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Abstract
Many approaches have been proposed to enable disparate
real-time software components to share a physical multipro-
cessor platform by giving each component the “illusion” of
executing on a dedicated virtual platform. Such an illusion
is supported by specifying a supply interface that indicates
how computation time is made available to a component
over time. A number of approaches for defining such inter-
faces have been proposed: so many that sifting through them
all can be confusing for the practitioner. In the case of soft
real-time applications, one particular proposed interface—
minimum-parallelism (MP) supply—has been shown to en-
able the co-scheduling of different components with no uti-
lization loss. In the case of hard real-time applications, it
follows from prior work that MP supply easily dominates
other choices if the simplifying assumption is made that sup-
ply is allocated on different processors using a common,
synchronized allocation period. The main contribution of
this paper is to show that the dominance of MP supply is
retained if this simplifying assumption is removed, provided
the period of allocation is defined properly. This result sug-
gests that MP supply should be the focus in future work on
real-time multiprocessor virtualization.

1 Introduction
Open-systems [5] frameworks allow separate software com-
ponents to execute together on a common hardware plat-
form, with each component having the “illusion” of execut-
ing on a dedicated virtual platform. Providing such an illu-
sion can ease software-development efforts, not only when
mixing different applications, but also when integrating sep-
arately developed components of the same application. In
domains where real-time constraints exist, temporal isola-
tion among components should be ensured, i.e., it should be
possible to validate the timing constraints of each compo-
nent independently. Therefore, a specification of the com-
puting capacity allocated to a component is needed.

In early work in this direction pertaining to uniproces-
sor platforms, Shin and Lee [17] proposed a virtual proces-
sor (VP) model called the periodic resource (PR) model,
which allows the considerable body of work on periodic
task scheduling [13] to be exploited in reasoning about
the allocation of processor time to components. In the PR
model, a VP is specified by the parameters (Π,Θ), with the
interpretation that Θ time units of processor time is guaran-
teed to the supported component every Π time units.

While this simple model sufficed in the uniprocessor
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case, it is inadequate in the multiprocessor case, because
the important issue of parallelism is ignored. To deal with
this issue, Shin et al. [16] proposed extending the PR model
by adding an additional parameter. Specifically, under their
multiprocessor periodic resource (MPR) model, the supply
allocated to a component is specified by (Π,Θ,m′), with
the interpretation that Θ time units of processor time is guar-
anteed to the component every Π time units with at mostm′
VPs providing allocation in parallel. That is, the new param-
eter m′ specifies the maximum degree of parallelism. In the
MPR model, all VPs allocated to a component are required
to have a common period Π that is strictly synchronized.

A key characteristic of the MPR model is its flexibil-
ity. For example, consider a component that is to be al-
located 80% of the capacity of a quad-core machine. The
supply interface for that component could be defined as
(100, 320, 4), meaning that every 100 time units, the com-
ponent receives 320 units of processing time on up to four
processors. Such a specification does not indicate the pre-
cise manner in which processing time is allocated. For ex-
ample, the component could be allocated 80% of the capac-
ity of each processor, or 100% of three processors and 20%
of the fourth, among other choices. Which choice is best?
MP form. In the example just discussed, the second-listed
choice is known as minimum-parallelism (MP) form. Un-
der MP form, each component is allocated at most one
partially available processor, with all other processors al-
located to it being fully available. MP form was first pro-
posed by Leontyev and Anderson [9] to support soft real-
time container hierarchies, which allow components to in-
clude sub-components, which in turn can include their own
sub-components, etc. Assuming MP form, they showed that
container hierarchies with an unlimited number of levels
can be supported with bounded deadline tardiness and no
utilization loss. In work directed at hard real-time systems,
Xu et al. [18] observed that, by enforcing MP form in the
context of the MPR model, per-component schedulability
can be improved.

Because this improvement in schedulability was consid-
ered in the context of the MPR model, a common, synchro-
nized allocation period was assumed to be used on all pro-
cessors allocated to a component. In practice, however, sit-
uations exist in which such an assumption may be problem-
atic. A good example of this can be seen in recent work of
Durrieu et al. [6], who considered a flight management sys-
tem implemented on a multicore platform wherein clocks on
different processors “do not drift [but] have unpredictable
initial offsets.” In the future, the assumption of tight syn-
chrony may become even more problematic, as manycore
platforms evolve in which core counts soar into the hun-
dreds if not thousands. Similar observations have been made



Common Period Different Periods

Synchronous Theorem 5 Theorem 6

Concrete
Asynchronous

Theorem 6 Theorem 6

Non-Concrete
Asynchronous

Theorem 2 Theorems 3 and 4

Table 1: Summary of theorems applying to different VP
synchronization assumptions.

by Lipari and Bini [12] and Bini et al. [3], who suggested
generalizing the MPR model so that the VPs allocated to
a single component may have different periods with differ-
ent initial phasings. Does MP form still retain its advantages
over other supply forms in the hard-real-time case under this
more general notion of VP allocation?
Contributions. In this paper, we answer this question in
the affirmative by showing that MP form dominates all
other supply forms in the context of these cases: VPs are
synchronous, concrete asynchronous, or non-concrete asyn-
chronous (these terms are defined in Sec. 2). In each of these
cases, we consider two sub-cases: requiring a common pe-
riod for all VPs, and allowing such periods to differ. The
prior work noted above by Xu et al. [18] on the MPR model
implies that MP form dominates all other forms in the case
of synchronous VPs with a common period. For each other
case, we show that an arbitrary component is always dom-
inated by an MP-form component of the same bandwidth
(i.e., total processor capacity—see Sec. 2), provided its pe-
riod is defined properly. These results follow from the the-
orems listed in Table 1. Additionally, in all six cases, we
show that an MP-form component can never be dominated
by a non-MP-form component of the same bandwidth, re-
gardless of how periods are defined. The issue of MP dom-
inance under the considered cases is not as straightforward
as one might think at first glance. Indeed, many subtleties
arise.
Organization. In the following sections, we introduce our
system model (Sec. 2), provide some preliminary properties
and theorems (Sec. 3), show the dominance of MP form for
non-concrete asynchronous VPs (Sec. 4) and synchronous
and concrete asynchronous VPs (Sec. 5), show that MP
form cannot be dominated by any other form (Sec. 6), dis-
cuss related work (Sec. 7), and conclude (Sec. 8).

2 System Model
We consider a compositional system executing upon a phys-
ical multiprocessor platform with identical processors. Each
component is provided processor time by a set of VPs, each
defined according to the PR model, as defined in Sec. 1.

2.1 Periodic Resource Model

Recall from Sec. 1 that under the PR model [17] a VP Γi

is characterized by two parameters (Πi,Θi), which indicate
that Γi supplies Θi units of processor time every Πi time
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Figure 1: Worst-case supply of Γi (adapted from [17]).

units, where 0 < Θi ≤ Πi. In this paper, we assume contin-
uous time, thus Πi and Θi are real numbers. The bandwidth
of the VP Γi is given by wi = Θi/Πi. Note that, for any Πi,
Γi = (Πi,Πi) defines a VP corresponding to a dedicated
physical processor that is always available.

The supply bound function (SBF) of the VP Γi, denoted
Z(t,Γi), indicates the minimum processor time Γi can sup-
ply during any time interval of length t. Shin and Lee [17]
have shown that Z(t,Γi) can be defined as

Z(t,Γi) =

0 if t′Γi
< 0⌊

t′Γi

Πi

⌋
·Θi + εΓi if t′Γi

≥ 0
(1)

where
t′Γi

= t− (Πi −Θi), (2)

εΓi = max

(
t′Γi
−Πi

⌊
t′Γi

Πi

⌋
− (Πi −Θi), 0

)
. (3)

This definition reflects the worst-case scenario illustrated in
Figure 1.

