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Abstract—Many safety critical real-time systems are consid-
ered certified when they meet failure probability requirements
with respect to the maximum permitted incidences of failure per
hour. In this paper, the mixed-criticality task model with multiple
worst case execution time (WCET) estimations is extended to
incorporate such system-level certification restrictions. A new
parameter is added to each task, characterizing the distribution
of the WCET estimations – the likelihood of all jobs of a
task finishing their executions within the less pessimistic WCET
estimate. An efficient algorithm named LFF-Clustering is derived
for scheduling mixed-criticality systems represented by this
model. Experimental analyses show our new model and algorithm
out-perform current state-of-the-art mixed-criticality scheduling
algorithms.

I. INTRODUCTION

Safety-critical systems are failure prone as any other system,
and today’s system certification approaches recognize this and
specify permitted system failure probabilities. The underlying
idea is to certify considering more realistic system models
which account for any possible behavior, included faulty
conditions, and the probability of these behaviors occurring.
The gap that still exists is between such enhanced models and
the current conservative deterministic analyses which tend to
be pessimistic.

The worst-case execution time (WCET) abstraction plays a
central role in the analysis of real-time systems. The WCET of
a given piece of code upon a specified platform represents an
upper bound to the duration of time needed to finish execution.
Unfortunately, even when severe restrictions are placed upon
the structure of the code (e.g., known loop bounds), it is
still extremely difficult to determine the absolute WCET. An
illustrative example is provided in [29], which demonstrates
how the simple operation “a = b + c” on integer variables
could take anywhere between 3 and 321 cycles upon a widely-
used modern CPU. The number of execution cycles highly
depends upon factors such as the state of the cache when
the operation occurs. WCET analysis has always been a very
active and thriving area of research, and sophisticated timing
analysis tools have been developed (see [33] for an excellent
survey).

Traditional rigorous WCET analysis may lead to a result
of much pessimism, and the occurrence of such WCET is
extremely unlikely, unless under highly pathological circum-
stances. For instance, although a conservative tool would
assign the “a = b + c” operation a WCET bound of 321
cycles, a less conservative tool may assign it a much smaller
WCET (e.g., 30) with the understanding that the bound may
be violated on rare occasions under certain (presumably highly
unlikely to occur) pathological conditions.

Mixed-Criticality Systems. The gap between the actual run-
ning time and the WCET may be significantly large. Instead
of completely wasting the processor capacities within the gap,
people start to implement functionalities of different degrees
of importance, or criticalities, upon a common platform,
so that the less important tasks may execute in these gaps
under normal circumstances, may be dropped in an occasional
situation where jobs of higher importance level execute beyond
their estimated common case running time.

Much prior research on mixed-criticality scheduling (see [6]
for a review) has focused upon the phenomenon that different
tools for determining WCET bounds may be more or less con-
servative than one another, which results in multiple WCET
estimations for each individual task (piece of code). Typically
in the two-criticality-level case, each task is designated as
being of either higher (HI) or lower (LO) criticality, and two
WCETs are specified for each HI-criticality task: a LO-WCET
determined by a less pessimistic tool, and a larger HI-WCET
determined by a more conservative one, which is sometimes
larger than the LO-WCET by several orders of magnitude.
The scheduling objective is to determine a run-time scheduling
strategy which ensures that (i) all jobs of all tasks complete
by their deadlines if each job completes upon executing for no
more than its LO-WCET; and (ii) all jobs of tasks designated as
being of HI criticality continue to complete by their deadlines
(although the LO-criticality jobs may not) if any job requires
execution for more than its LO-WCET (but no larger than its
HI-WCET) to complete.

Under the current mixed-criticality model, it is assumed that
all HI-criticality jobs may require executions up to their HI-
WCETs in HI mode simultaneously. However, since WCET
tools are normally quite pessimistic, LO-WCET are not very
likely to be exceeded during run time.

Example 1: Consider a system comprised of two indepen-

dent1 HI-criticality tasks τ1 and τ2, where each task is denoted
by two utilization estimations uLO ≤ uHI. The two tasks
τ1 = {0.4, 0.6}, τ2 = {0.3, 0.5}, represented by utilizations
in different modes, are to be scheduled on a preemptive unit-
speed uniprocessor. It is evident that this system cannot be
scheduled correctly under the traditional model, since the
HI-criticality utilization, at (0.6 + 0.5), is greater than the
processor capacity which is 1.

However, suppose that: (i) absolute certainty of correctness
is not required; instead it is specified that the system failure
probability should not exceed 10−6 per hour; and (ii) it is
known that the timing analysis tools used to determine LO-

1Two events are independent if the occurrence of one event does not have
any impact on the other.



criticality WCETs ensure that the likelihood of any job of a
task exceeding its LO-WCET is no larger than 10−4 per hour.

Based on the task independence assumption, the probabil-
ity of jobs from both tasks exceeding their LO-WCETs is
10−4 × 10−4 = 10−8 per hour. Thus, we know that it is safe

to ignore the case that both tasks simultaneously exceed their
LO-WCETs. Hence, the system is probabilistically feasible,
since the total remaining utilization will not exceed:

max{0.4 + 0.3, 0.4 + 0.5, 0.6 + 0.3} = 0.9 ≤ 1.

Example 1 gives us an intuition that with the help of
probabilistic analysis, we may be able to ignore some ex-
tremely unlikely cases, and come up with some less pessimistic

schedulability analysis – if we have the prior knowledge that
there will be at most a fixed number of HI-criticality tasks with
execution exceptions per hour, dropping of less important jobs
may not be necessary at all.

Schedulability with Probabilities. In order to formally de-
scribe the uncertainty of the WCET estimations and overcome
the over-pessimism, many attempts in introducing probability
to real-time system model and analysis have been made.

