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Abstract

In this project, we focus on real-time multiprocessor locking protocols. We first survey three relatively re-
cently proposed such protocols, namely, FMLP, OMLP, and RNLP. FMLP is the first such protocol that can be
applied to global EDF. OMLP is the first such protocol that is asymptotically optimal under s-oblivious analysis.
Optimality results, which are proposed along with OMLP, for pi-blocking under both s-oblivious and s-aware
analyses are also covered. RNLP is the first such protocol that supports fine-grained nested resource requests.
We also explore the real-time synchronization problems arising in the heterogeneous case. Several interesting
pi-blocking issues when the underlying multiprocessor platform is extended from an identical one to a uniform
one are discussed.

1 Introduction
Since the advent of multi-core chips, the focus of real-time systems research community has shifted from unipro-
cessors to multiprocessors. In order to efficiently utilize the underlying multi-core platforms, researchers have
been developing multiprocessors scheduling algorithms and shared resource allocation protocols. Such research
on both sides has been very productive. In this project, we focus on the latter—real-time shared resource allocation
protocols. In particular, we emphasize multiprocessor real-time locking protocols.

In many real-time scheduling analyses, it is usually assumed that the real-time tasks in the system are indepen-
dent, but that is, in fact, usually not true. Shared resources among tasks are a typical source of task dependencies.
In particular, shared resources may be protected by locks; each task requests the lock, holds the lock to proceed its
execution, and finally release the lock when the resource access is finished. Therefore, when multiple tasks share
a resource, priority inversions, i.e., the situation where a lower priority job is executing while a higher priority one
is waiting due to its resource lock request not satisfying, could happen. In such situations, a higher priority task
could be blocked by a lower priority one, and we call such blocking as priority inversion blocking, or pi-blocking.
Furthermore, when multiple tasks share multiple resources, a deadlock may occur.

In real-time systems, deadlocks should be prevented and the duration of pi-blocking must be upper bounded
and accounted for in analysis. In uniprocessor systems, pi-blocking is well defined. Furthermore, both the priority
ceiling protocol (PCP) [6] and the stack-based resource allocation protocol (SRP) [1] prevent deadlocks and ensure
the duration of pi-blocking for each job is at most the length of of one outermost critical section, which is clearly
asymptotically optimal.

However, when it turns to multiprocessors, the analysis and even the definition of pi-blocking become more
complicated. On multiprocessors, it is possible that some of the processors are idle while a job is waiting, which
should also be considered as pi-blocking. That is, pi-blocking may happen even when no lower priority job is
scheduled.
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Multiprocessor locking protocols. Rajkumar et al. [12, 13, 14] were the first to propose real-time locking
protocols for multiprocessors. They presented two multiprocessors PCP variants for partitioned static-priority
schedulers, the multiprocessor priority ceiling protocol (MPCP)[12] and the distributed priority ceiling proto-
col (DPCP)[14]. The MPCP is more recently extended to support “virtual spinning” [10]. Subsequently, Chen et
al. [5] proposed two protocols that apply only to periodic, but not sporadic, tasks, Lopez et al. [11] proposed a
heuristic that partitions resources as tasks are also scheduled by partitioned EDF, and Gai et al. [9] proposed a
spin-based SRP multiprocessor extension. Also, Easwaran et al. [7] proposed two suspension-based protocols for
global static-priority schedulers.