2.2 VPs in a Component

We consider a component C that consists of a set of VPs,
denoted C = {Γi}, where Γi = (Πi,Θi) for 1 ≤ i ≤ |C|.
The supply of a component is the sum of the supply of all
VPs in this component.

Since Γi = (Πi,Πi) indicates a dedicated processor re-
gardless of the value of Πi, we let p denote the number of
such dedicated processors and do not bother to specify their
periods. Thus, we alternatively denote the component C by
C = (p, T ), where T = {Γi | Γi ∈ C ∧ 0 < wi < 1}. It is
clear that

|C| = p+ |T |. (4)

We define the bandwidth of component C as

bw(C) =
∑
Γi∈C

wi. (5)

The bandwidth bw(C) indicates the total processor share al-
location to which C is entitled. Minimum-parallelism (MP)
form, mentioned in Sec. 1, is defined as follows.
Def. 1. A component C = (p, T ) is in MP form if and only
if |T | ≤ 1.



Concrete vs. non-Concrete. We consider the possibility
that the VPs in a component are asynchronous, meaning that
they can have different phases—a VP Γi with a phase of φi
is initialized to begin at time φi, i.e., its first allocation of Θi

time units occurs within the interval [φi, φi+Πi), its second
within [φi + Πi, φi + 2Πi), and so on. As it turns out, the
results we obtain depend on whether phases are known or
unknown prior to runtime. In the first case, we say that the
VPs are concrete asynchronous, and only a particular phase
for each VP needs to be considered in schedulability (sup-
ply) analysis. In the second case, we say that the VPs are
non-concrete asynchronous, and the worst case among all
possible phases must be considered in schedulability (sup-
ply) analysis . Synchronous VPs can be considered as a spe-
cial case of concrete asynchronous VPs where all phases
are required to be zero. In this paper, we consider all of
the three phasing assumptions regarding VPs: they can be
synchronous, concrete asynchronous, or non-concrete asyn-
chronous.

2.3 Parallel Supply Function

The SBF definition in (1) for the PR model hinges only on
considering uniprocessor supply allocations. In the multi-
processor case, however, SBFs must also address the im-
portant issue of parallelism. Various multiprocessor SBFs
have been proposed. The most expressive of these consid-
ered to date is the parallel supply function (PSF), proposed
by Bini et al. [2]. The PSF describes the supply of a com-
ponent C by a set of functions, {Yj(t, C) | j ∈ Z+}, where
each function Yj(t, C) is defined as follows.

Def. 2. Yj(t, C) denotes the minimum supply of C during
any time interval of length t with a degree of parallelism at
most j.

We illustrate the above definition with the following ex-
ample, and refer readers to the work of Bini et al. [2] for a
more formal treatment.

Ex. 1. (Adapted from [12].) Let Γ1, Γ2,, and Γ3 be three
VPs that compose C. Assume that the processor time they
make available within the time interval [0, 11) is shown in
Figure 2, where the gray boxes represent available proces-
sor time. Suppose that all three VPs are fully available at
or after time 11. Then, [0, 11) is the interval of length 11
that provides the minimum supply at every degree of par-
allelism. In this case, Y1(t, C) = 10 because there are 10
time units in [0, 11) during which at least one VP provides
available processor time. Y2(t, C) = 16 because all three
VPs provide available processor time simulanteously only
in [4, 5), so Y2(t, C) is one less than the total available pro-
cessor time in [0, 11). This total available time is given by
Y3(t, C) = 17.

In this paper, we use PSF functions to describe exact
lower bounds on supply in order to compare the supply of
different components exactly. That is, for any j and t ≥ 0,
there exists a possible scenario in which, over some inter-
val of length t, the supply provided by C with a degree of
parallelism at most j is exactly Yj(t, C).

Γ1

Γ2

Γ3

0       1       2       3        4        5       6       7        8        9      10      11 

Figure 2: Example illustrating parallel supply (adapted from[12]).

By Def. 2, we have the following property.

(∀C,∀j ≥ 1,∀t ≥ 0 :: Yj(t, C) ≤ jt) (6)

Also, By Lemma 1 in [2], the following properties hold.

(∀C,∀j ≥ 1,∀t ≥ 0 :: Yj(t, C) ≤ Yj+1(t, C)) (7)

(∀C,∀j ≥ |C|,∀t ≥ 0 :: Yj(t, C) = Yj+1(t, C)) (8)

In accordance with Def. 2, Y∞(t, C) represents the mini-
mum supply that C is guaranteed to provide during any time
interval of length t with no constraint on the degree of par-
allelism. By Def. 2, Y∞(t, C) = Y|C|(t, C), because there
are at most |C| dedicated or non-dedicated resources that
can provide supply in parallel in C.

3 Preliminaries
In this section, we provide a condition for establishing the
superiority of MP form. This condition will allow us to con-
clude that MP form dominates other forms. Dominance is
defined with respect to component supply based on PSF:

Def. 3. A component C′ dominates another component C if
and only if (∀j ≥ 1,∀t ≥ 0 :: Yj(t, C) ≤ Yj(t, C′)) holds.

By Def. 3, in order to show the dominance of an arbitrary
component C′ over another arbitrary component C, we must
consider all relevant PSF functions. However, the following
theorem shows that it suffices to consider only two specific
PSF functions.

Theorem 1. Let C be an arbitrary component, and let C∗ be
a component in MP form. If (∀t :: Y∞(t, C) ≤ Y∞(t, C∗))
holds, then C∗ dominates C.

Proof. Let C = (p, T ) and C∗ = (p∗, T ∗). Because C∗ has
p∗ dedicated processors,

(∀1 ≤ j ≤ p∗,∀t ≥ 0 :: Yj(t, C∗) = jt). (9)

On the other hand, for C, by (6), we have

(∀1 ≤ j ≤ p∗,∀t ≥ 0 :: Yj(t, C) ≤ jt). (10)

By (9) and (10),

(∀1 ≤ j ≤ p∗,∀t ≥ 0 :: Yj(t, C) ≤ Yj(t, C∗)). (11)

Because C∗ is in MP form, |T | ≤ 1, and by (4), |C∗| =
p∗ + |T ∗| ≤ p∗ + 1. Therefore, by (8),

(∀j ≥ p∗ + 1,∀t ≥ 0 :: Yj(t, C∗) = Y∞(t, C∗)). (12)
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Figure 3: The graph of Z(t,Γi), as an illustration of Proper-
ties 1, 2, and 3.

On the other hand, for C, by (7),

(∀j ≥ p∗ + 1,∀t ≥ 0 :: Yj(t, C) ≤ Y∞(t, C)). (13)

Now, by (12), (13), and Y∞(t, C) ≤ Y∞(t, C∗) (from the
statement of the theorem), we have

(∀j ≥ p∗ + 1,∀t ≥ 0 :: Yj(t, C) ≤ Yj(t, C∗)). (14)

By (11), (14), and Def. 3, C∗ dominates C.
Before endeavoring to use Theorem 1 to establish the

dominance of MP form, we first provide several useful prop-
erties concerning the supply function Z(t,Γi) of an arbi-
trary VP Γi. Property 1 directly follows from the definition
of Z(t,Γi) as given by (1)–(3). Property 2 is established in
Lemma 1 in [17], and Property 3 is established in [7]. The
intuition behind these properties is illustrated by the graph
of Z(t,Γi) shown in Figure 3.