Edgar and Burns [13] made a major step forward in in-
troducing the concept of probabilistic confidence to the task
and the system model. Their work targets the estimation of
probabilistic WCETs (pWCETs) from test data for individual
tasks, while providing a suitable lower bound for the overall
confidence level of a system. Since then, on one hand much
work has been done to provide better WCET estimations
and a predicted probability of any execution exceeding such
estimation alongside the usage of extreme value theory (EVT),
e.g., [16] [15] [9]. In static probabilistic timing analysis,
random replacement caches are applied to compute exact prob-
abilistic WCETs, and probabilistic WCET estimations with
preemptions, [11]. More recently, researchers have initiated
some pWCET estimation studies [28] [18] in the presence of
permanent faults and disabling of hardware elements. On the
other hand, there is only one piece of work which proposes
probabilistic Execution Time (pET) estimation [10] based
upon a tree-based technique. The pET of a task describes the
probability that the execution time of the job is equal to a given
value, while the pWCET of a task describes the probability
that the worst-case execution time of that task does not exceed
a given value.

Based upon the estimated pWCET and pET parameters
(often as distributions with multiple values and associated
probabilities), studies aim to provide estimations that the
probability of missing a deadline of the given system is small
enough for safety requirements; e.g, of the same order of
magnitude as other dependability estimations. Tia et al. [31]
focus on unbalanced heavy loaded system (with maximum
utilization larger than 1 and much smaller average utiliza-
tion) and provide two methods for probabilistic schedulability
guarantees. Lehoczky [19] proposes the first schedulability
analysis of task systems with probabilistic execution times.
This work is further extended to specific schedulers, such
as earliest deadline first (EDF, [20]) in [34] and under fixed
priority policy in [14]. [12] provides a very general analysis
for probabilistic systems with pWCET estimations for tasks.
In addition to WCET estimations, statistical guarantees are

performed upon the minimum inter-arrival time (MIT) estima-
tion as well [1] [24]. Schedulability analysis based on pETs
(instead of pWCETs) is also done in [17] for limited priority
level case (quantized EDF), and in [22] where an associated
schedulability analysis on multiprocessors is presented. Sta-
tistical response-time analysis, e.g., [21], can be further done
to real-time embedded systems based upon those probabilistic
schedulability analysis.

Unfortunately, most existing studies have only shown prob-
abilistic schedulability analysis (e.g., estimating the likelihood
for a system to miss any deadline) or probabilistic response
time analysis to existing algorithms such as EDF and fixed
priority scheduling, instead of incorporating probabilistic in-
formation into the scheduling strategy. In other words, current
research has not addressed the possibility of making smarter

scheduling decisions with probabilistic models from existing
powerful probabilistic timing analysis tools (e.g., [4]) that
provide WCET bounds and specified confidences. To our best
knowledge, there is only one paper presenting scheduling
algorithms for probabilistic WCETs of tasks described by ran-
dom variables [23], which extends the optimality of Audsley’s
approach [2] in fixed-priority scheduling to the case WCETs
are described by distribution functions.

Finally, none of the existing schedulability analysis work
regarding mixed-criticality considered pWCET. Since the ma-
jor goal of both mixed-criticality and introducing probability
are the same, which is to better deal with the over-pessimism
of running time estimations, we believe a model that considers
both aspects would lead us to much more promising results in
real-time system design and verification.

Contributions. In addition to the existing mixed-criticality
task model, this work introduces a new parameter to each task
that represents the distribution information about its WCET.
This work aims to provide schedulability analysis to instances
with this additional probability information, with respect to
the given safety certification requirement of the whole system,
which is the permitted system failure probability per hour.

We consider the scheduling of dual-criticality task systems
upon preemptive uniprocessor platforms. As stated above,
dual-criticality tasks are traditionally characterized with two
WCET estimations – a LO-WCET and a larger HI-WCET. Our
contributions are as follows:

• We propose a supplement to current MC task models: an
additional parameter for each HI-criticality task, denoting
the probability of no job of this task exceeding its LO-
WCET within an hour of execution.

• We further generalize our notion of system behavior by
allowing for the specification of a permitted system failure

probability per hour, denoting an upper bound on the
probability that the system may fail to meet its timing
constraints during any hour of running.

• We derive a novel scheduling algorithm (and an associ-
ated sufficient schedulability test) for a given MC task
set and an allowed system failure probability. We seek to
schedule the system such that the probability of failing
to meet timing constraints during run-time is guaranteed
to be no larger than the specified failure probability.

We emphasize that our algorithm, in the two criticality level
case, requires just one probabilistic parameter per task – the



probability that the actual execution requirement will exceed
the specified LO-WCET in an hour. We believe our scheduling
algorithm is novel in that it is, to our knowledge, the first MC
scheduling algorithm that makes scheduling decisions (e.g.,
when to trigger a mode switch) based not only on release dates,
deadlines, and WCETs, but also on the probabilities drawn
from probabilistic timing analysis tools (see, e.g., [7] [16] [9]).

Organization. Sec. II introduces the model and and show its
advantage by a motivating example. Sec. III formally defines
probabilistic schedulability and related concepts. In Sec. IV
we propose a clustering based scheduling strategy, and the
corresponding schedulability test, while Sec. V performs their
experimental evaluations and comparisons. Sec. VI concludes
and suggests future work.

II. MODEL

We start out considering a workload model consisting
of independent implicit-deadline sporadic tasks, where the
deadline and the period of a task share the same value (in
contrast to constrained-deadline ones). Throughout this paper,
an integer model of time is assumed — all task periods are
assumed to be non-negative integers, and all job arrivals are
assumed to occur at integer instants in time.

In traditional MC models, each HI-criticality task is charac-
terized by two WCETs, cLO and cHI, which could be derived
with different timing analysis tools. By the level of pessimism
and/or other properties in the timing analysis, such a tool usu-
ally provides a confidence for its resulting WCET estimates.
However, no prior work on MC analysis has leveraged any
information from the confidence of the provisioned WCET.

Existing MC analysis usually makes the most pessimistic
assumption that every HI-criticality task may execute beyond
its LO-WCET and reach its HI-WCET simultaneously. In real
applications, the industry standards usually only require the
expected probability of missing deadlines within a specified
duration to be below some specified small value, as the
deadline miss can be seen as a faulty condition. Instead,
our work aims at leveraging probabilistic information from
the timing analysis tools (i.e. confidence) to rule out the too
pessimistic scenarios and to improve schedulability of the
whole system under a probabilistic standard.

