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Abstract

We construct a heterogeneous platform on a homo-
geneous one by leveraging the CPU frequency scal-
ing tools. We implement a full-migration GEDF sched-
uler as a plug-in to a middleware that runs on the
top of preempt rt Linux kernels. Furthermore, we
improve the scheduler by reducing migrations. Both
a detailed comparison of a particular example and a
schedulability evaluation of randomly generated task
sets are provided.

1 Introduction

Since the advent of multicore chips, the real-time sys-
tem community has made fruitful results for schedul-
ing problems on multiprocessors. Yet a major body of
such results only pertains to homogeneous multipro-
cessors where every processor is identical in terms of
both functionality and speed. Recently, several emerg-
ing techniques may lead the hardware platform to
be a heterogeneous multiprocessor where the pro-
cessors may have different speeds. For example, the
big.LITTLE [1] technology proposed by ARM is sup-
posed to integrate relatively slower, low-power proces-
sors with faster, high-power ones to balance perfor-
mance and energy efficiency. As an implementation
of the big.LITTLE technology, the Samsung mobile
SoC Exynos 5422 [5] consists of four slower ARM
Cortex-A7 cores and four faster ARM Cortex-A15
cores. Furthermore, some state-of-art research is ex-
ploring scheduling problems on unreliable processors
where the processing speed may vary [7], and its multi-
processor extension [10] may directly result in the het-
erogeneity we mentioned above.

However, the analysis for scheduling problems on
heterogeneous multiprocessors are much more com-
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plicated than that on homogeneous ones. Interestingly,
the analytical gap between heterogeneous and homo-
geneous multiprocessors is very similar to that be-
tween multiprocessors and uniprocessors. The well-
known key difference between multiprocessors and
uniprocessors is idleness, i.e., on uniprocessors, idle-
ness means the whole system is idle since exact one
processor exists in the system; whereas on multipro-
cessors, idleness could mean exact one processor is
idle, or exact two processors are idle, etc., which
means there are multiple interpretations for idleness.
In contrast, the key difference between heterogeneous
and homogeneous multiprocessors is executing. On
homogeneous multiprocessors, a task can only be ei-
ther executing or not executing. Since each proces-
sor is identical, executing on any processor is the
same. However, on heterogeneous multiprocessors,
since each processor may have a different speed, exe-
cuting is not sufficient to precisely describe the state of
a task, and therefore both the scheduler and the anal-
ysis need to consider which processor the task is ex-
ecuting on. In this project, we construct a heteroge-
neous platform by CPU frequency scaling techniques,
implement a earliest-deadline-first (EDF) scheduler on
it, and explore related problems about both implemen-
tation and analysis.

Related Work. EDF scheduling research on hetero-
geneous platforms was initiated by Funk et al.. In [9],
they established a feasibility condition for scheduling
periodic tasks upon uniform heterogeneous multipro-
cessors by leveraging the Level Algorithm [11]. Also,
they proposed three EDF-based schedulers (concluded
in Funk’s dissertation [8]) for uniform heterogeneous
multiprocessors with different migration constraints: f-
EDF (full migration), p-EDF (partitioned, no migra-
tion), and r-EDF (restricted migration). More recently,
several more complicated EDF-based scheduling algo-
rithms were proposed [12, 16, 17, 18].
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However, all of the cited prior work above are rather
purely theoretical work. That is, as all of the experi-
ments are simulation-based evaluation, none of them
actually set up a uniform heterogeneous platform and
implemented the schedulers in a real system.

Contributions. We construct a uniform heteroge-
neous multiprocessor on a homogeneous one by lever-
aging the CPU frequency scaling tools. As such tools
are usually not designed for heterogeneity but for en-
ergy saving by dynamic scaling, we study the way to
set user-specified static CPU frequency via those tools.
Also, the hardware constraints (e.g., some cores may
share a clock source) could prevent the constructed
platform from being heterogeneous, even if the CPUs
are frequency-scalable. We address this issue as well.
By setting up the heterogeneous platform and running
the middleware on it, we demonstrate the middleware,
which was designed and developed for identical multi-
processors, is applicable under at least some heteroge-
neous circumstances.

We implement a full-migration global earliest-
deadline-first (GEDF) scheduler as a plug-in to the
middleware. Furthermore, we improve the scheduling
algorithm by avoiding unnecessary migrations, which
is proved advantageous with respect to run-time over-
heads and preserves all the theoretical properties of the
full-migration GEDF scheduler. We evaluate both al-
gorithms by their measured schedulabilities.