Property 1. Z(t,Γi) = 0 for 0 ≤ t ≤ 2(Πi −Θi).

Property 2. Z(t,Γi) ≥ max{(t− 2(Πi −Θi))wi, 0}.

Property 3. Z(t,Γi) ≤ max{(t− (Πi −Θi))wi, 0}.
We state two more properties below, in which an alter-

nate definition of Z(t,Γi) is indirectly considered that is
based on the following function f :

f(x,Γi) =

⌊
x

Πi

⌋
·Θi+max

(
x−Πi

⌊
x

Πi

⌋
−(Πi−Θi), 0

)
.

(15)
Note that, by (1) (2) and (3),

Z(t,Γi) = f(t′Γi
,Γi), if t′Γi

≥ 0. (16)

When Γi is fixed, i.e., Πi and Θi are constants, the fol-
lowing properties apply to f(x,Γi). These properties can be
seen intuitively by considering the graph of f(x,Γi), which
is similar to that of Z(t,Γi) as illustrated in Figure 3. Prop-
erty 5 can be seen by observing that the slope of any two
points in the graph of f(x,Γi) is at most one.

Property 4. f(x,Γi) is monotonically increasing for non-
negative x, i.e., f(x1,Γi) ≤ f(x2,Γi) if 0 ≤ x1 ≤ x2.

Π𝑖 − Θ𝑖 Π𝑖 − Θ𝑖

Figure 4: Illustration of Claim 1.

Property 5. For any x, y ≥ 0, f(x+y,Γi) ≤ f(x,Γi)+y,
which also implies f(x − y,Γi) ≥ f(x,Γi) − y, provided
that x− y ≥ 0 holds.

We also utilize the two straightforward claims below.

Claim 1. The supply of a VP Γi can be zero within any
time interval of length Πi−Θi, regardless of how the inter-
val aligns with the VP’s periods of allocation.

This claim is different from Property 1. In order to have
a supply of zero within a time interval of length up to
2(Πi − Θi), as stated in Property 1, the interval must have
a specific alignment with respect to the periods of alloca-
tion of Γi as shown in Figure 1. However, according to this
claim, the supply within any time interval of length Πi−Θi

can be a zero. Figure 4 shows the only two possibilities that
can occur: the considered interval is either included within
a single period of allocation, or spans two such periods. In
either situation, supply within the interval can be zero.

Claim 2. Let C∗ = (p∗, T ∗) be a component in MP form. If
|T ∗| = 0, then Y∞(t, C∗) = t · p∗. If |T ∗| = 1, then letting
Γ∗ denote the lone VP in T ∗, Y∞(t, C∗) = t · p∗+Z(t,Γ∗)

This claim follows directly from the definitions above.

4 Non-Concrete Asynchronous

In this section, we consider the case of non-concrete asyn-
chronous VPs. In order to apply Theorem 1 in this case to
establish the dominance of MP form, we begin by providing
an exact calculation of Y∞(t, C).

For any time interval of length t, a dedicated resource
supplies t time units of processor time, and by (1), a non-
dedicated resource Γ supplies at least Z(t,Γ) time units.
Therefore, with the degree of parallelism unconstrained,
a component C = (p, T ) provides a supply of at least
tp +

∑
Γi∈T Z(t,Γi). Moreover, this minimum does in-

deed happen, as shown in Figure 5. (Note that the alignment
shown in the figure can happen because we are assuming
for now that VPs are non-concrete asynchronous.) Thus, for
any component C = (p, T ),

Y∞(t, C) = tp+
∑

Γi∈T
Z(t,Γi). (17)

In the next two subsections, we establish the dominance
of MP form in two steps. First, we consider the case in
which all VPs in C share a common period. Second, we
build upon this result by considering the case in which the
VPs in C may have different periods.
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Figure 5: Illustration of the worst case of Y∞(t, C) for non-
concrete asynchronous VPs.

4.1 A Common Period

We first consider the case in which the VPs in C share a
common period Π, i.e., (∀ Γi = (Πi,Θi) ∈ C :: Πi = Π)
holds. We establish our key proof obligation in Theorem 2
below. The following lemma is used in its proof. Specifi-
cally, we use it to show how to combine two VPs “locally”
in a way that is in accordance with MP form.

Lemma 1. Let Γi = (Π,Θi) and Γj = (Π,Θj) be two
VPs that are not dedicated processors, and without loss of
generality, assume Θi ≤ Θj , i.e., 0 < wi ≤ wj < 1. Then,
we have the following three exhaustive cases for wi + wj

and corresponding conclusions.

1. If 0 < wi + wj < 1, then Z(t,Γi) + Z(t,Γj) ≤
Z(t,Γk), where Γk = (Π,Θk) and Θk = Θi + Θj .

2. If wi + wj = 1, then Z(t,Γi) + Z(t,Γj) ≤ t.

3. If 1 < wi + wj < 2, then Z(t,Γi) + Z(t,Γj) ≤ t +
Z(t,Γk), where Γk = (Π,Θk) and Θk = Θi+Θj−Π.

Proof. Figure 6 illustrates the three cases of the lemma. A
rigorous proof is rather tedious and mechanical, so we defer
it to an appendix.

Based on Lemma 1, we prove the following theorem by
induction.

Theorem 2. Given an arbitrary component C = (p, T )
such that (∀Γi ∈ T :: Πi = Π), C is dominated by the MP-
form component C′ = (p∗, T ∗) such that bw(C∗) = bw(C)
and (∀Γi ∈ T ∗ :: Πi = Π).
Proof. We prove the theorem by induction on |T |.
Base Case: |T | ≤ 1. In this case, C and C∗ are identical,
because bw(C∗) = bw(C) and (∀Γi ∈ T ∗ :: Πi = Π).
Therefore, by Def. 3, C∗ dominates C.
Inductive Step. Suppose the theorem holds for any com-
ponent C such that |T | ≤ k where k ≥ 1. We prove that it
also holds for any component C such that |T | = k + 1.

Because k ≥ 1, |T | = k + 1 ≥ 2. Therefore, T has at
least two VPs that are not dedicated processors. Let Γi and
Γj be two arbitrary such VPs. Without loss of generality,
assume 0 < wi ≤ wj < 1.

To complete the proof, we show the existence of a com-
ponent C′ = (p′, T ′) such that C′ has the same bandwidth
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Figure 6: Illustration for the cases in Lemma 1.

and period as C, but fewer VPs that are not dedicated pro-
cessors, and Y∞(t, C) ≤ Y∞(t, C′). C′ is constructed via
three cases that hinge on the value of wi + wj .

Case 1: If 0 < wi + wj < 1, then let p′ = p and T ′ =
T \{Γi,Γj}∪{Γ′k}where Γ′k is a new VP such that Π′k = Π
and Θ′k = Θi + Θj . Clearly, bw(C) = bw(C′). Also,

Y∞(t, C)− Y∞(t, C′)
= {by (17)}

(p− p′)t+
∑

Γl∈T
Z(t,Γl)−

∑
Γl∈T ′

Z(t,Γl)

= Z(t,Γi) + Z(t,Γj)− Z(t,Γ′k)

≤ {by Lemma 1}
0.