Our work also differs from most prior work on WCET
analysis as follows: Existing timing analysis work usually
analyzes the WCET for a task on a per-job basis; i.e., by
focusing on the distribution of WCETs of jobs of a certain
task. When it comes to analyzing a series of consecutive
jobs generated from the same task, the distribution is directly
applied. It is usually assumed that i) all jobs WCET of a certain
task obey the same distribution (identically distributed), and
ii) the WCET of a job is probabilistically drawn from the
distribution with no dependence on other jobs of the same task
(independence). While the independence assumption holds for
the worst-case execution time, as we will see in the next
section, it may not hold for the task execution time. For ex-
ample, in many applications such as video frames processing,
the execution times of processing consecutive frames of a
certain video are usually dependent. However, the event that
a certain task has ever over run its provisioned execution time
in time intervals of a certain adequate large length (e.g., an

hour) is independent from the scenario in other such intervals,
and the probability of such event should be derived from the
confidence of corresponding timing analysis tools only.

Before detailing our task model, a few statistical notions
need to be introduced in order to clarify previous and next
observations. Given a task τi, its pWCET estimate comes from
a random variable (the worst-case execution time distribution),
notably continuous distributions2 denoted by Ci. Equivalent
representations for distributions are the probabilistic density
functions (pdfs), fCi

, the Cumulative Distribution Functions
(CDFs) FCi

, and the Complementary Cumulative Distribution
Functions (CCDFs), F ′

Ci
. In the following, calligraphic upper-

case letters are used to refer to probabilistic distributions, while
non calligraphic letters are used for single value parameters.

The CCDF representation relates confidence to probabil-

ities; indeed, from F ′
Ci
(c(LO)) we have the probability of

exceeding cLO. The confidence is then for c(LO) being an upper-

bound to task execution time. The WCET threshold, simply
named pWCET or WCET in the rest of the paper, is a tuple
〈c(LO), p(LO)〉, where the probability p(LO) sets the confidence
(at the job level) of exceeding c(LO), p(LO) = F ′

C(c(LO)) =
P (C > c(LO)). By decreasing the probability threshold p(LO),
thus the confidence on the upper-bounding worst-case, c(LO)
increases.

Given A the event that a job exceeds its threshold and
pA = P (Ci > c(LO)) its probability of happening; given B
the event that another job exceeds its threshold (in a different
execution interval) with pB = P (Ci > c(LO)) its probability of
happening. With separate jobs as well as separate execution
intervals, and considering WCETs, the conditional probability
P (A|B) is equal to P (A), thus the joint probability is

P (A,B) = P (A|B)× P (B) = P (A)× P (B), (1)

due to the independence between WCETs. Projecting the per
job probability threshold p(LO) = F ′

Ci
(c(LO)) to one hour task

execution interval, we make use of the joint probability of all
the exceeding threshold events within the one hour interval.
The joint probability is

P (Ci > c(LO), Ci ≤ c(LO), Ci ≤ c(LO), . . . , Ci ≤ c(LO)), (2)

as the probability of just a task job exceeding its thresholds
c(LO), and all the others not exceeding c(LO). With full inde-
pendence, the probability of exceeding threshold in one hour
would be at most 1− FCi

(c(LO))× bpi/3, 600, 000c, with the
task τi period pi expressed in msec.

III. PROBABILISTIC SCHEDULABILITY

In our model, an allowed system failure probability FS

is specified. It describes the permitted probability of the
system failing to meet timing constraints during one hour of
execution3. FS may be very close to zero (e.g., 10−12 for some
safety critical avionics functionalities).

A failure probability parameter fi is added to HI-criticality
task τi, denoting the probability that the actual execution

2The timing analysis that make use of the EVT, by definition provides
continuous distributions as pWCET estimates [7]; they are then discretized,
to ease their representation, by assigning them a discrete support.

3Failure probability are easily referable to failure rate, being careful at
considering the failure rate as a probability.



requirement of any job of the task exceeding ci(LO) (but still
below ci(HI)) in one hour (i.e., the adequate long time interval
we assumed in this paper). fi depends on a failure distribution
Fi(t) that describes the task τi probability of failure up to and
including time t. Since Fi(t) would refer to time (interval)
and to task execution, it is going to be the one we computed
for one hour interval or any another interval, Eq. (2). Thus, fi
can be directly derived from FCi

4.

A HI-criticality task is represented by: τi =
([ci(LO), ci(HI)], fi, pi, χi); LO-criticality tasks continue
to be represented with three parameters as before. This
enhanced model is essentially asserting, for each HI-criticality
task τi, within a time interval of one hour, no job of τi
has an execution greater than ci(HI) and the probability of
any job of τi has an execution greater than ci(LO) is fi
— we would expect fi to be a very small positive value.
In our work we assume ci(HI) the deterministic WCET,
〈ci(HI), 0〉, while 〈ci(LO), fi > 0〉 the probabilistic WCET
with ci(LO) ≤ ci(HI). Normally we do not guarantee higher
assurance for LO-criticality tasks (than HI-criticality ones),
and thus only ci(LO) are adopted for them.

Definition 1 (MC Task Instance): A MC task instance I is
composed of a MC task set τ = {τ1, τ2, . . . , τn} and a
system failure requirement FS ∈ (0, 1). (Although FS may
be arbitrarily close to 0, FS = 0 is not an acceptable value —
“nothing is impossible.”)

Let nHI ≤ n denote the number of HI-criticality tasks in
τ . We assume that the tasks are indexed such that the HI-
criticality ones have lower indices; i.e., the HI-criticality tasks
are indexed 1, 2, . . . , nHI.

We seek to determine the probabilistic schedulability of any
given MC task instance:

Definition 2 (probabilistic schedulability): A MC task set
is strongly probabilistic schedulable by a scheduling strategy if
it possesses the property that upon execution, the probability of
missing any deadline is less than FS . It is weakly probabilistic

schedulable if the probability of missing any HI-criticality
deadline is less than FS . (In either case, all deadlines are met
during system runs where no job exceeds its LO-WCET.)