Despite these cited prior multiprocessor locking protocols, in this project, we mainly survey the following three
protocols, FMLP, OMLP and RNLP. The flexible multiprocessor locking protocol (FMLP) was proposed by Block
et al. [2]. FMLP can be applied not only to partitioned EDF but also to global EDF, and it allows shorter critical
sections to be implemented by busy-waiting (spin-based lock) while longer critical sections to be implemented by
suspending blocked tasks. The O(m) locking protocol (OMLP)[3] and OMLP family[4] were proposed by Bran-
denburg et al. In their work, two kinds of pi-blocking analysis are concluded: suspension-oblivious (s-oblivious)
and suspension-aware (s-aware). A lower bound of Ω(m) of pi-blocking per job is established for s-oblivious anal-
ysis while OMLP achieves a upper bound of O(m) pi-blocking per job under s-oblivious analysis and therefore
asymptotically optimal; a lower bound of Ω(n) of pi-blocking per job is established for s-aware analysis while a
variant of FMLP achieves a upper bound ofO(n) pi-blocking per job under s-aware analysis and therefore asymp-
totically optimal. The real-time nested locking protocol (RNLP) was proposed by Ward et al. [15]. RNLP is the
first multiprocessor real-time locking protocol that supports fine-grained nested resource requests. Subsequently,
RNLP was further improved in terms of reducing blocking time by integrating spinning and replicas [16], and
enabling concurrency by a reader/writer variant[17].
Heterogeneous multiprocessors. Although several multiprocessor locking protocols exist as cited above, to the
best of our knowledge, all of such analyses pertain to homogeneous multiprocessors where each processor is
identical. However, recent years, heterogeneous platforms are emerging. In terms of heterogeneity, processors in a
heterogeneous platform may differ from functionality and/or speed. The former may result in that some tasks can
only be scheduled on some function-specific processors, and therefore is more likely to partition tasks according
to functionality, so that analysis can be done within each function group. Thus, we focus on the heterogeneous
multiprocessors where every processor shares the same instruction set architecture but may differ from clock
frequency, i.e., processors have the same functionality but may have different speed. We call such platform uniform
heterogeneous multiprocessors.
Project Statement. In this project, we focus on real-time multiprocessor locking protocols. Our first step is to
survey three relatively recently proposed multiprocessors real-time locking protocol, FMLP, OMLP and RNLP.
All of the three protocols are proposed for identical multiprocessors. Then, we look into the heterogeneous case,
and explore, in those results we surveyed, what are preserved and what may change. We propose several initial real-
time synchronization problems arising in the heterogeneous case. However, more detailed discussion and formal
solutions for those problems remain as future work.

2 Background
We consider a system with m processors and n implicit sporadic tasks, i.e., the task set τ = {τ1, τ2, · · · , τn}. A job
is an invocation of a task. Ji,j denotes the jth invocation of task τi. We omit j when it is insignificant. For each task
τi, Ti is its minimum separation between job releases, or its period. Ci is its worst-case execution requirement.
The deadlines are implicit, i.e., each job Ji has to complete at most Ti time units after its release. A job is pending
since its release until it completes.
Resource model. We consider a system with q shared resources (other than processors), which are denoted as
l1, l2, · · · , lq. When a job Ji requires a resource lk, it issues a request Ri,k, which is satisfied as soon as Ji holds
lk and completes when Ji releases lk. Once a request Ri,k is issued, the job Ji is spinning or suspended until the
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Figure 1: Illustration for s-oblivious and s-aware pi-blocking, cited from [4].

request is satisfied. A pending job that is not spinning or suspended is ready. We also letNi,k denote the maximum
number of times that any Ji requests lk, and let Li,k denote the maximum length of such a request.
Scheduling. We consider clustered scheduling, where global scheduling and partitioned scheduling can be con-
sidered as special cases of clustered scheduling as the number of clusters is 1 and m, respectively. Within each
cluster, a work-conserving job-level fixed-priority (JLFP) scheduler is applied. Under JLFP scheduling, each job’s
base priority is fixed, although its effect priority may dynamically change to exceed its base priority, depending on
the locking protocol.
The definition of pi-blocking on multiprocessors. The following definitions are for global scheduling. For clus-
tered scheduling, it can be defined analogously with respect to each cluster [3, 4].

Def. 1. Under s-oblivious schedulability analysis, a job Ji experiences pi-blocking if Ji is pending
but not scheduled and fewer than m higher-priority jobs are pending.