Case 2: If wi + wj = 1, then let p′ = p + 1 and T ′ =
T \ {Γi,Γj}. Clearly, bw(C) = bw(C′). Also,

Y∞(t, C)− Y∞(t, C′)
= {by (17)}

(p− p′)t+
∑

Γl∈T
Z(t,Γl)−

∑
Γl∈T ′

Z(t,Γl)

= − t+ Z(t,Γi) + Z(t,Γj)

≤ {by Lemma 1}
0.

Case 3: If 1 < wi + wj < 2, then let p′ = p + 1 and
T ′ = T \ {Γi,Γj} ∪ {Γk} where Γk is a new VP such that
Πk = Π and Θk = Θi +Θj−Π. Clearly, bw(C) = bw(C′).
Also,

Y∞(t, C)− Y∞(t, C′)
= {by (17)}

(p− p′)t+
∑

Γl∈T
Z(t,Γl)−

∑
Γl∈T ′

Z(t,Γl)

= − t+ Z(t,Γi) + Z(t,Γj)− Z(t,Γ′k)

≤ {by Lemma 1}
0.

In all three cases, the following two expressions hold.

bw(C′) = bw(C) = bw(C∗) (18)

Y∞(t, C) ≤ Y∞(t, C′) (19)

Also, in Cases 1 and 3, we have |T ′| = |T | − 1, while
in Case 2, we have |T ′| = |T | − 2, so |T ′| ≤ |T | − 1 =
(k + 1) − 1 = k. Therefore, by (18) and by the inductive
hypothesis, C′ is dominated by C∗. Hence, by Def. 3,

Y∞(t, C′) ≤ Y∞(t, C∗). (20)

By (19) and (20), Y∞(t, C) ≤ Y∞(t, C∗). Also, since C∗ is
in MP form, by Theorem 1, C∗ dominates C.

The above theorem shows that, given a bandwidth and
a common period shared by a set of asynchronous VPs, a
component’s supply is maximized when it is in MP form.

4.2 Different Periods

We now shift our focus by considering components that
consist of a set of asynchronous VPs that may have different
periods. Specifically, we consider a component C = (p, T ),
where for any two VPs Γi,Γj in T , Πi 6= Πj may hold. We
investigate whether such a component C is dominated by a
component in MP with the same bandwidth.

Towards this end, let C∗ be a component in MP form
such that bw(C) = bw(C∗). To begin, note that if bw(C) is
an integer, then C∗ clearly dominates C, because C∗ has only
dedicated processors that provide supply constantly. In the
rest of this section, we consider the more interesting case
wherein bw(C) is not an integer. In this case, because C∗ is

22
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1.1(1 + 𝜗)

10 − 𝜗

1

2𝜗 𝜗

Γ1 = (11,1.1(1 + 𝜗))

Γ2 = (10,10 − 𝜗)

Γ∗ = (10,1)

Dedicated Processor

Figure 7: Illustration of the counterexample in Sec. 4.

in MP form, |T ∗| = 1. Let Γ∗ = (Π∗,Θ∗) denote the lone
VP in T ∗.

It is easy to see that, if C∗ is to dominate C, then the
period Π∗ generally will be dependent on the periods of the
VPs in C. In particular, if Π∗ is selected to be very large in
comparison to the periods of the VPs in C, then Γ∗ may be
unable to gurantee any supply over relatively long intervals
in which the VPs in C do. One obvious conjecture is that
C∗ will dominate C as long as Π∗ ≤ min{Πi | Γi ∈ T }
holds. However, the following counterexample shows that
this conjecture is not true.

Counterexample. Consider a component C with these two
VPs: Γ1 = (11, 1.1(1+ϑ)) and Γ2 = (10, 10−ϑ), where ϑ
is an arbitrary small positive real number, i.e., ϑ → 0+. An
MP-form component C∗ with the same bandwidth also has
two VPs: a dedicated processor and Γ∗ = (10, 1). Note that,
in this setting, Π∗ ≤ min{Πi |Γi ∈ T } holds. As illustrated
in Figure 7, Y∞(22, C) = 1.1(1 + ϑ) + 22 − 4ϑ = 23.1 −
2.9ϑ, while Y∞(22, C∗) = 1 + 22 = 23. Because ϑ→ 0+,
23.1−2.9ϑ > 23. That is, Y∞(22, C) > Y∞(22, C∗), which
implies that C∗ does not dominate C.

Despite the negative implications of this counterexam-
ple, we show next that C∗ does indeed dominate C if Π∗ is
further restricted.

Theorem 3. C is dominated by the MP-form component C∗
as defined above as long as Π∗ ≤ 1

2 min{Πi | Γi ∈ T }.
Proof. Given C, we first construct a new component C′ such
that p′ = p and |T ′| = |T |. Each Γ′i = (Π′i,Θ

′
i) ∈ T ′ is

constructed from the VP Γi = (Πi,Θi) ∈ T by defining
Π′i = Π∗ and Θ′i = Θi

Π∗

Πi
. These definitions imply

w′i =
Θ′i
Π′i

=
Θi

Πi
= wi. (21)

By Property 2,

Z(t,Γ′i) ≥max{(t− 2(Π′i −Θ′i))w
′
i, 0}

={by (21) and because Π′i = Π∗}
max{(t− 2Π∗(1− wi))wi, 0}

≥{because Π∗ ≤ 1

2
min{Πi | Γi ∈ T }}

max{(t−Πi(1− wi))wi, 0}.



On the other hand, by Property 3,

Z(t,Γi) ≤max{(t− (Πi −Θi))wi, 0}
= max{(t−Πi(1− wi))wi, 0},

from which we can conclude the following.

(∀i : 1 ≤ i ≤ |T | = |T ′| :: Z(t,Γi) ≤ Z(t,Γ′i)) (22)

Also, p = p′, and therefore, by (17)

Y∞(t, C) ≤ Y∞(t, C′). (23)

Because (∀Γ′i :: Π′i = Π∗) holds, and by (21), bw(C′) =
p′ +

∑
Γ′i∈T ′

w′i = p +
∑

Γi∈T wi = bw(C) = bw(C∗)
holds, C′ is a component in which all VPs share the same
period, and its bandwidth equals the bandwidth of the MP-
form component C∗. Therefore, by Theorem 2, C∗ domi-
nates C′. By Def. 3, this implies

Y∞(t, C′) ≤ Y∞(t, C∗). (24)

By (23) and (24), Y∞(t, C) ≤ Y∞(t, C∗) holds, so by Theo-
rem 1, the MP-form component C∗ dominates C.

In some cases, the dominance of C∗ over C can be estab-
lished with a weaker restriction on the period Π∗. The fol-
lowing theorem gives such a case; note that harmonic and
loose-harmonic1 periods satisfy the condition given in this
theorem.

Theorem 4. For the component C = (p, T ) defined above,
let Πmin = min{Πi | Γi ∈ T }. If the condition (∀ Γi ∈
C :: Πi = Πmin ∨Πi ≥ 2Πmin) holds, then C is dominated
by the MP-form component C∗ as defined above if Π∗ is set
equal to Πmin.
Proof. We construct C′ in the same way as in the proof of
Theorem 3 such that Π′i = Π∗ = Πmin and Θ′i = Θi

Π∗

Πi
.

Given the statement of Theorem 4, we have for each i,
Πi = Π∗ = Π′i or Πi ≥ 2Πmin = 2Π∗ = 2Π′i. In the
former case, Z(t,Γi) = Z(t,Γ′i) holds; in the latter case,
Z(t,Γi) ≤ Z(t,Γ′i) can be shown to follow from Proper-
ties 2 and 3 using the same reasoning as in the proof of The-
orem 3. Thus, we can establish (22) in the context of this
new theorem, and then show exactly as done in the proof of
Theorem 3 that C∗ dominates C.