Organization. In the rest of the paper, we provide
background (Sec. 2), explore the construction of the
heterogeneous platform (Sec. 3), implement the sched-
ulers (Sec. 4), conduct schedulability experiments
(Sec. 5), and conclude (Sec. 6).

2 Background

We consider the scheduling of n sequential periodic
tasks on m processors, where n ≥ m. We specify a
task τi by (φi, Ci, Di, Ti), where φi is its phase, Ci is
its worst-case execution requirement which is defined
as its worst-case execution time on a unit-speed pro-
cessor, Di is its relative deadline, and Ti is its period.
Also, we denote its utilization as

ui =
Ci
Ti
.

When every task have a zero phase and a relative
deadline equal to its period, the system is called a

synchronous implicit-deadline periodic task system,
where a task can be simply denoted as τi = (Ci, Ti).
Moreover, on a heterogeneous platform, ui ≤ 1 does
not necessarily hold. Needed restrictions on utiliza-
tions are given later in Sec. 2.1.

A job is an invocation of a task. If a job that has a
absolute deadline at time td and completes at time tc,
then its deadline is met if and only if tc ≤ td; other-
wise, this deadline is missed. A job is pending if and
only if it is released but not complete. A job is ready
if and only if it is pending and all its predecessors
(the previous invocations of the same task) have been
complete. If, under a certain scheduling algorithm A,
no deadline has ever been missed for a system, then
this system is schedulable under algorithm A; if, un-
der some algorithm, no deadline has ever been missed
for a system, then this system is feasible.

A taxonomy of multiprocessors. The following tax-
onomy [8, 15] classifies multiprocessor platforms ac-
cording to assumptions about processor speeds—the
speed of a processor refers to the amount of work com-
pleted in one time unit when a job is executed on that
processor.

• Identical multiprocessors. Every job is executed
on any processor at the same speed, which is usu-
ally normalized to be 1.0 for simplicity.

• Uniform heterogeneous multiprocessors. Dif-
ferent processors may have different speeds, but
on a given processor, every job is executed at the
same speed. The speed of processor p is denoted
sp.

• Unrelated heterogeneous multiprocessors. The
execution speed of a job depends on both the pro-
cessor on which it is executed and the task to
which it belongs, i.e., a given processor may ex-
ecute jobs of different tasks at different speeds.
The execution speed of task τi on processor p is
denoted sp,i.

2.1 Uniform Heterogeneous Multiprocessors

In the rest of this paper, we consider a uniform het-
erogeneous multiprocessor system π, where processor
i is represented by its speed si (1 ≤ i ≤ m, si ∈ R).
Also, we index the processors in non-increasing-speed
order, i.e., π = {s1, s2, · · · , sm}, where si ≥ si+1

for i ∈ {1, 2, · · · ,m − 1}. We consider scheduling a
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periodic task set τ on π. We index the tasks in non-
increasing-utilization order, i.e., τ = {τ1, τ2, · · · , τn},
where ui ≥ ui+1 for i ∈ {1, 2, · · · , n− 1}.

Let Uk =
∑k

i=1 ui, Sk =
∑k

i=1 si. Also, denote
the total system utilization as Uτ = Un and the to-
tal platform capacity as Sπ = Sm. By leveraging the
Level Algorithm [11], Funk et al. [9] showed that an
implicit-deadline periodic task system τ is feasible on
a uniform heterogeneous multiprocessor system π if
and only if the following conditions hold.{

Uτ ≤ Sπ,
Uk ≤ Sk, for k = 1, 2, · · · ,m− 1.

2.2 Middleware

This project is powered by a real-time scheduling mid-
dleware developed by Mac Mollison [13, 14]. This
middleware has been proved to work on the top of
preempt rt kernels in Linux Operating Systems.
However, the middleware was designed for identical
multiprocessors, and none of prior experiments on this
middleware has been conducted on a heterogeneous
platform. Thus, this project also proves that this mid-
dleware is even more robust than it was designed for.

The timing references in the middleware rely on
the function rdtsc(), which reads the value of the
Time Stamp Counter (TSC). Therefore, a significant
potential problem on heterogeneous multiprocessors is
whether the different processor speeds, or CPU fre-
quencies, would interfere the TSC and cause synchro-
nization or scaling problems. Fortunately, many Intel
processors support a constant (or even invariant) TSC
technology[6], which ensures that the TSC counts at
the rate as the standard CPU frequency no matter what
the actual CPU frequency is (and TSC counts across
processors are synchronized, if invariant TSC).