Def. 2. Under s-aware schedulability analysis, a job Ji experiences pi-blocking if Ji is pending but
not scheduled and fewer than m higher-priority jobs are ready.

Fig. 1 is an illustration for s-oblivious and s-aware pi-blocking.

Heterogeneous multiprocessors. In terms of heterogeneity, there are three categories of multiprocessors accord-
ing to assumptions about processor speeds [8].

• Identical multiprocessors. Every job is executed on any processor at the same speed, which is usually
normalized to be 1.0 for simplicity.

• Uniform multiprocessors. Different processors may have different speeds, but on a given processor, every
job is executed at the same speed. The speed of processor p is denoted sp.
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• Unrelated multiprocessors. The execution speed of a job depends on both the processor on which it is
executed and the task to which it belongs, i.e., a given processor may execute jobs of different tasks at
different speeds. The execution speed of task τi on processor p is denoted sp,i.

Note that identical multiprocessors are a special case of uniform multiprocessors, which are a special case of
unrelated multiprocessors. In this project, we only consider uniform multiprocessors.

3 FMLP
In this section, we survey the flexible multiprocessor locking protocol (FMLP) [2]. The “flexible” in its name is
because of its applicability under both partitioned and global scheduling. Generally, FMLP has three key properties.
First, it treats short and long resource requests differently. The former is handled by busy-waiting while the latter is
handled by suspension. Second, the busy-waiting time is minimized by non-preemptively executing. Third, nested
resources are grouped.
The locking protocol FMLP. Under FMLP, resources are grouped, where each group has only either short or
long resources. Also, each group is protected by a lock, which is either a non-preemptive queue lock (for short
resource group) or a semaphore (for long resource group). Also, FMLP group and only group resources that can be
nestedly requested and are both either long or short. Non-nested resources are grouped individually. That improves
parallelism.

When a outermost request for a short resource is issued, the corresponding group lock of the resource must be
acquired. The blocked processes are busy-waiting for the queue lock in FIFO order. When attempting to acquire the
queue lock, a job becomes non-preemptive until relinquishing the lock. Any request for other resources contained
in this outermost request is satisfied immediately, and the lock is only relinquished when the outermost request
completes.

When an outermost request for a long resource is issued, the corresponding group lock of the resource must be
acquired as well. However, since the lock is a semaphore for long resources, blocked jobs do not busy-wait but do
suspend. Suspended jobs are added to a queue in FIFO order. When a job holds the group lock, it inherits the highest
priority of those jobs that blocked on a resource that is in this group. Then, the job is scheduled preemptively. Any
request for other long resources contained in this outermost request is satisfied immediately, whereas any request
for other short resources contained in this outermost request is either a outermost short resource request or is
contained in such a request and therefore can be handled by the prior paragraph for short resources.

Furthermore, Thm.3 in [2] shows that FMLP is deadlock free.
The blocking time analysis. The term blocking refers to pi-blocking. Under FMLP, there are three kinds of block-
ing as follows.

• Busy-wait blocking occurs when a job must busy-wait in order to acquire a short resource. The maximum
total amount of time for which any job of a task τi can busy-wait is denoted as BW(τi).

• Non-preemptive blocking occurs when one of the m highest-priority jobs is pending but not scheduled
due to a lower-priority job is executing in its non-preemptive section. The maximum total amount of non-
preemptive blocking any job of a task τi can incur is denoted as NPB(τi).

• Direct blocking occurs when one of the m highest-priority jobs is suspended because the group lock is held
by some other job. The maximum total length of time any job of task τi can be directly blocked is denoted
as DB(τi).

The blocking time for any job of the task τi is B(τi), which consists of busy-wait blocking BW(τi), non-
preemptive blocking NPB(τi), and direct blocking DB(τi). That is,

B(τi) = BW(τi) + NPB(τi) + DB(τi).

4



Figure 2: Example for establishing a lower bound of Ω(m) of pi-blocking per job under s-oblivious analysis.