5 Synchronous and Concrete Asynchronous
In this section, we consider components consisting of VPs
with specified phases, i.e., both concrete asynchronous and
synchronous VPs. These VPs may have either a common
period or different periods.

The case of synchronous VPs and a common period is
highly related to the MPR model [17], as that model en-
forces both of these requirements. The following theorem is
easily implied by prior work on the MPR model [18] that
shows that, by enforcing MP form, a component abstracted

1The smallest period divides any larger period.

3

2
Π

Γ1 = (Π, 𝜗)

𝜙2 =
1

2
Π

Γ∗ = (Π, 2𝜗)

𝜙1 = 0

Γ2 = (Π, 𝜗)

𝜗

2𝜗

2(Π − 2𝜗)

Figure 8: Illustration of the counterexample in Sec. 5.

by the MPR model achieves its maximum supply.

Theorem 5. (Follows from [18]) If C = (p, T ) is a syn-
chronous component and (∀Γi ∈ T :: Πi = Π) holds, then
it is dominated by the MP-form component C′ = (p∗, T ∗),
where bw(C∗) = bw(C) and (∀Γi ∈ T ∗ :: Πi = Π).

Because synchronous VPs are a special case of concrete
asynchronous VPs where all VP phases happen to be zero,
one might expect that Theorem 5 can be extended to con-
crete asynchronous VPs, and speculate that an arbitrary con-
crete asynchronous component with a common period is
dominated by the MP-form component of the same band-
width and period. However, this is unfortunately not true.

Counterexample. Consider a non-MP-form component C
that has two VPs, Γ1 = (Π, ϑ) and Γ2 = (Π, ϑ), with a
common period and arbitrarily small budget, i.e., ϑ → 0+.
Suppose these two VPs have different phases, φ1 = 0 and
φ2 = 1

2Π, as shown in Figure 8. Observe that any time
interval of length 3

2Π must include exactly one period of
allocation of Γ1 or Γ2. Therefore, Y1( 3

2Π, C) ≥ ϑ. In con-
trast, consider the MP-form counterpart of C: C∗ = {Γ∗},
where Γ∗ = (Π, 2ϑ). By the worst case illustrated in Fig-
ure 8, Y1(t, C∗) = 0 holds for any t ≤ 2(Π − 2ϑ). Be-
cause ϑ → 0+, we have 3

2Π < 2(Π − 2ϑ). Therefore,
Y1( 3

2Π, C∗) = 0 < ϑ ≤ Y1( 3
2Π, C), which implies that

C∗ does not dominate C.

Nonetheless, we provide next a theorem that shows that
a component in non-MP-form will still be dominated by
an MP-form component of the same bandwidth, provided
the period of the latter is properly selected. Furthermore,
the required period selection is valid not only for concrete
asynchronous VPs with a common period, but also for syn-
chronous or concrete asynchronous VPs with different peri-
ods. The theorem is stated assuming concrete asynchronous
VPs, a category that subsumes these other possibilities.

Theorem 6. If C = (p, T ) is a concrete asynchronous com-
ponent, then it is dominated by the MP-form component
C′ = (p∗, T ∗), where bw(C∗) = bw(C), provided the fol-
lowing condition holds: if |T ∗| = 1, then the period of the
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Figure 9: A possible scenario for any concrete phases.

lone VP in T must satisfy

Π∗ ≤ Πl(1− wl)wl

2(1− w∗)w∗
, (25)

where l is defined by

Πl −Θl = min{Πi −Θi | Γi ∈ T }. (26)

Proof. Because C∗ is in MP form, |T | ≤ 1 holds. If
|T | = 0 holds, then C∗ has dedicated processors only. Be-
cause bw(C∗) = bw(C) is assumed, this clearly implies
that C∗ dominates C. In the rest of the proof, we focus
on the more interesting case wherein |T ∗| = 1 holds. In
this case, bw(C∗) is not integral, so bw(C) is also not inte-
gral. This implies that |T | > 0 holds. We now show that
Y∞(t, C) ≤ Y∞(t, C∗) holds by considering two cases.

Case 1: t ≤ Πl − Θl. By Claim 1 and (26), any VP Γi

in T can provide zero supply within any time interval of
length t, where t ≤ Πl − Θl. Within any such time inter-
val, the p dedicated processors of C provide supply contin-
ually. Because C∗ is in MP form, p ≤ p∗ holds. Therefore,
Y∞(t, C) = t · p ≤ t · p∗ ≤ Y∞(t, C∗).

Case 2: t > Πl −Θl. Let Γl be a VP such that Πl −Θl =
min{Πi − Θi | Γi ∈ T }. Then, the allocations described
next and illustrated in Figure 9 are possible for any concrete
VP phases (i.e., synchronous or concrete asynchronous). Let
t0 be a time instant such that Γl gets its minimal supply
Z(t,Γl) within the time interval [t0, t0 + t). For any other
VP Γj , where j 6= l, let ψj denote the distance from t0 to
the start of its next allocation period, i.e., the next allocation
period of Γj at or after time t0 starts at time t0 + ψj . (Note
that the value of ψj will depend on the phase of Γj .) In this
possible allocation sequence, if Γj has an allocation period
that includes t0 (as depicted), then assume that it provides
a supply of (Πj − ψj) · wj time units within that allocation
period before t0, i.e., in [t0 − (Πj − ψj), t0). Regardless of
whether Γj has an allocation period that includes t0, assume
that it provides supply as late as possible in each of its al-
location periods beyond time t0. It is easy to show that, in
this situation, each Γj provides a supply of at most t · wj

time units during [t0, t0 + t). By Def. 2, the PSF functions

capture the minimum allocation that can occur, which is up-
per bounded by that demonstrated in the possible allocation
sequence just discussed. Therefore, we have

Y∞(t, C)

≤ t · p+ Z(t,Γl) +
∑

Γj∈T ∧j 6=l

t · wj

≤ {by Property 3}

t · p+ max{wl · (t− (Πl −Θl)), 0}+
∑

Γj∈T ∧j 6=l

t · wj .

≤ {by our assumption in Case 2 that t > Πl −Θl holds}

t · p+ wl · (t− (Πl −Θl)) +
∑

Γj∈T ∧j 6=l

t · wj .

= {rearranging}

t ·

(
p+

∑
Γi∈T

wi

)
− wl · (Πl −Θl)

= {by (5) and the definition of wl}
t · bw(C)−Πl(1− wl)wl. (27)

By Claim 2 and our assumption that |T ∗| = 1 holds, we
have

Y∞(t, C∗)
= t · p∗ + Z(t,Γ∗)

≥ {by Property 2}
t · p∗ + max{w∗ · (t− 2(Π∗ −Θ∗)), 0}

≥ {because max{x, y} ≥ x}
t · p∗ + w∗ · (t− 2(Π∗ −Θ∗))

= {rearranging and using the definition of w∗}
t · (p∗ + w∗)− 2Π∗(1− w∗)w∗

= {by (5)}
t · bw(C∗)− 2Π∗(1− w∗)w∗. (28)

By (27) and (28),

Y∞(t, C)− Y∞(t, C∗)
≤ {because bw(C) = bw(C∗)}

2Π∗(1− w∗)w∗ −Πl(1− wl)wl

≤ {by (25)}
0.