That is, if a schedulability test returns strongly schedulable,
then all jobs meet their deadlines with a probability of no less
than 1− FS , while weakly schedulable only guarantees (with
probability no less than 1 − FS that) HI-criticality jobs meet
their deadlines. Moreover, similar to all MC works, for either
strongly or weakly probabilistic schedulable, all deadlines are
met when all jobs finish upon executing their LO-WCETs.
Again, FS comes from the natural need of some system
certifications, while fi is the additional information for each
task that we need to derive from WCET estimations to achieve
such probabilistic certification levels.

A. On the WCET Dependencies

In our model, the failure probability per hour of each
task fi represents the probability of any job of the task τi
exceeding its LO-WCET. Thus dependences between tasks and

4It is possible to apply existing timing analysis tools to determine fi – by
monitoring executions of a piece of code for enough length, one may derive
a stable pWCET, or may need to adapt EVT in case there are significant
changes of execution time (to guarantee the safety of pWCET).

task executions could have a strong impact on fi. We hereby
detail how we intend to cope with statistical dependence.

In [8] it has been shown that neither probabilistic depen-
dence among random variables nor statistical dependence of
data implies the loss of independence between tasks’ pWCETs
or WCET estimates. The WCET is an upper-bound to any
execution time, which makes the important consequence on
the independence between WCETs: jobs and tasks modeled
with WCETs are independent because WCETs already embed
dependence effects. Although both execution bounds (LO-
WCET, HI-WCET) are so far called worst-case execution
time estimations, the LO-WCET may also serve as an execu-
tion time upper-bound, where dependence between tasks and
within tasks needs to be more carefully accounted for (see
[32] for the original definition of the multi-WCET MC task
model).

Each MC task may generate an unbounded number of jobs.
Since jobs generated from the same task set typically represent
execution of the same piece of code, the failure probability
fi of a task τi represents the likelihood that the required
execution time of any job generated within an hour by τi
will exceed ci(LO). In [26], [25] it has been showed that real
safety-critical embedded systems have natural variability on
the task’s execution time, thus it is reasonable to assume the
independence (or extremal independence) between jobs.

Since jobs generated from the same task set typically
represent execution of the same piece of code, and consec-
utive such jobs could experience similar circumstances, in
the definition of the failure probability fi (of a task τi), we
naturally assume dependence among jobs of the same task;
i.e., it represents the likelihood that the required execution
time of any job generated within an hour by τi will exceed
ci(LO). In [26], [25] it has been showed that real safety-
critical embedded systems have natural variability on the task
execution time, thus it is reasonable assume independence or
extremal independence between jobs.

Concerning task dependencies, we can cope with the de-
pendence by specifying the task pairwise dependence model.
Assuming we are given a list of pairs (τi, τj) indicating
that (WC)ETs of these two tasks may be dependent on each
other. It means that the probability of them both exceeding
their LO-WCET is no longer the product of their individual
probabilities. By knowing P (Ci > ci(LO), Cj > cj(LO)) we
are able to model (τi, τj) dependence including execution
time task dependencies in our framework, Section IV. It is
however reasonable to assume that many (or most) task pairs
do not have such dependencies to each other (although at the
execution time level), since the limited impact of one task to
another in a mixed-critical partitioned system. Furthermore, it
is worthy to note that execution times are observed with other
tasks executing in parallel, thus the execution time measuring
already embeds the dependence effects from other tasks.
In future work we plan to further explain task dependence
modeling at runtime.

To resume, dependence between jobs of the same task and
between tasks are covered by our model.



B. Utilization Costs

The notion of additional utilization cost, defined below,
helps quantify the capacity that must be provisioned under
HI-criticality mode.

Definition 3 (additional utilization cost): The additional

utilization cost of HI-criticality task τi is given by

δi = (ci(HI)− ci(LO))/pi. (3)

Since we consider EDF schedulability instead of fixed
priority, we would like to know whether, and how likely system
utilization may exceed 1: (i) if it is extremely unlikely that the
total HI-criticality utilization exceeds 1 (weakly probabilistic
schedulable), we could assert a system that is infeasible in
traditional MC model to be probabilistic feasible; (ii) if it
is extremely unlikely that total system utilization exceeds
1 (strongly probabilistic schedulable), we could decide not
to drop any LO-criticality task even if some HI-criticality
tasks accidentally suffer from failures (that they require more
execution time than expected).

Example 1 has shown an infeasible task set (under tradi-
tional MC scheduling) being weakly probabilistic schedulable
under our model. As seen from the definitions, existing mixed-
criticality systems are often analyzed under two modes – the
HI mode and the LO mode, and mode switch is triggered when
any HI-criticality job exceeds its LO-WCET without signaling
finishing. Upon such a mode switch, deadlines of all LO-
criticality jobs will no longer be guaranteed. A natural ques-
tions arises – is such sacrifice (dropping all LO-criticality jobs)
necessary whenever a HI-criticality job requires execution for
more than its LO-WCET? The following example illustrates
the potential benefits in terms of enhanced schedulability of
the proposed probabilistic MC model.

Example 2: Consider a system composed of the three
independent MC tasks that τ1 = {[2, 3], 0.1, 5, HI}, τ2 =
{[3, 4], 0.05, 10, HI}, and τ3 = {[1, 1], 10, LO}, to be scheduled
on a preemptive uniprocessor, with desired system failure
probability threshold of FS = 0.01.

Since HI-utilization of the system is uHI = 2/5+4/10 = 1,
any deterministic MC scheduling algorithm will prioritize τ1
and τ2 over the LO-criticality task τ3, and drop τ3 if any HI-
criticality job exceeds its LO-WCET.

With the additional probability information provided in our
richer model, however, more sophisticated scheduling and
analysis can be done. Recall from the definition of fi, τ1
has a probability of no larger than 0.1 to exceed a 2-unit
execution within an hour, while the probability of any job
in τ2 exceeding a 3-unit execution within an hour is 0.05.
Under the task-level independence assumption, the probability
of jobs from both HI-criticality tasks requiring more than
their LO-WCETs in an hour (P (x1 = x2 = 1) = P (x1 =
1) × P (x2 = 1) = 0.1 × 0.05 = 0.005) is smaller than FS

5.
Hence, in the schedulability test, we do not need to consider
the case that both HI-criticality tasks exceed their LO-WCETs
simultaneously. Moreover, either one of them exceeding its
LO-WCET will not result in an over-utilized system – a

5In general, we cannot simply ignore an event when its failure probability
is below FS . Instead, we do not need to consider a set of events only when
the sum of their failure probability is below FS . More details on this can be
found in Section III.