Each of BW(τi), NPB(τi), and DB(τi) can be upper bounded respectively. See the appendix of longer version
of [2] for details (http://cs.unc.edu/ anderson/papers/rtcsa07along.pdf).
FMLP extensions. The discussion above is mainly for global EDF scheduled systems. [2] also showed the FMLP
can be extended to systems scheduled by partitioned EDF or PD2. However, under such variants, some issues
have arisen. For example, the difference between global and local resources needs to be handled.

4 OMLP
In this section, we survey the O(m) locking protocol (OMLP) [3, 4] as well as the optimality results for multipro-
cessor real-time locking.
Lower bounds. In [3], Brandenburg and Anderson established a lower bound of Ω(m) of pi-blocking per job un-
der s-oblivious analysis and a lower bound of Ω(n) of pi-blocking per job under s-aware analysis by the following
lemmas, which consider the task set as follows.

Def. 3. Let τ seq(n) denote a task set of n identical tasks that share one resource l1 such that Ci = 1, Ti = 2n,
Ni,1 = 1, and Li,1 = 1 for each τi, where n ≥ m ≥ 2.

Lemma 1 (Lemma 1 in [3]). There exists an arrival sequence for τ seq(n) such that, under s-oblivious analysis,
maxτi∈τ{bi} = Ω(m) and

∑n
i=1 bi = Ω(nm) under any locking protocol and JLSP scheduler.

Fig. 2 illustrates Lem. 1. See [3] for a detailed mathematical proof.

Lemma 2 (Lemma 10 in [3]). There exists an arrival sequence for τ seq(n) such that, under s-oblivious analysis,
maxτi∈τ{bi} = Ω(n) and

∑n
i=1 bi = Ω(n2) under any locking protocol and JLSP scheduler.

Fig. 3 illustrates Lem. 2. See [3] for a detailed mathematical proof.
The locking protocol OMLP. The general idea of OMLP is to apply two queues for each resource, where the
first queue is a priority queue PQ and the second one is a FIFO queue FQ. A simplified algorithm description of
OMLP for global JLFP schedulers is as follows.

• If a job request a resource, then add it to PQ of this resource;

• Jobs in PQ compete for a m-exclusion lock;

• The m highest-priority jobs in PQ hold the m-exclusion lock and hence are added to FQ, which is a FIFO
queue;

5



Figure 3: Example for establishing a lower bound of Ω(n) of pi-blocking per job under s-aware analysis.

• The job that is the head of FQ hold the FIFO lock, and therefore has its resource request to be satisfied.

• The job executes its critical section;

• The job release the FIFO lock;

• The job release the m-exclusion lock.

Furthermore, the FIFO lock holder inherits the highest priority of any job that is blocked on this resource.
See [3] for a formal and detailed description of the protocol as well as the other OMLP version for partitioned

schedulers. [3] also analyzed the asymptotic blocking time, which is O(m) under OMLP.

Theorem 1 (Theorem 1 and 3 in [3]). S-oblivious pi-blocking under OMLP is O(m).

Intuitively, the Thm. 1 holds as follows.

• A job can be blocked by O(m) lower-priority jobs (which have already held the m-exclusion lock and are
in the FIFO queue) in acquiring the m-exclusion lock.

• A job can be blocked by O(m) jobs (higher- or lower-priority) in acquiring the FIFO lock.

Thus, it is O(m) pi-blocking in total for each job.
Optimality results. By Lem. 1 and Thm. 1, pi-blocking under OMLP is O(m) under s-oblivious analysis, which
is asymptotically optimal. On the other hand, Lem. 2 established a lower bound of Ω(n) of pi-blocking per job
under s-aware analysis. In the global case, the suspension-based FMLP for “long” resources ensures O(n) pi-
blocking under s-aware analysis, therefore it is asymptotically optimal. In the partitioned case, [3] proposed a
simple variant of FMLP, called SPFP, which ensures O(n) pi-blocking under s-aware analysis and therefore is
asymptotically optimal. In summary, Table. 1 is a comparison of real-time multiprocessor locking protocols, and
shows the optimality results.
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Scheduler Protocol Queue Maximum pi-blocking
s-oblivious s-aware