That is, Y∞(t, C) ≤ Y∞(t, C∗) for t > Πl −Θl.
Combining Cases 1 and 2, we have Y∞(t, C) ≤

Y∞(t, C∗) for any t ≥ 0. Also, C∗ is in MP form. Thus,
by Theorem 1, C∗ dominates C.

6 Indomitability of MP Form
Although we have shown that an arbitrary component can
always be dominated by a component in MP form with the
same bandwidth, this result requires restrictions on the pe-



riod of the MP-form component in some cases. This raises
the question of whether the dominance is really due to the
definition of MP form or just side effect of the period re-
strictions. In this section, we address this question. We show
that an MP-form component can never be dominated by a
non-MP-form component of the same bandwidth, regardless
of any restrictions that may be applied to the non-MP-form
component.

The following theorem holds, regardless of whether
the VPs are synchronous, concrete asynchronous, or non-
concrete asynchronous.

Theorem 7. Given an MP-form component C∗ and an ar-
bitrary non-MP-form component C such that bw(C∗) =
bw(C) holds, C does not dominate C∗, no matter how
{Πi | Γi ∈ C} is defined.

Proof. Let p and p∗ denote the number of dedicated proces-
sors in C and C∗, respectively. Because C∗ is in MP form
and bw(C) = bw(C∗) holds, we have p ≤ p∗. We consider
the two cases p < p∗ and p = p∗ separately below.

Case 1: p < p∗. By Claim 1, regardless of the VPs’
phases, the supply of each VP Γi ∈ T can be zero for
any time interval of length t such that 0 < t ≤ Πi − Θi,
so Y∞(t, C) = t · p for any t such that 0 < t ≤ ts,
where ts = min{Πi − Θi | Γi ∈ T }. On the other hand,
Y∞(t, C∗) ≥ t · p∗ for any t > 0. Thus, for any t such that
0 < t ≤ ts, we have Y∞(t, C) = t · p < t · p∗ ≤ Y∞(t, C∗),
i.e., Y∞(t, C) < Y∞(t, C∗). Note that the stated range for t
is not vacuous. This is because C is not in MP form, which
implies that |T | > 0 holds, and hence that ts > 0 holds
as well. Because Y∞(t, C) < Y∞(t, C∗) holds, by Def. 3, C
does not dominate C∗.
Case 2: p = p∗. In this case, we have |T ∗| = 1, because if
|T ∗| = 0 holds, then either C is also in MP form or bw(C) >
bw(C∗), neither of which is allowed by the statement of the
theorem. Let Γ∗ denote the lone VP in C∗ and let w∗ denote
its bandwidth. Then, w∗ =

∑
Γi∈T wi, since bw(C∗) =

bw(C). Also, because C is not in MP form, by Def. 1, both
|T | ≥ 2 and (∀Γi ∈ T :: wi > 0) hold. Therefore, (∀Γi ∈
T :: wi < w∗). Letting wmax = max{wi | Γi ∈ T }, this
implies

wmax < w∗. (29)

Let δ be the greatest common divisor of the values in
{Πi | Γi ∈ T }. Then, the processor-time allocation illus-
trated in Figure 10, where every VP provides δ·wi time units
of processor time at the end of every aligned time window
of δ time units, is possible regardless of any assumptions
regarding the VPs’ phases. This is because, in this sched-
ule, each VP Γi is allocated Θi time units within any time
interval of length Πi. Such an allocation satisfies the spec-
ification of Γi regardless of how phases are defined. Under
this allocation pattern, each VP other than the one with the
maximum bandwidthwmax provides all of its supply in par-
allel with that maximum-bandwidth VP. Furthermore, with
the depicted allocations, the minimum supply during any
time interval of length t with a degree of parallelism of one
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Figure 10: Illustration of Case 2 of Theorem 7.

is⌊
t

δ

⌋
δwmax+max{t−

⌊
t

δ

⌋
δ−(1−wmax)δ, 0} ≤ t·wmax.

Because the PSF functions, by Def. 2, capture the worst
case among all possible allocation scenarios,

Y1(t, T ) ≤ t · wmax. (30)

Therefore, given that C has p dedicated processors,

Yp+1(t, C) = tp+ Y1(t, T ) ≤ t(p+ wmax). (31)

On the other hand, for C∗ , for any t ≥ 2(Π∗ − Θ∗) =
2Π∗(1− w∗), by (17)

Yp∗+1(t, C∗)
= {by (8) and because C∗ is in MP form}
Y∞(t, C∗)

= {by (17)}
tp∗ + Z(t,Γ∗)

≥ {by Property 2, and since t ≥ 2(Π∗ −Θ∗)}
tp∗ + w∗(t− 2(Π∗ −Θ∗))

= {rearranging and using w∗ = Θ∗/Π∗}
t(p∗ + w∗)− 2Π∗w∗(1− w∗).



Because p = p∗ holds in Case 2,

Yp+1(t, C∗) ≥ t(p+ w∗)− 2Π∗w∗(1− w∗). (32)

By (31) and (32), for any t ≥ 2Π∗(1− w∗),

Yp+1(t, C∗)−Yp+1(t, C) ≥ t(w∗−wmax)−2Π∗w∗(1−w∗).

Hence, by (29), for any t > 2Π∗w∗(1−w∗)
w∗−wmax

> 2Π∗(1− w∗),
Yp+1(t, C) < Yp+1(t, C∗).

Thus, by Def. 3, C does not dominate C∗. Note that
the above argument is valid regardless of the definition of
{Πi | Γi ∈ C}.

Theorem 7 shows that, no matter how the periods of a
non-MP-form component are defined, it cannot dominate
any component in MP form with the same total bandwidth.

7 Related Work
In work on uniprocessors, Mercer et al. [14] proposed a
mechanism that abstracts the notion of a processor capac-
ity reservation as a uniprocessor with reduced speed. Abeni
and Buttazzo [1] proposed the constant bandwidth server
(CBS). Lipari and Baruah [10] extended CBS to a hier-
archical scheduling framework. Mok et al. [15] proposed
the bounded delay partition, based upon which Lipari and
Bini [11] derived the “best” server parameters for a given
application. The PR model proposed by Shin and Lee [17]
was extended by Easwaran et al. [7] to allow VPs to have
relative deadlines different from periods.

In work on multiprocessors, Leontyev and Anderson [9]
initially proposed MP form to schedule each component us-
ing at most one partially available processor in soft real-
time systems. Shin et al. [16] proposed the MPR model.
Easwaran et al. [8] derived a cluster-based hierarchical
scheduler by applying the MPR model. Burmyakov et
al. [4] extended the MPR model by providing information
of resource allocation at each degree of parallelism. Xu et
al. [18] extended the MPR model to the DMPR model by
requiring VPs to be allocated in MP form, and proposed a
cache-aware analysis framework.

In much of the just-cited work, a supply-bound function
is provided to characterize the minimum resource allocation
of a component, in order to perform schedulability analy-
sis. Furthermore, Bini et al. [3] proposed the multi supply
function (MSF) to provide a supply-bound function for each
VP. Subsequently, Bini et al. [2] proposed PSFs, which are
strictly more powerful than MSFs. PSFs provide a supply-
bound function for each degree of parallelism. To the best of
our knowledge, PSFs are the most expressive means of char-
acterizing resource-allocation supply on multiprocessors.

8 Conclusion
We studied processor allocations to components comprised
of multiple VPs, which may be synchronous, concrete asyn-
chronous, or non-concrete asynchronous. We showed that
any arbitrary component is always dominated by an MP-
form component of the same bandwidth, provided the pe-

riod used in defining the MP-form component meets certain
requirements. We also showed that a component in MP form
can never be dominated by any non-MP-form component of
the same bandwidth, regardless of how periods are defined.