“server” τs = {0.2, 1, HI} can be added to provide the
additional capacity (over and above the LO-WCET amount).
This server will be scheduled and executed as a virtual task,
and both HI-criticality tasks may run on the server.

The total system utilization thus provisioned for the HI-
criticality tasks is 2/5+3/10+0.2/1 = 0.9; upon provisioning
an additional utilization of 1/10 = 0.1 for the LO-criticality
task τ3, the total utilization becomes 1. Thus under any optimal
uniprocessor scheduling strategy, e.g., EDF, the failure (any
deadline miss) rate of the system in any hour will be no
greater than FS , and the MC instance is strongly probabilistic

schedulable under this scheduling strategy (EDF plus the HI-
criticality server) for the specified threshold FS .

IV. SCHEDULING STRATEGY

A. The LFF-Clustering Algorithm

In this subsection, we present our strategy for scheduling
independent preemptive MC task instances, by combining
HI-criticality tasks into clusters intelligently, and provide a
sufficient schedulability test for it. Consider what we have
done in Example 2 above. We essentially: (i) conceptually
combined the HI-criticality tasks τ1 and τ2 into a single
cluster, provisioning an additional server into the system to
accommodate their possible occasional HI-mode behaviors
(execution beyond their LO-WCETs); and (ii) performed two
EDF schedulability tests: one considering only HI-criticality
tasks (with LO-WCETs) and the server, and the other also
considering the LO-criticality task (τ3). Since both tests suc-
ceed, we declare strongly probabilistic schedulable for the
given instance; we would have declared weakly probabilistic

schedulable if the second schedulability test had failed while
the first one succeeded.

The technique that was illustrated in Example 2 forms the
basis of the scheduling strategy that we derive in this section.
To obtain a good upper bound to HI-criticality utilization of
the system, we combine tasks into clusters – suppose that the
nHI HI-criticality tasks have been partitioned into M clusters
G1, G2, ..., GM , and let yi ∈ {1, 2, ...,M} denote to which
cluster (number) task τi is assigned.

Definition 4 (Failure probability of a cluster): Failure of a

cluster Gm is defined as job generated by more than one tasks
in a single cluster exceeding their LO-WCETs within an hour.
The probability of a failure occurring in cluster m is denoted
as gm and is given by

gm
def
= 1−

∏

i|yi=m

(1− fi)−
∑

j|yj=m

fj

∏

i|yi=m(1− fi)

1− fj
, (4)

where the second term of right hand side is the probability
of no task (in the cluster) exceeding its LO-WCET, and the
last term represents the probability of exact one of the tasks
exceeding its LO-WCET in an hour.

Note that we are allowing one task per cluster to exceed its
LO-WCET during execution, and will assign certain capacity
(details to be provided in latter part of the section) to assure
such failure won’t cause any deadline miss.

Lemma 1: If gm < FS/M holds for any cluster Gm, then

the probability of having no failure in any cluster is greater

than (1− FS).



Proof: Since clusters do not overlap with each other (each
HI-criticality task belongs to a single cluster) and thus are
independent to each other, the probability of having no failure
in any cluster is given by the product of each cluster being

failure-free, which is:
∏M

m=1
(1−gm) >

∏M

m=1
(1−FS/M) =

(1− FS/M)M ≥ 1− FS (From Binomial Theorem). �

Lemma 1 provides a safe failure threshold FS/M for each
cluster; i.e., the rule for forming clusters is gm < FS/M ,
where M is the current number of clusters.

The additional utilization cost of a cluster Gm is defined
to be equal to the additional utilization cost (δi) of the task
within the cluster with the largest δi value; i.e.,

∆m
def
= max

i|τi∈Gm

δi. (5)

The total system additional utilization cost is given by the
sum of additional utilization cost of all M clusters;

∆
def
=

M
∑

m=1

∆m. (6)

A critical observation is that, if a task τi with additional
utilization cost δi has been assigned to a cluster, assigning
any other task τj with δj ≤ δi to the cluster will not increase
the additional utilization cost. To minimize the total additional
utilization cost of the entire task set, we therefore greedily
expand existing clusters with tasks of larger additional utiliza-
tion cost while ensuring that the relationship gm < FS/M
continues to hold, leading to the Largest Fit First (LFF)-
Clustering algorithm.

Algorithm 1: Algorithm LFF-Clustering

Input: FS , {fi}
nHI
i=1

, {δi}
nHI
i=1

Output: maximum total additional utilization cost ∆

begin
Sort the tasks in non-increasing order of δi;
m← 1, M ← nHI, yi ← 0 for i = 1, ..., n;
while

∏nHI

i=1
yi = 0 (an unassigned task exists) do

∆m ← 0 (additional utilization of each cluster);
for i← 1 to nHI do

if yi > 0: continue;
yi ← m, M ←M − 1;
if gm ≥ FS/M : yi ← 0, M ←M + 1;

∆m ← maxi|yi=m δi;
m← m+ 1;

return
∑M

m=1
∆M ;

end

This algorithm greedily expands each existing cluster with
unassigned tasks while the condition gm < FS/M holds;
while a new cluster is created only if it is not possible to assign
a task to any current cluster without violating the condition
(gm < FS/M).
Remark 1. Similar to what has been done in [12] and [24],
we may achieve a precise distribution to the total utilization
of all tasks by applying the convolution operation ‘⊗’, which
results in an exponential (O(2nHI ), to be precise) running time

(see [24]). The sufficient schedulability test based on the LFF-
Clustering algorithm runs in O(n2

HI) time, where nHI is the
number of HI-criticality tasks.
Remark 2. In the case that all tasks share the same fi value,
the schedulability test based on LFF-Clustering becomes nec-

essary and sufficient.
Run-Time Strategy. During execution, a HI-criticality server

τs with utilization ∆ and a period of 1 tick is added to the
task system. We need the server period as 1 tick because the
mechanism and the analysis will not work if there is release
or deadline within a server period. At any time instant that
the server is executing, the active6

HI-criticality job, if any,
with earliest deadline is executed; if there is no such job, the
current job of the server is dropped7. All jobs including the
server are scheduled and executed in EDF order, and a job is
dropped at its deadline if it is not completed by then.