global

FMLP [2] FIFO Θ(n) Θ(n)
PIP [7] priority Ω(n) Ω(mn)
PCP [7] priority Ω(n) Ω(mn)
OMLP hybrid Θ(m) Ω(mn)

partitioned

DPCP [14] priority Ω(n) Ω(mn)
MPCP [12] priority Ω(n) Ω(mn)
FMLP [2] FIFO O(n2) O(n2)
OMLP hybrid Θ(m) Ω(mn)
SPFP FIFO Θ(n) Θ(n)

Table 1: A summary of asyptotically pi-blocking under real-time multirprocessor locking protocols.

5 RNLP
In this section, we survey the real-time nested locking protocol (RNLP) [15] and its extensions [16, 17]. The
RNLP is the first multiprocessor real-time locking protocol that supports fine-grained nested resource requests.
Unlike prior work that uses group locks, resources are not statically grouped under the RNLP, which only requires
a partial order on resource acquisition. The notation for the partial order is ≺, i.e., a job holding resource lb cannot
request resource la if la ≺ lb.

The RNLP has a k-exclusion token lock, which restricts the number of jobs that have incomplete resource
request, and a request satisfaction mechanism (RSM), which determines when requests are satisfied. Each job that
issues a resource request must first acquire a token, and then can compete for the resource via the RSM. According
to different system and analysis configurations and assumptions, the RNLP can apply different RSM to yield an
asymptotically optimal locking protocol that supports nested requests.

For each resource la, let RQa denote its resource queue of length at most k. Let ts(Ji) denote the timestamp of
job Ji, and let hd(a) denote the head ofRQa. There are a set of rules that are common for all RSMs as follows [15].

Q1 When Ji acquires a token at time t, its timestamp is recorded: ts(Ji) := t. We assume a total order on such
timestamps.

Q2 All jobs in RQa are waiting with the possible exception of hd(a).

Q3 A job Ji acquires resource lb when it is the head of the RQb, i.e., Ji = hd(b), and there is no resource la
such that la ≺ lb and ts(hd(a)) < ts(Ji).

Q4 When a job Ji issues a request for resource la it is enqueued in RQa in increasing timestamp order.

Q5 When a job releases resource la it is dequeued from RQa and the new head of RQa can gain access to la,
subject to Rule Q3.

Q6 When Ji completes its outermost critical section, it releases its token.

Nonetheless, the common rules above do not specify how waiting is realized. A specific RSM may employ either
spinning or suspending.

In [15], four specific RSMs are provided—the spin RSM (S-RSM), boost RSM (B-RSM), inheritance RSM
(I-RSM), and donation RSM (D-RSM).
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S-RSM. The S-RSM uses spinning to realize waiting. Spinning outperforms suspension when the lengths of crit-
ical sections are short. Under S-RSM, the following rule is added.

S1 All token-holding jobs execute non-preemptively. A job that is waiting in a resource queue spins.

The S-RSM applies to partitioned, clustered, or globally scheduled systems.
B-RSM. The B-RSM uses suspension to realize waiting, and uses priority boosting to ensure progress. The B-
RSM requires the following rule.

B1 The (at most) m jobs with the earliest timestamps among the resource-holding jobs without outstanding
resource requests (i.e., that are not waiting) are boosted above the priority of all non-resource-requesting
jobs.

The B-RSM applies to partitioned, clustered, or globally scheduled systems as well. Also, B-RSM ensures progress
in any JLFP scheduled system; however, it does not always lead to an asymptotically optimal locking protocol.
I-RSM. The I-RSM uses suspension to realize waiting as well, but uses priority inheritance instead of priority
boosting to ensure progress. Let p(Ji, t) denote the effect priority of job Ji at time t. The following is the rule for
I-RSM.