MP supply form has additional advantages that are be-
yond the scope of this paper. For example, task migration
costs will tend to be less when fewer processors are used,
and dedicated processors are easier to allocate than non-
dedicated ones. Also, synchronization protocols can more
easily cope with only one partially available processor than
multiple ones, which may lose supply at different times.
We intend to consider such additional advantages in future
work. Additionally, the period restrictions derived in this pa-
per are not known to be tight. That is, a violation of these
restrictions does not necessarily imply non-dominance. We
defer the study of tight period restrictions to future work.
Acknowledgements: We are grateful to Enrico Bini and
Linh Thi Xuan Phan for helpful discussions concerning the
results in this paper.

References
[1] L. Abeni and G. Buttazzo. Integrating multimedia applications in

hard real-time systems. In 19th RTSS, 1998.
[2] E. Bini, M. Bertogna, and S. Baruah. Virtual multiprocessor plat-

forms: Specification and use. In 30th RTSS, 2009.
[3] E. Bini, G. Buttazzo, and M Bertogna. The multi supply function

abstraction for multiprocessors. In 15th RTCSA, 2009.
[4] A. Burmyakov, E. Bini, and E. Tovar. The generalized multiproces-

sor periodic resource interface model for hierarchical multiprocessor
scheduling. In 20th RTNS, 2012.

[5] Z. Deng and J.W.S. Liu. Scheduling real-time applications in an open
environment. In 18th RTSS, 1997.

[6] G. Durrieu, M. Faugere, D.G. Girbal, S.and Perez, C. Pagetti, and
W. Puffitsch. Predictable flight management system implementation
on a multicore processor. In Embedded Real Time Software, 2014.

[7] A. Easwaran, M. Anand, and I. Lee. Compositional analysis frame-
work using EDP resource models. In 28th RTSS, 2007.

[8] A. Easwaran, I. Shin, and I. Lee. Optimal virtual cluster-based mul-
tiprocessor scheduling. Real-Time Systems, 43(1), 2009.

[9] H. Leontyev and J. Anderson. A hierarchical multiprocessor band-
width reservation scheme with timing guarantees. In 20th ECRTS,
2008.

[10] G. Lipari and S. Baruah. A hierarchical extension to the constant
bandwidth server framework. In 7th RTAS, 2001.

[11] G. Lipari and E. Bini. Resource partitioning among realtime appli-
cations. In 15th ECRTS, 2003.

[12] G. Lipari and E. Bini. A framework for hierarchical scheduling on
multiprocessors: from application requirements to run-time alloca-
tion. In 31th RTSS, 2010.

[13] C. Liu and J. Layland. Scheduling algorithms for multiprogramming
in a hard real-time environment. JACM, 30:46–61, 1973.

[14] C.W. Mercer, S. Savage, and H. Tokuda. Processor capacity reserves:
Operating system support for multimedia applications. In Proceed-
ings of IEEE International Conference on Multimedia Computing
and Systems, 1994.

[15] A.K. Mok, X. Feng, and D. Chen. Resource partition for real-time
systems. In 7th RTAS, 2001.

[16] I. Shin and I. Easwaran, A.and Lee. Hierarchical scheduling frame-
work for virtual clustering of multiprocessors. In 20th ECRTS, 2008.

[17] I. Shin and I. Lee. Periodic resource model for compositional real-
time guarantees. In 24th RTSS, 2003.

[18] M. Xu, L.T.X. Phan, O. Sokolsky, S. Xi, C. Lu, C. Gill, and I. Lee.
Cache-aware compositional analysis of real-time multicore virtual-
ization platforms. In 34th RTSS, 2013.



Appendix: Proof of Lemma 1
In this appendix, we formally prove Lemma 1, which is
restated below.

Lemma 1. Let Γi = (Π,Θi) and Γj = (Π,Θj) be two
VPs that are not dedicated processors, and without loss of
generality, assume Θi ≤ Θj , i.e., 0 < wi ≤ wj < 1. Then,
we have the following three exhaustive cases for wi + wj

and corresponding conclusions.

1. If 0 < wi + wj < 1, then Z(t,Γi) + Z(t,Γj) ≤
Z(t,Γk), where Γk = (Π,Θk) and Θk = Θi + Θj .

2. If wi + wj = 1, then Z(t,Γi) + Z(t,Γj) ≤ t.

3. If 1 < wi + wj < 2, then Z(t,Γi) + Z(t,Γj) ≤ t +
Z(t,Γk), where Γk = (Π,Θk) and Θk = Θi+Θj−Π.

Proof. We consider the three cases of the lemma individu-
ally.
Case 1: In this case,

Θk = Θi + Θj . (33)

so
Θi ≤ Θj < Θk, (34)

because Θi ≤ Θj is assumed by the statement of the lemma.
By (2), (33), and (34),

t′Γi
≤ t′Γj

< t′Γk
. (35)

In the next paragraph, we dispense with all possibilities that
occur when at least one of t′Γi

and t′Γj
is negative.

First, if t′Γi
≤ t′Γj

< 0, then by (1),Z(t,Γi)+Z(t,Γj) =

0 ≤ Z(t,Γk). Second, if t′Γi
< 0 ≤ t′Γj

, then by (1),
Z(t,Γi) + Z(t,Γj) = 0 + Z(t,Γj) ≤ Z(t,Γk). Therefore,
in the rest of the proof for Case 1, we focus on the remaining
possibility, 0 ≤ t′Γi

≤ t′Γj
, which by (35), implies

0 ≤ t′Γi
≤ t′Γj

< t′Γk
. (36)

Applying (16) to Z(t,Γi), Z(t,Γj), and Z(t,Γk), respec-
tively, we have the following.

Z(t,Γi) = {by (16)}
f(t′Γi

,Γi)

≤ {by (36) and Property 4 }
f(t′Γk

,Γi)

= {by (15)}⌊
t′Γk

Π

⌋
Θi + max

(
t′Γk
−Π

⌊
t′Γk

Π

⌋
−(Π−Θi), 0

)
.

(37)

Similarly, for the same reasons,

Z(t,Γj) ≤
⌊
t′Γk

Π

⌋
Θj + max

(
t′Γk
−Π

⌊
t′Γk

Π

⌋
−(Π−Θj), 0

)
.

(38)

By (15) and (16),

Z(t,Γk) =

⌊
t′Γk

Π

⌋
Θk + max

(
t′Γk
−Π

⌊
t′Γk

Π

⌋
−(Π−Θk), 0

)
.

(39)
For notational simplicity, we introduce the two terms below.

Φ = t′Γk
−Π

⌊
t′Γk

/Π
⌋

(40)

∆ = max (Φ− (Π−Θi), 0) + max (Φ− (Π−Θj), 0)

−max (Φ− (Π−Θk), 0) (41)

Now, by (45), (46) and (47), we have

Z(t,Γi) + Z(t,Γj)− Z(t,Γk) ≤
⌊
t′Γi

Π

⌋
(Θi + Θj −Θk) + ∆

= {by (33)}
∆. (42)

Given the derivation above, we can complete the proof
by showing ∆ ≤ 0. This result is implied by the following
claim.

Claim 3. In Case 1, ∆ ≤ 0.
Proof. By (40), 0 ≤ Φ < Π. Also, by (34), Π−Θk <
Π − Θj ≤ Π − Θi. Given these ranges, the following
cases are exhaustive.