Note that although we introduce a server task with period
of 1, preemption does not necessarily happen that often. The
goal of the sever task with utilization ∆ is to preserve a
“bandwidth” of at least ∆ for HI- criticality jobs if the HI-
criticality ready queue is not empty. There are three situations
to be considered:

Situation 1: The job with the earliest deadline is a HI-
criticality job. In this situation, we execute the HI-criticality
job with 100% processor share, and no more preemption is
incurred by the server.

Situation 2: The job with the earliest deadline is a LO-
criticality job and the HI-criticality ready queue is empty. In
this situation, we execute the LO-criticality job with 100%
processor share, and hence there is no additional preemption
in this situation either.

Situation 3: The job with the earliest deadline is a LO-
criticality job and the HI-criticality ready queue is not empty.
In this situation, we want to preserve a processor share of ∆
for HI- criticality jobs and to execute the LO-criticality ones
with the rest 1 −∆ of the processor capacity. Therefore, the
server creates preemptions every time unit.

That is, only in Situation 3, our algorithm “introduces”
extra preemptions due to the server scheme, and normal EDF
scheduling is applied in other cases. One may claim that such
server allocation scheme may results in more preemptions
than the approaches where the server capacity is only used
for overruns. Actually this is because that the goal here is
trying not to drop LO-criticality tasks even when a few HI-
criticality ones exceed their LO-WCETs. Thus, in order to
guarantee HI-deadline being met always, we have to make
certain use of the server even when no HI-criticality behavior
is detected – simply taking “precautions”. Alternative way
such as assigning HI-criticality jobs virtual deadlines may lead
to fewer preemptions, at a cost of losing the performance of
schedulability ratio (see experimental comparisons).

In this work we make use of servers to implement our al-
gorithms and prove the possibility of proficiently apply failure
probability to both MC modeling and MC scheduling. In future

6A job is active if it is released and incomplete at that time instant.
7Since an integer model of time is assumed (i.e., all task periods are integers

and all job arrivals occur at integer instants in time), and the server has a period
of 1, it is safe to drop the current job of the server if there is no active HI-
criticality jobs since there can be no HI-criticality job releases in the current
period of the server.



work we will release the server period assumption of 1 unit
of time by applying adaptivity to resource reservation [27],
[30]. With the analysis of the deadline and task periods we
will be able to implement realistic servers which adapt their
period and budget to the MC-scheduler needs, while leaving
the system predictable at any time interval. Such adaptive
behavior will not introduce any overhead, and mostly will
allow not to miss task deadline.

B. Schedulability Test

It is evident that for strongly probabilistic schedulable

(i.e., to ensure that the probability of missing any deadline
is no larger than the specified system failure probability
FS – see Definition 2), it is (necessary and) sufficient that
(
∑n

i=1
ci(LO)/pi+∆

)

must be no larger than the capacity of
the processor (which is 1).

For weakly probabilistic schedulable (i.e., to ensure that
the probability of missing any HI-criticality deadline is no
larger than FS – again, see Definition 2), it is necessary that
(
∑

i|χi=HI
ci(LO)/pi + ∆

)

must be no larger than 1 as well.

The following theorem helps establish a sufficient condition
for ensuring weakly probabilistic schedulable:

Theorem 1: If no job exceeds its LO-WCET, then no dead-

line is missed if

∆ · (1−
∑

i|χi=HI

ci(LO)

pi
) +

n
∑

i=1

ci(LO)

pi
≤ 1. (7)

Proof: As assumed, the task set is feasible when no job
exceeds its LO-WCET; i.e.,

∑n

i=1
ci(LO)/pi ≤ 1. Therefore,

if the server does not exist, all task will meet their deadlines
under EDF scheduling. Since the server task is not a real task
but only executes the earliest-deadline HI-criticality job if ex-
ists, introducing this server will never delay any HI-criticality
task’s execution (comparing to no-server circumstance). Thus,
the deadlines of all HI-criticality jobs will still be met.

Next, by contradiction, we show if (7) holds, all deadlines
of LO-criticality jobs will also met. Suppose td is the first time
instant when a deadline of a LO-criticality job is missed. Let
t0 denote the last idle instant for jobs with deadlines at or
before td

8, then [t0, td) is a busy interval. Let Ψ denote the
set of the HI-criticality jobs that are released at or after t0 and
with deadlines at or before td, and Ψ′ denote the complement
(i.e., HI-criticality jobs with deadlines after td).

Let W denote the total demand created by jobs in Ψ within
[t0, td), then

W ≤
∑

i|χi=HI

⌊

td − t0
pi

⌋

· ci(LO). (8)

We have shown that all HI-criticality jobs will meet their
deadlines (in the first paragraph of this proof), which implies
that there must be a processor supply of W allocated to those
jobs in Ψ. Since the server has a period of 1, no job will be
released during each server period. Moreover, the server has
the highest scheduling priority, and will execute the earliest-
deadline HI-criticality job (when exists). Thus for any unit-
length period, if jobs in Ψ are executed for a cumulative length

8If at a instant there is no active job with deadline at or before td, it is
considered idle in this proof.

of w, at least a server budget of ∆ · w will be consumed by
those jobs. Thus, within [t0, td), at least ∆ ·W server budget
must execute jobs in Ψ. On the other hand, the server (by its
definition) could have at most ∆ · (td − t0) budget in [t0, td).
Thus, within the period [t0, td), jobs in Ψ′ will consume server
budget of at most ∆ · (td − t0) − ∆ · W . Moreover, since
there will always be active jobs with deadline at or before t0
throughout the interval, and we are using pure EDF “outside”
the server, jobs in Ψ′ (with later deadlines) can only execute
within [t0, td) by consuming server budget.