I1 A ready job Ji holding resource lk inherits the highest priority of the jobs for which it is an inheritance
candidate:

p(Ji, t) = max
Jk∈{Ji}∪ICS(Ji,t)

p(Jk, t),

where ICS(Ji, t) denotes the inheritance candidate set (see [15] for formal definition) of job Ji at time t. Unlike
the prior two RSMs, I-RSM is only applicable to global schedulers because priorities of all jobs that request
resources need to be compared. However, under I-RSM, the number of tokens in the system (i.e., k) is tunable,
which can yield better parallelism and better worst-case pi-blocking.
D-RSM. The I-RSM uses suspension to realize waiting as well while ensures progress via priority donation,
which is designed for cluster scheduled systems (hence applicable to global or partitioned scheduled systems). Let
c denote the number of processors in a cluster. D-RSM has no additional RSM rule, but requires the following
constraint on the token lock.

C1 A token-holding job has one of the highest c effective priorities in its cluster.

Note that the D-RSM itself does not cause pi-blocking for non-resource-requesting jobs; however, the Property
C1, which the D-RSM requires, does.
Extensions to RNLP. After being proposed, the RNLP was subsequently extended in several ways.

[16] improved the RNLP by considering two specific use cases, GPUs and cache lines, and then proposed and
addressed three issues. First, when there is a priori knowledge for a task to request multiple resources, acquiring
each resource individually in a nested fashion may incur unnecessary system-call overheads. This issue is ad-
dressed by proposing dynamic group locks (DGLs), which is a hybrid of coarse- and fine-grained locking. Second,
the RNLP may cause short-on-long blocking, i.e., short requests may be blocked by long requests. This issue is
addressed by more greedily satisfying short requests, which can cause additional long-on-short blocking but it is
usually an acceptable tradeoff at runtime. Third, the RNLP does not support replicated resources. This issue is
addressed by altering the queue structure to allow multiple jobs to concurrently hold replicas of the same resource,
and hence introducing the support for replicated resources to the original RNLP.

Furthermore, the RNLP treats all resources as mutex resources, i.e., every resource can be accessed by only
one task at a time. However, in practice, many applications access resources in a read-only fashion, which should
have a higher degree of parallelism. In such circumstance, the RNLP significantly limits concurrency. To address
this problem,a reader/writer variant of the RNLP (the R/W RNLP for short) is presented [17]. The R/W RNLP
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improves the concurrency by allowing read-only resource requests to be satisfied simultaneously. Adopted from
phase-fair reader/writer locks, the concept of reader and writer phases is applied in the R/W RNLP. Under the
R/W RNLP, the worst-case acquisition delay is O(1) for readers and O(m) for writers.

6 Heterogeneous Platforms
As in prior sections, we surveyed three real-time multiprocessor locking protocols. However, all of them are with
respect to identical multiprocessors. In this section, we would like to discuss several issues that are novel when the
underlying multiprocessor platform is extended from an identical one to a uniform one.
Optimality results. In the optimality results from [3], the blocking time of each individual critical section is
deemed as constant, and hence derive the asymptotically optimal pi-blocking. On uniform platform, the only
change is that the processors may have different speed, but this has no effect on those optimality results, assuming
the blocking time of each individual critical section is still deemed as constant. More specifically, the blocking
time of each individual critical section can be pessimistically provisioned by the worst-case execution time for this
critical section on the slowest processor. That can be still deemed as a constant. Thus, the asymptotically optimality
results are preserved on uniform platforms.