Case 1.1: Φ ∈ [0,Π−Θk), which implies ∆ = 0.

Case 1.2: Φ ∈ [Π−Θk,Π−Θj), which implies ∆ =
0− (Φ− (Π−Θk)) ≤ 0, because Φ ≥ Π−Θk holds
in this case.

Case 1.3: Φ ∈ [Π−Θj ,Π−Θi), which implies ∆ =
(Φ− (Π−Θj))− (Φ− (Π−Θk)) = Θj −Θk < 0,
by (34).

Case 1.4: Φ ∈ [Π−Θi,Π), which implies ∆ = (Φ−
(Π−Θi)) + (Φ − (Π−Θj))− (Φ− (Π−Θk)) =
Φ−Π + Θi + Θj −Θk < 0, by (33) and the fact that
Φ < Π holds in this case.

Claim 3 and (42) together imply Z(t,Γi) + Z(t,Γj) ≤
t+ Z(t,Γk), as required.

Case 2: In this case, wi + wj = 1. By Property 3,
Z(t,Γi) ≤ max{(t − (Π − Θi))wi, 0} ≤ twi. Similarly,
Z(t,Γj) ≤ twj . Thus, Z(t,Γi) + Z(t,Γj) ≤ t(bwi +
bwj) = t.
Case 3: In this case,

Θk = Θi + Θj −Π, (43)

so
Θk < Θi ≤ Θj , (44)

since Θj < Π holds and Θi ≤ Θj is assumed by the state-
ment of the lemma. By (2), (43), and (44), t′Γk

< t′Γi
≤ t′Γj

.
In the next paragraph, we dispense with all possibilities that
occur when at least one of t′Γk

, t′Γi
, and t′Γj

is negative.
First, if t′Γk

< t′Γi
≤ t′Γj

< 0, then by (1), Z(t,Γi) +

Z(t,Γj) = 0 ≤ t + 0 = t + Z(t,Γk). Second, if t′Γk
<



t′Γi
< 0 ≤ t′Γj

, then by (1), Z(t,Γi) + Z(t,Γj) = 0 +

Z(t,Γj) ≤ 0 + t = t + 0 = t + Z(t,Γk). Third, if t′Γk
<

0 ≤ t′Γi
≤ t′Γj

, then we have t′Γk
< 0, which by (2), implies

t−(Π−Θk) < 0, and hence, t < Π−Θk. By the statement
of the lemma (and in particular, Case 3), Π − Θk = 2Π −
Θi − Θj ≤ 2(Π − Θi). Thus, we have t < 2(Π − Θi),
which by Property 1, implies Z(t,Γi) = 0. Therefore, by
(1), Z(t,Γi) + Z(t,Γj) = Z(t,Γj) ≤ t = t+ Z(t,Γk).

Next, we focus on the remaining possibility in Case 3,
namely, 0 ≤ t′Γk

< t′Γi
≤ t′Γj

. Applying (16) to Z(t,Γi),
Z(t,Γj), and Z(t,Γk), respectively, we have the following.

Z(t,Γi) = f(t′Γi
,Γi),

= {by (15) and Πi = Π}⌊
t′Γi

Π

⌋
·Θi +

(
t′Γi
−Π

⌊
t′Γi

Π

⌋
− (Π−Θi), 0

)
(45)

Z(t,Γj) = f(t′Γj
,Γj)

= {rearranging}
f(t′Γi

+ (t′Γj
− t′Γi

),Γj)

≤ {by Property 5; note that t′Γj
− t′Γi

≥ 0}

f(t′Γi
,Γj) + (t′Γj

− t′Γi
)

= {by (2) and Πj = Πi = Π}
f(t′Γi

,Γj) + Θj −Θi

= {by (15) and Πj = Π}⌊
t′Γi

Π

⌋
·Θj + Θj −Θi+

max

(
t′Γi
−Π

⌊
t′Γi

Π

⌋
− (Π−Θj), 0

)
(46)

Z(t,Γk) = f(t′Γk
,Γj)

= {rearranging}
f(t′Γi

− (t′Γi
− t′Γk

),Γk)

≥ {by Property 5; note that t′Γi
− t′Γk

≥ 0}
f(t′Γi

,Γk) + (t′Γi
− t′Γk

)

= {by (2) and Πi = Πk = Π}
f(t′Γi

,Γk) + Θi −Θk

= {by (43)}
f(t′Γi

,Γk) + Π−Θj

= {by (15) and Πk = Π}⌊
t′Γi

Π

⌋
·Θk + Π−Θj+

max

(
t′Γi
−Π

⌊
t′Γi

Π

⌋
− (Π−Θk), 0

)
(47)

For notational simplicity, we introduce the two terms below.

Φ′ = t′Γi
−Π

⌊
t′Γi

/Π
⌋

(48)

∆′ = max
(
Φ′ − (Π−Θi), 0

)
+ max

(
Φ′ − (Π−Θj), 0

)
−max

(
Φ′ − (Π−Θk), 0

)
(49)

Now, by (45), (46) and (47), we have

(Z(t,Γi) + Z(t,Γj))− (t + Z(t,Γk))

≤
⌊
t′Γi

Π

⌋
(Θi + Θj −Θk) + Θj −Θi −Π + Θj − t + ∆′

= {rearranging and by (2) and (43)}⌊
t′Γi

/Π
⌋
·Π + 2Θj −Θi −Π + ∆′ − (t′Γi

+ Π−Θi)

={rearranging}⌊
t′Γi

/Π
⌋
·Π− t′Γi

− 2(Π−Θj) + ∆′

={by (48)}
∆′ − Φ′ − 2(Π−Θj). (50)

Given the derivation above, we can complete the proof
by showing ∆′−Φ′−2(Π−Θj) ≤ 0. This result is implied
by the following claim.

Claim 4. In Case 3, ∆′ − Φ′ − 2(Π−Θj) < 0.
Proof. By (48), 0 ≤ Φ′ < Π. Also, by (44), Π−Θj ≤
Π−Θi < Π−Θk. Given these ranges, the following
cases are exhaustive.

Case 3.1: Φ′ ∈ [0,Π−Θj), which implies ∆′−Φ′−
2(Π−Θj) = −Φ′ − 2(Π−Θj) < 0.

Case 3.2: Φ′ ∈ [Π−Θj ,Π−Θi), which implies ∆′−
Φ′ − 2(Π−Θj) = −3(Π−Θj) < 0.

Case 3.3: Φ′ ∈ [Π−Θi,Π−Θk), which implies

∆′ − Φ′ − 2(Π−Θj)

= {by (49)}
Φ′ − 3(Π−Θj)− (Π−Θi)

< {in this case, Φ′ < Π−Θk holds}
(Π−Θk)− 3(Π−Θj)− (Π−Θi)

= {rearranging}
− 2Π + 2Θj + (Θi + Θj −Π−Θk)

= {by (43)}
− 2Π + 2Θj

< {wj < 1 in the lemma statement implies Θj < Π}
0.

Case 3.4: Φ′ ∈ [Π−Θk,Π), which implies

∆′ − Φ′ − 2(Π−Θj)

= {by (49)}
− 3Π + Θi + 3Θj −Θk

= {rearranging}
− 2Π + 2Θj + (Θi + Θj −Π−Θk)

= {by (43)}
− 2Π + 2Θj

< {wj < 1 in the lemma statement implies Θj < Π}
0.

Claim 4 and (50) together imply Z(t,Γi) + Z(t,Γj) ≤
t+ Z(t,Γk), as required.