Moreover, the middleware package provides several
handy tools. In particular, the tool draw can draw out
a visualized schedule from the middleware running log
file out.trace, which is very useful for verification
and illustration of scheduling algorithms. More details
about the settings and architecture of the middleware
can be found in a manual and two flow control graphs
in /doc in the middleware package path.

3 Platform Construction
Although the companies, as mentioned in Sec. 1, do
design and produce uniform heterogeneous multipro-

cessors nowadays, we do not have one in our group.
Thus, the first step of this project is to construct a uni-
form heterogeneous multiprocessors on one of the ho-
mogeneous machines that we have. As CPU frequency
scaling is the most promising way to do that and most
of the machines in our group are equipped with Intel
CPUs, we focus on Enhanced Intel SpeedStep R© Tech-
nology (EIST) [3], which allows the system to dynam-
ically adjust processor voltage and core frequency. To
determine if a Intel CPU supports EIST, we can check
it out in the Intel ARK website. Then we need to boot
into the BIOS and enable EIST function, or it is en-
abled by default if no such item exist in the BIOS. Fi-
nally, in Linux, we can confirm that EIST is enable
by typing the command cat /proc/cpuinfo and
checking if est exists in the line of flags.

3.1 Kernel Configuration

In order to construct a heterogeneous platform, we
have to enable the following options in the Linux ker-
nel configuration, which are critical for enabling CPU
frequency scaling in Linux. Tables 1 and 2 provide the
details about governors and drivers[4].

Power management and ACPI options --->
[*] ACPI (Advanced Configuration and
Power Interface) Support --->

<*> Processor
CPU Frequency scaling --->

[*] CPU Frequency scaling
Default CPUFreq governor (ondemand) --->

Select a default governor; see Table 1.
Default is:
ondemand

x86 CPU frequency scaling drivers --->
Select a driver, see Table 2.

In this project, based on the machines we work on,
the acpi-cpufreq driver1 is preferable. Also, we
should choose the ‘userspace’ governor to manually
scale CPU frequencies, since our goal is to construct a
uniform heterogeneous multiprocessor.

3.2 Cpufrequtils

When obtained hardware supports and proper Linux
kernel configuration, to make a easier access to the
Linux kernel cpufreq subsystem, we also need a
userspace tool, which is the cpufrequtils pack-
age. To install this package, we need the command
sudo apt-get install cpufrequtils.
Once the package is installed, we should have the two
commands, cpufreq-info and cpufreq-set,

1Other drivers, e.g., intel pstate, may cause problems; we
will discuss them in Sec. 3.4.
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Option Module Supported Processors Note
‘performance’ governor cpufreq performance Sets the frequency statically to the highest avail-

able CPU frequency.
‘powersave’ governor cpufreq powersave Sets the frequency statically to the lowest avail-

able CPU frequency.
cannot be set as
default governor

‘userspace’ governor cpufreq userspace To set the CPU frequency manually or when a
userspace program shall be able to set the CPU
dynamically.

‘ondemand’ governor cpufreq ondemand Does a periodic polling and changes frequency
based on the CPU utilization.

recommend

‘conservative’governor cpufreq conservative Similar to ondemand. The frequency is grace-
fully increased and decreased rather than jump-
ing to 100% when speed is required.

Table 1: Options for Default CPUFreq governor.

Option Module Supported Processors Note
Intel P state control intel pstate provided by Intel, no

manually scaling gover-
nor such as ‘userspace’

Processor Clocking Control interface driver pcc-cpufreq
ACPI Processor P-States driver acpi-cpufreq Intel Core, Intel Core

2, Intel Atom, Intel
Pentium M

AMD Opteron/Athlon64 PowerNow! powernow-k8 AMD Opteron, AMD
Athlon 64, AMD Tu-
rion 64

Intel Enhanced SpeedStep (deprecated) speedstep centrino Intel Pentium M (Cen-
trino), Intel Xeon

deprecated, use ACPI
Processor P-States driver
instead

Intel Pentium 4 clock modulation p4-clockmod Intel Pentium 4, Intel
XEON

causes severe slowdowns
and noticeable latencies

Table 2: Options for x86 CPU frequency scaling drivers.

to determine (the former) current CPUfreq settings
and to modify (the latter) them.

The command cpufreq-info returns CPUfreq
information for each core, such as

driver,
maximum transition latency,
hardware limits,
available frequency steps,
available cpufreq governors,
current policy,
current CPU frequency,

in which we should confirm that acpi-freq is the
current applied driver and the current governor (shown
in current policy) is ‘userspace’, and current
CPU frequency provides one indicator for the cur-
rent processor speed2.