Also, within the busy interval [t0, td), a LO-criticality task
τi can only release b(td − t0)/pic jobs with deadlines at or
before td. Thus, and by the definition of td and t0, we have

(

∆ · (td − t0)−∆ ·W
)

+W+
∑

i|χi=LO

⌊

td − t0
pi

⌋

· ci(LO) > td − t0.
(9)

Moreover,

(

∆ · (td − t0)−∆ ·W
)

+W +
∑

i|χi=LO

⌊

td − t0
pi

⌋

· ci(LO)

= ∆ · (td − t0) + (1−∆) ·W +
∑

i|χi=LO

⌊

td − t0
pi

⌋

· ci(LO)

≤ {by (8) and ∆ ≤ 1}

∆ · (td − t0) + (1−∆) ·
∑

i|χi=HI

⌊

td − t0
pi

⌋

· ci(LO) +

∑

i|χi=LO

⌊

td − t0
pi

⌋

· ci(LO)

≤ {by b(td − t0)/pic ≤ (td − t0)/pi for all i and ∆ ≤ 1}

∆ · (td − t0) + (1−∆) ·
∑

i|χi=HI

td − t0
pi

· ci(LO) +

∑

i|χi=LO

td − t0
pi

· ci(LO)

= ∆ · (td − t0)−∆ · (td − t0) ·
∑

i|χi=HI

ci(LO)

pi
+

(td − t0) ·
∑

i|χi=HI

ci(LO)

pi
+ (td − t0) ·

∑

i|χi=LO

ci(LO)

pi

= ∆ · (td − t0) ·



1−
∑

i|χi=HI

ci(LO)

pi



 +

(td − t0) ·

n
∑

i=1

ci(LO)

pi
.

(10)

By (9) and (10),

∆ · (td − t0) ·



1−
∑

i|χi=HI

ci(LO)

pi



+

(td − t0) ·

n
∑

i=1

ci(LO)

pi
> td − t0,

(11)



Canceling (td − t0) on both sides contradicts our theorem
assumption, (7).

Thus, such td does not exist and therefore no LO-criticality
job will miss its deadline. �

Theorem 1 yields the schedulability test pMC (Algorithm
2), while Theorem 2 below establishes its correctness.

Theorem 2: The schedulability test pMC is sufficient in the

following sense:

• If it returns strongly probabilistic schedulable, the prob-

ability of any task missing its deadline is no greater than

FS; and

• if it returns weakly probabilistic schedulable, the proba-

bility of any HI-criticality task missing its deadline is no

greater than FS , and no deadline is missed when all jobs

finish upon execution of their LO-WCETs.

Proof: From Lemma 1 and Theorem 1, we may conclude that
the possibility of HI-criticality tasks altogether requiring an
additional utilization of no more than ∆ is less than FS , and
thus they can still meet their deadlines with probability no less
than 1− FS upon the assigned server task.

The utilization-based test of EDF is run twice. If the first test
succeeds; i.e., total utilization (including the server) is less than
1, then all tasks will meet their deadlines with a probability
no less than (1 − FS) — this ensures strongly probabilistic
schedulable. If not, we need to check two other conditions
which together ensure weakly probabilistic schedulable: (i)
a utilization test involving HI-criticality tasks and the server,
which guarantees that the probability of all HI-criticality tasks
meeting their deadlines is no less than (1− FS) should some
jobs exceed their LO-WCETs; and (ii) a utilization based
condition involving all tasks and the server, which guarantees
correctness for all tasks when no HI-criticality one exceeds its
LO-WCET (Theorem 1). �

The schedulability test pMC returns strongly probabilistic

schedulable if we are able to schedule the system such that
the probability of missing any deadline is at most the specified
threshold FS , or weakly probabilistic schedulable if we are
able to schedule the system such that the probability of missing
any HI-criticality deadline is at most FS . We will then use EDF
to schedule and execute the task set with LO-WCETs and the
additional server task τs = {∆, 1, HI}.

In the case that the schedulability test pMC returns un-

known, we are not able to schedule the system using the
proposed probabilistic analysis technique. Normally it is either
we have set a too high safety requirement to the system; i.e.,
the threshold FS is too small, or the WCET estimations are
not precise enough for HI-criticality tasks; i.e., the fi’s are not
small enough comparing to FS (and nHI), and/ or the ci(LO)’s
are still not differentiable enough with respect to ci(HI)’s.

We show how our algorithm works by applying it to an
example.

Example 3: Consider the MC task system consisting of six
tasks shown in Table I, and a specified allowed system failure
probability of FS = 3.2 × 10−4. For simplicity, tasks are
ordered decreasingly by δi values. (The δi’s for each task are
calculated according to (3).)

The LFF-Clustering algorithm initially assigns each task a
single cluster, and try to expand the one (of the largest ∆i

value) with task τ1. τ2 can be combined into Cluster G1 since

TABLE I
A SET OF MC TASKS.

- τ1 τ2 τ3 τ4 τ5 τ6
[ci(LO), ci(HI)] [0.5, 0.5] [1, 3] [1, 2] [3, 5] [3, 6] [1, 2]

pi 5 10 25 50 20 4
δi 0.2 0.2 0.08 0.06 0.05 -
fi 0.0001 0.0001 0.01 0.01 0.001 -
χi HI HI HI HI HI LO

g1 < FS/M holds (g1 = 1 − (1 − f1)(1 − f2) − f1(1 −
f2) − f2(1 − f1) = f1f2 < FS/4). Similarly, combining τ3
will results in a smaller number of total remaining clusters
(M = 3), and Inequality g1 < FS/M continues to hold.

However, this inequality no longer holds as we further
expand G1 for τ4 (g1 becomes greater than FS/2). Thus we as-
sign Task τ4 a second cluster G2. Similar to the situation of τ4,
τ5 cannot be combined into cluster G1. However, combining
τ5 with τ4 is allowed since M = 2 and g2 = f4f5 < FS/2.

Finally we have visited all HI-criticality tasks, and the value
to be returned by the LFF-Clustering algorithm is ∆1+∆2 =
u1 + u4 = 0.26.

Since the total system utilization (including the LO-
criticality task τ6) remains less than 1 with a server of utiliza-
tion 0.26. The schedulability test pMC returns strongly prob-

abilistic schedulable. During run-time, an additional server
τs = {0.26, 1, HI} will be added to the task system, on which
active HI-criticality jobs will execute (also in EDF order).
When there is no active HI-criticality job, current job of the
server will be dropped.

