background feature activations and
amplify feature activations for the arrow. The second row
shows another example. Here both the temporal and spatial
networks predict the same incorrect answer (‘HighJump’ vs

models UCF101 HMDB51
S+T 85.0 50.6
S(VGG19)+ T 87.8 50.1
S + T + m-fusion 86.0 52.7
S(VGG19) + T + m-fusion 88.3 54.4
S(amp) + T + m-fusion 88.9 56.2
S(amp) + T + m-fusion(fc7) 89.1 54.9

Table 3: Classification accuracy on UCF101 and HMDB351
using various combinations of spatial (S) and temporal
(T) streams. The baseline S and T implementations were
trained following [18]. ‘m-fusion’ stands for multiplicative
fused network and ‘amp’ uses the VGG19 spatial network
with feature amplification. Combining our amplification
technique for gating the spatial network with multiplicative
fusion in the last convultional layer or in fc7 led to the best
results. Details in Sec.5.4.

the correct answer of ‘JavelinThrow’) with high confidence.
Therefore, the averaging based fusion also produces this in-
correct answer. However, our method predicts ‘HighJump’
with strong belief by effectively selecting the moving pole
as one of the important features.

However, We noticed that many action classes are eas-
ily classified by either the static visual information or mo-
tion information alone. Therefore, we simply performed
a weighted average of the m-fusion, spatial, and temporal
network predictions together (empirically, 2:3:4 was good
ratio for all experiments) to make our final prediction. This
provides superior results to the two-stream networks (Table
3).

Overfitting and regularization. It turns out that mul-
tiplicative fusion works as well as a regularizer. When it
comes to regularization of deep CNNs, weight-decay and
dropout[5] are easily applicable and commonly used. We
have tried to make our baseline methods avoid overfitting
by using these techniques, but even with aggressive weight
decay and dropout we still observed low performance on the
testing dataset.

Finetuning. Our proposed methods is a simple multi-
plication between a linear combination of previous layers.
One may argue that the linear combination layer before the
multiplication may not be necessary since previous layers
should already perform this function (e.g. the convolution
operation can be interpreted as linear combination with con-
volutional filters). However, from our experimental results,
fine-tuning the layers before the fusion layer was not very
helpful. Therefore, we fine-tuned the layers only after the
fusion layer for all of our experiments, which is the case
where the linear combination layer plays a very important
role. Normalization after or before the fusion layer might
help to fine-tune all the way down to the first convolutional



M-fused net: Archery (O)

Temporal net: GolfSwing(X)

Spatial net : CliffDiving(X)
Score: 0.94g NN

Spatial net : HighJump(X)
‘ Score: 0.662

Figure 4: Examples of the results with multiplicative fusion network in UCF101 dataset.

layer. We also might get benefits from training whole fusion
networks from the scratch rather than fine-tuning from the
pre-trained networks.

5.5. Performance comparison to other methods

models accuracy
Twostream with extra data[18] 86.9
Twostream with extra data, SVM fusion [18] 88.0
Twostream, regularized fusion[27] 88.4
Twostream, regularized fusion , LSTM[27] 91.3
CNN, IDT, FV[29] 89.6
CNN, optical flow, LSTM [28] 88.6
IDT, FV, temporal scale invariance[13] 89.1
CNN, IDT, FV, trajectory[25], SVM[26] 91.5
Ours 89.1

Table 4: Performance comparison to state-of-art results on
UCF101. Our results are the best of the two stream ap-
proaches that do not add an extra LSTM stage, and com-
pares favorably to the state of the art that adds many addi-
tional, somewhat complex, stages to processing.

Table 4 shows state-of-art methods on UCF101 dataset.
Among the methods [18, 27] that only depend on convolu-
tional networks, we achieved the best result. Also note that
we didn’t use any extra data that might lead us to have bet-
ter result, e.g. multi-task learning for training the temporal
network[18]. Another straightforward way to improve per-
formance would be to combine various hand-crafted fea-
tures with CNN features, which might also be helpful for
our method[29]. Several recent works have also considered

longer temporal information while our CNN feature only
contains short temporal information. For example, [27]
trained an LSTM over entire frames of video, [28] proposed
various pooling methods on LSTMs, and [13] considered
temporal scale invariance. All of these could also incorpo-
rated directly into our method.

6. Conclusion and Future Work

In this paper, we proposed new ways of combining
knowledge in convolutional networks for action classifica-
tion. Simple feature amplification for spatial networks us-
ing optical flow features yeilded significant improvement
in accuracy over the original spatial networks. In addi-
tion, we proposed a multiplicative fusion approach to com-
bine multiple CNNs, which also demonstrated better perfor-
mance compared to normal additive fusion with fully con-
nected layers. Lastly, using deeper and larger networks,
which is a straightforward way to improve performance,
also worked well as expected. When we combine all of
these ideas together, we achieve superior results on UCF101
and HMDBS51 datasets compared to previously proposed
two-stream CNNs.

As commercial depth sensors become easily available,
understanding the visual world via RGB-D images has re-
ceived a lot of attention. State-of-art object detection and
semantic segmentation methods for RGB-D data have ex-
tensively used multiple stream convolutional networks[3,
15]. Each stream takes static images and hand-crafted depth
feature images as the inputs respectively, and the simple av-
eraging late fusion approach was used for final prediction.
Given the promising evidence in this paper, we believe that
our proposed method could also improve performance on



RGB-D data.

Even if each network is trained on the same input modal-
ity, it is known that each network converges to different lo-
cal minima. Since each local minima has slightly different
knowledge, it has been shown that performance increases
when combining multiple networks together with simple
late fusion approach. For example in the ILSVRC image
classification challenge[17], all winning methods have used
CNN ensemble approaches. As future work, we plan to ap-
ply our methods to multiplicatively combine multiple CNNs
for the image classification task.
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