2This indicator may be imprecise, or even incorrect; we will

The command cpufreq-set is used to se-
lect CPUfreq governors, and to set CPU frequen-
cies if the governor is ‘userspace’ or CPU fre-
quency ranges if some other governor is selected.
The syntax of the cpufreq-set command is
cpufreq-set [options]. Table. 3 shows the
details about options[2]. Note that omitting the -c
or –cpu argument is equivalent to setting it to zero and
the -f option cannot be combined with any other op-
tion except the -c. Thus, the specifically commands
we use are in the following formats.

cpufreq-set -c 0 -g userspace
cpufreq-set -c 0 -f 2.5GHz

discuss this in Sec. 3.4.
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[options] Description
-c <CPU> number of CPU where cpufreq set-

tings shall be modified
-d <FREQ> new minimum CPU frequency the

governor may select
-u <FREQ> new maximum CPU frequency the

governor may select
-g <GOV> new cpufreq governor
-f <FREQ> specific frequency to be set; requires

userspace governor to be available
and loaded

-h prints out the help screen

Table 3: Details for [options] of cpufreq-set.

3.3 Speed Test

As mentioned in Footnote 2, the current CPU fre-
quency gathered by tools may be incorrect. Therefore,
to make sure the platform is really heterogeneous as
set, we also write a little speed-test program to ver-
ify the processor speeds. The program is just simply
working loops, and we use time() (relative rough)
and rdtsc() (more precise) to get time stamps be-
fore and after the loops and to calculate the running
time for the working loops. Then we use the Linux
bash command taskset -c <CPU> to enforce the
whole task to run on a specified processor without mi-
gration. By compare the output running times, we can
verify if the processors really run at different speeds
and the relative speeds between processors. The speed
test codes are speedtest.c and start. Further-
more, we can use the command htop to monitor the
real-time CPU usages, to see the rough task comple-
tion time on each processor, and hence to determine if
the platform is actually heterogeneous.

3.4 Machine-Specific Details

In this sub-section, we describe our efforts to construct
the platform on several existing machines in chrono-
logical order. All of the first five attempts failed for
various reasons, but the last one has succeeded.

pound@cs.unc.edu. Pound is a four-core machine. It
has a Intel R© CoreTM i7-920 Processor, which con-
sists of four 2.66GHz cores that support EIST tech-
nology. On Pound, we have to boot into BIOS and
enable the EIST option to support CPU frequency
scaling. Then the acpi-cpufreq driver is auto-
matically loaded on each processor, provided related
Linux kernel configuration options are enabled. More-
over, cpufrequtils works perfectly on Pound,
and it shows that each core has ten speed steps

can be selected within the range from 1.60GHz to
2.66GHz. After governors and frequencies are set,
both cpufreq-info and cat /proc/cpuinfo
suggest the four cores are running on different speeds.
However, when the speed test is applied, it shows that
the four cores are actually running at the same speed.
Moreover, by monitoring the htop, it appears that the
tasks on the four cores complete simultaneously, which
also implies that, in fact, the platform is not hetero-
geneous. It is probably because the four cores are on
a same chip and therefore may share a clock source.
Thus, the attempt on Pound has failed due to hardware
constraints.

ludwig@cs.unc.edu. Ludwig is a 24-core machine.
It has four Intel R© Xeon R© Processor L7455, each
of which consists of six 2.13GHz cores. Unfortu-
nately, both Intel official website and the flags in
/proc/cpuinfo suggest that the processors do not
support EIST technology. Thus, Ludwig is not suitable
for this project.

koruna@cs.unc.edu (failure). Koruna is a eight-core
machine. It has two Intel R© Xeon R© Processor E5420,
each of which consists of four 2.5GHz cores. In BIOS,
there is no option related to EIST technology, but
in /proc/cpuinfo we can clearly see est in the
flags line, which means EIST is implicitly enabled
on these processors. However, when we tried to boot
into a kernel where the ACPI Support is enabled,
Koruna was always stuck on the kernel booting. Even
worse, after several attempts, we could not see the
grub menu while rebooting the machine, and therefore
could not boot into a previously working kernel to con-
tinue trying. Koruna has a Dell Remote Access Control
(DRAC) server and a physical monitor in the machine
room, but both of them were stuck without showing
the grub menu, no matter we reboot the machine by
the powercycle command in DRAC or by pushing
the physical reboot button in the machine room.