Algorithm 2: Schedulability Test pMC

Input: τ, FS

Output: schedulability

begin
Calculate the δi values for all HI-criticality tasks in τ ;
uLO ←

∑n

i=1
ci(LO)/pi;

u′
LO ←

∑

i|χi=HI ci(LO)/pi;

∆← LFF-Clustering(FS , {fi}
nHI
i=1

, {δi}
nHI
i=1

);
if uLO +∆ ≤ 1 then

return strongly probabilistic schedulable;

else

if u′
LO +∆ ≤ 1, ∆ · (1− u′

LO) + uLO ≤ 1 then
return weakly probabilistic schedulable;

return unknown;
end

V. SCHEDULABILITY EXPERIMENTS

We have conducted schedulability tests on randomly-
generated task systems, comparing our proposed method with
existing one. The objective was to demonstrate the benefits
of our model: by adding a probability estimation fi to each
task, our algorithm may successfully schedule (return proba-

bilistically correct or partial probabilistically correct) many
task sets that are unschedulable according to existing MC-
scheduling algorithms; e.g., the EDF-VD algorithm [3].

Since this is the first work that combines pWCET and
schedulability with mixed-criticality, it is hard to find a fair
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Fig. 2. Schedulability ratio comparison of EDF-VD and pMC, where
HI utilization varies from 0.9 to 1 in a uniform manner.

base line to compare with. The reason EDF-VD is selected
here since (i) it is a widely accepted MC scheduling strategy;
(ii) it is the most general algorithm in the whole VD family;
and (iii) HI-criticality tasks are treated as a whole in both
algorithms – EDF-VD sets virtual deadline according to a
common factor, while we make use of a HI-criticality server.
We need to point out that EDF-VD assumes unknown fi for
each task (not simply 0 or 1), and thus our algorithm has
privilege naturally.

We use the algorithm UUniFast [5] to generate task
sets for various values of cumulative LO utilization
(u(LO) =

∑n

i=1
ci(LO)/pi) and HI utilization (u(HI) =

∑

i|χi=HI ci(HI)/pi). The parameter u(LO) is ranged from

0 to 1, while u(HI) is ranged from 0 to 1.5, each with
step 0.01. Each task set contains 20 tasks, each of which
is assigned LO or HI criticality with equal probability. LO-
criticality utilizations are assigned according to UUniFast;
given an expected HI utilization u(HI), we inflate the LO-
criticality utilizations of the HI-criticality tasks using random
factors chosen to ensure that the cumulative HI utilization of
the task-set equals the desired value with high probability.

Among the 626, 200 valid task sets that we generated, EDF-
VD succeeds to schedule 306, 299 (48.9%) of them, and the
proposed pMC reports probabilistic schedulable for a total
of 438787 sets (70.1%), and only 121, 426 sets (19.4%) are
reported unknown. Even when focused only upon systems for
which HI-criticality utilization is less than 1, EDF-VD fails
to schedule 18.0%, while pMC returns unknown for only

8.4% of the sets. Figure 1 depicts the schedulability results
for the two algorithms, where fi = 10−3 of all tasks τi and
Fs = 10−6. Instances with similar u(LO) and u(HI) values
are put into a same small block. The color of each small
block represents the percentage of schedulable sets9. As shown
in Figure 1, although EDF-VD and pMC do not dominate
each other, pMC generally significantly outperforms EDF-VD,
particularly upon task-sets with large HI-utilization.

To show the robustness of our algorithm with respect to dif-
ferent fi distributions, we focus on task sets with HI utilization
between 0.9 and 1. Figure 2 reports the ratios of schedulable
(i.e., weakly probabilistic schedulable) sets over different
LO utilizations. With the additional probability information,
the schedulable ratio is significantly improved for heavy
tasks comparing to EDF-VD [3]. The introduced parameter
fi is assigned to tasks in different ways; i.e., all sharing a
same value, following uniform distribution, or following log-
uniform distribution (fi = 10x, where x is uniformly chosen).
Generally speaking, smaller average f leads to higher ratio
of acceptance, and there is no significant difference between
different distributions of fi with the same average, which
indicates that our algorithm is robust to different combinations
of output measurement probabilities from probabilistic timing
analysis tools.

VI. CONTEXT & CONCLUSIONS

In this paper we have presented our initial research into
scheduling MC systems that account for probabilistic infor-
mation. Existing MC task models are generalized with an
additional parameter specifying the distribution information
of the WCET. We require that it is a priori determined
how likely jobs may exceed their LO-WCETs per hour. We
proposed a novel EDF-based scheduling algorithm, which
exploits the probabilistic information to make mode-switching
and LO-criticality-task-dropping decisions. Given a system
failure probability threshold, the goal is to derive more precise
schedulability analysis, which may deem a system that is
infeasible under the traditional MC model as feasible, and
will not drop any task unless it is probabilistically necessary.

9Since we randomly assign criticality levels to all tasks, the LO utilization
of HI-criticality tasks is expected to be u(LO)/2. It is unlikely to generate
tasks with u(HI) < u(LO)/2, and thus the right lower triangle regions are
left blank in Figure 1.



Experimental results show the advantages of the novel model
and the proposed scheduling schemes.

Future Work. The solution provided in this paper requires a
server with period of 1. We are currently working on applying
the idea of adaptive servers (with dynamic periods or budgets)
[30] to avoid too many preemptions.

Our study only targeted the scheduling of implicit deadline
sporadic task sets (including both synchronous and asyn-
chronous periodic systems) on uniprocessor platforms. We
believe the arbitrary deadline case cannot be solved by sim-
ply extending or modifying the proposed method. While for
multiprocessor systems, dependencies between WCET of tasks
widely arises due to cache sharing, which requires investiga-
tion on more sophisticated model and strategy.

So far we only considered systems with two criticality
levels. For multiple levels of criticality, the number of WCET
estimations per task will also increase, which results in
multiple probability thresholds. Probabilistic correctness for
multiple probability thresholds per task need to be defined,
and the scheduling problem (which is likely to be much more
complicated) is worth studying.
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