Next, we will discuss some issues with respect to the blocking time of each individual critical sections on
uniform platform.
Non-scalable critical section. In fact, not all task executions, especially critical sections, are scalable by pro-
cessor speed. Many critical sections are related to I/O accesses, which may need the I/O devices to make some
operations that is totally not dependent on CPU processor speed. In the identical processors case, this situation can
be provisioned by analyzing the maximum time needed to finish this I/O accesses, and then inflate the worst-case
execution time of this task by that amount. However, in uniform platforms, to analogously inflate the worst-case
execution requirement of this task, the speeds of processors have to be involved. Under global scheduling, we
need to always pessimistically consider such critical sections are executing on the fastest processor, and therefore
inflate the worst-case execution requirement by the access time multiplying the fastest speed. Thus, in this case, we
probably want a more intelligent algorithm that executes those critical sections on slower processors. Nonetheless,
in this case, the worst-case blocking time is constant regardless processor speeds. This may help the analysis.
Scalable critical section. For other critical sections that are CPU executions and are therefore scalable by pro-
cessor speeds, the situation is different. In this case, a certain critical section of a certain task could have multiple
blocking times to block others, depending on where this blocking task is scheduled. In this case, the execution
requirement of the critical sections can be directly accounted in the worst-case execution requirement of the task.
However, under global scheduling, to derive a sufficiently safe analysis, significant pessimism may have to be
introduced to the pi-blocking analysis. Specifically, it may be necessary to assume that when a task is blocking
others, it executes on the slowest processor, and hence yields a maximum blocking time; when a task is blocked,
it is blocked on the fastest processors, and hence in s-oblivious analysis, its execution requirement needs to be
inflated by the suspension time multiplying the fastest processor speed.
Partitioned scheduling and clustered-by-speed scheduling. As mentioned in the above two paragraphs, under
global scheduling, significant analytical pessimism is necessary. Therefore, we would like to have a look at other
alternative scheduling approaches. If the system is scheduled by a partitioned scheduler, then the pi-blocking
time and impact of each critical section are much more predictable, because the processor it will execute on is
deterministic. Alternatively, we can also consider clustered scheduling, where each cluster only has processors
of the same speed. In this case, pi-locking time and impact of the critical sections are also as predictable as
partitioned scheduling. However, when partitioned or cluster scheduling is applied, it implies the introduction of
the bin-packing problem, which causes system utilization loss.
Dedicated processor to handle all critical sections. Another idea is that the most parts of tasks are still scheduled
globally, but all the critical sections are scheduled on a dedicated processor that does not execute other non-critical
globally-scheduled parts. Applying this approach, we can take advantage of higher system utilization of global
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scheduling while also have the critical sections more predictable. However, there are also several issues in this
approach. First, the dedicated processor may be overutilized barely by critical sections. Then, we need multiple
such dedicated processors to handle critical sections, where each processor handled the critical sections for certain
resources. Moreover, when a single processor handles critical sections of several resources, then the accesses of
those resources may be unnecessarily serialized, which reduces parallelism and increases blocking times. Finally,
dedicating such processors for critical sections may fundamentally incur system utilization loss. That is, similar
to the prior paragraph, it is going to be a tradeoff between platform utilization loss and per job blocking time
analysis.

7 Conclusion
In this project, we started with real-time multiprocessor synchronizations, specifically with real-time multiproces-
sor locking protocols. We first surveyed three relatively recently proposed such protocols, namely, FMLP, OMLP,
and RNLP. FMLP is the first such protocol that can be applied to global EDF. FMLP is optimized for non-nested
resources and able to support nested resource to some extend. OMLP is the first such protocol that is asymptot-
ically optimal under s-oblivious analysis. In the paper where OMLP proposed, asymptotically lower bounds for
both s-oblivious and s-aware analyses are provided, and besides OMLP, which is asymptotically optimal under
s-oblivious analysis, a variant of FMLP is shown asymptotically optimal under s-aware analysis. RNLP is the first
such protocol that supports fine-grained nested resource requests. RNLP is also further extended by improving
blocking analysis and introducing the concept of reader/writer phases. We also discussed several interesting issues
regarding to real-time multiprocessor locking protocols when the underlying multiprocessor platform is extended
from an identical one to a uniform one, although more formal solutions for that remain as future work.
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