bonham@cs.unc.edu. Bonham is a 12-core machine.
It has two Intel R© Xeon R© Processor X5650, each of
which consists of six 2.66GHz cores. Each individual
core on Bonham is very similar to that on Pound, so
the CPU frequency scaling should also work well on
Bonham. Furthermore, Bonham has two CPU chips,
or groups, so it should be able to perform heteroge-
neously by CPU frequency scaling. However, Glenn
Elliott has been conducting extensive experiments on
Bonham and he is graduating. Thus, I would not intro-
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duce any interference to his work and therefore have
given up working on Bonham.

zildjian@cs.unc.edu. Zildjian is a 36-core machine,
which is a brand new machine purchased in late
2014. It has two Intel R© Xeon R© Processor E5-
2699 v3, each of which consist of 18 2.30GHz
cores. On these processors, EIST is implicitly en-
abled, and therefore no BIOS option needs to be
change. Also, est appearing in the flags line in
/proc/cpuinfo confirms this. The problem on
Zildjian is that we could only boot it into a Linux
kernel of version 3.13 or higher; otherwise, the ker-
nel booting would be stuck on the message “i8042:
No controller found”. Meanwhile, in a Linux
kernel of version 3.9 or higher, intel pstate
rather than acpi-cpufreq is the default CPUfreq
driver, which does not allow us to manually scale
the CPU frequencies. Some Internet posters sug-
gest that adding “intel pstate=disable” to
the kernel booting command line or just not select-
ing the intel pstate driver in the kernel con-
figuration would solve this problem and give the
acpi-cpufreq driver back, but it does not work on
Zildjian. Once disabled the intel pstate driver,
we did not get the acpi-cpufreq driver back but
just saw the message “no or unknown cpufreq
driver is active on this CPU” on every
core. Thus, the attempt on Zildjian has also failed.

koruna@cs.unc.edu (success). After a departmental
power outage in summer 2014, we found that, al-
though either rebooting via DRAC or the physical but-
ton does not recover the stuck machine, a power cut-
off (power outage or physically pulling the power ca-
ble out) does restore the grub menu on DRAC. Then
we could continue attempts on Koruna again. Finally,
we figured it out that, to make the kernel booting nor-
mally while enabling the ACPI Support, we should
disable all sub-options that may be enabled by de-
fault in ACPI support other than Processor,
such as, AC Adapter, Battery, and Fan. Then,
a 3.0 Linux kernel with preempt rt patches works
perfectly on Koruna. The driver is acpi-cpufreq
and cpufrequtils works well. Furthermore, both
our speed test and the monitoring htop method con-
firm that the processors are indeed at different speeds,
i.e., the platform is actually heterogeneous. One flaw
might be that the processors on Koruna only sup-
port two frequency steps, 2.5GHz and 2.0GHz, so

the heterogeneity may not be dramatic. However, we
believe that is adequate for this project. Moreover,
via the tool ./workdir/tools/coreinfo in the
middleware, we have found that physical CPUs 0,
2, 4, 6 are in the same core package and there-
fore have to be at the same frequency while phys-
ical CPUs 1, 3, 5, 7 are in the other one. We
can adjust the core order in the middleware config-
uration file ./workdir/conf/system.conf to
be “cpu for worker = 0,2,4,6,1,3,5,7”.
Then, we have the first four cores at the same speed
and the other four at the other speed.

In conclusion, we have a eight-core uniform het-
erogeneous multiprocessor on Koruna, where four
cores are running at the frequency of 2.5GHz and
the other four are at 2.0GHz. The Linux kernel is
a preempt rt kernel of version 3.0.17-rt33.
Henceforth, we can model Koruna as a uniform plat-
form π, where s1 = s2 = s3 = s4 = 1.25 and s5 = s6 =
s7 = s8 = 1.0.

4 Algorithms and Implementation
In this project, we focus on the full-migration global
earliest-deadline-first (GEDF) scheduling on the uni-
form heterogeneous multiprocessor we constructed.

According to [8], the full-migration GEDF sched-
uler give higher priorities to jobs with earlier dead-
lines, and deadlines not only determine which jobs ex-
ecute, but also where they execute, i.e., the earlier the
deadline the job has, the faster the processor it is sched-
uled on. More formally, the scheduling rules are as fol-
lows.

• At any time instant, if there are at most m tasks
with a ready job, then all of them are scheduled;
if there are more than m tasks with a ready job,
then the m ones with the earliest deadlines are
scheduled. Deadline ties are broken arbitrarily.

• For any two tasks τi with current absolute dead-
line di scheduled on processor sp and τk with cur-
rent absolute deadline dk scheduled on proces-
sor sq, where p < q, we have di ≤ dk (note
that, given how we order processors in Sec. 2.1,
sp ≥ sq).

The following example illustrates full-migration
GEDF scheduling.

Ex. 1. Recall that in Sec. 2, we specify a task by τi =
(φi, Ci, Di, Ti). Considering the full-migration GEDF
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scheduling of the task set (parameters are in millisec-
onds)

τ = { τ1 = (0, 1, 3, 10),

τ2 = (0, 2, 4, 10),

τ3 = (0, 3, 5, 10),

τ4 = (0, 4, 6, 10),

τ5 = (0, 5, 7, 10),

τ6 = (0, 6, 8, 10),

τ7 = (0, 7, 9, 10),

τ8 = (0, 8, 10, 10) }

on the uniform platform π = {s1 = s2 = s3 = s4 = 1.25,
s5 = s6 = s7 = s8 = 1.0 }, Fig. 1(a) provides the theo-
retical schedule produced by the full-migration GEDF
scheduler. We only show the first period, since after
that the schedule repeats.

Implementation. We implement a full-migration
GEDF scheduler as a plug-in to the middleware. We
have two task queues to maintain, two kinds of signals
to handle, and one core request to deal with. Namely,
the two queues are a release queue and a ready queue,
each of which is implemented by a binomial heap. The
release queue contains all tasks that their current job
has not released yet, where node values are next release
times; the ready queue contains all tasks that their cur-
rent job has already released, including currently ex-
ecuting ones, where node values are current priorities
(absolute deadlines). In the main algorithm function
schedule(), we get the top m tasks in the ready
queue, and make the decision that let the m tasks exe-
cute on the m processors in order. Moreover, the pro-
cessor that triggered schedule() can do the task
switch locally and send interrupt signals to all other
processors that need a task switch. When a processor
get a interrupt signal, it switch its task according to the
decision from the most recently schedule() call.
Also, when the timer is fired, a timer signal will be
sent. When a processor get a timer signal, it moves all
ready tasks in the release queue to the ready queue,
set a new timer, and call schedule(). The only core
request in this implementation is “R COMPLETION”,
which is triggered when a job completes. When a core
request is received, the processor updates the parame-
ters of this task structure. Furthermore, we remove the
node that corresponds to this task from the task queues,

and then enqueue the updated one to either the release
queue or the ready queue again by enqueue(), de-
pending on the updated release time.

A significant problem of this algorithm is the task
switch to a current executing task. This is a new is-
sue in heterogeneous platform. On identical multipro-
cessors, we have no point to migrate a currently exe-
cuting task because every processor is the same, i.e.,
any migration is associated to a preemption, a task
will not migrate unless it was previously preempted,
and is not currently executing. However, on a hetero-
geneous platform, we may migrate a currently execut-
ing task from a higher-indexed (slower) processor to a
lower-indexed (faster) one, and such migration could
be chained, i.e., several tasks are shifting among pro-
cessors.

Switching to currently executing tasks are problem-
atic because the task switch can only switch to a task
with a previously saved context, while a task only
saves its context when it is preempted. To deal with
this problem, our approach is to switch those currently
executing tasks that are going to migrate to idle first,
and then switch them to their proper processors. In our
implementation, there are two arrays that describe the
real task on each processor and the wanted task by
each processor. The task switches are triggered by a
difference between these two array, and the wanted
array is updated when schedule() is returned, rep-
resenting the scheduling decision. Therefore, when-
ever a task switch happens, we check the real array
to see if the wanted task is executing somewhere else.
If not, we switch to the wanted; otherwise, we switch
to idle. Then we check if the old task (the one
switched off) is wanted by some other processor. If
so, we send an interrupt signal to that processor, telling
it that “the task you want is now ready to switch”. The
code of this plug-in scheduler is fgedf.c.

Fig. 1(b) is the actual schedule of Ex. 1 under
the full-migration GEDF scheduler in the system. As
seen, each time a lot of tasks are shifting, the schedul-
ing overheads are dramatic. That is because of signal
transmission latency and signal synchronization mech-
anism. They raise the overheads significantly when a
lot of signals are simultaneously transmitting among
cores.

Improvement. Due to the significant overheads, we
are going to improve the scheduler somewhat. Notice
that in this experiment platform, we actually have only
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τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 job completion
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(a) theoretical full-migration GEDF schedule
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(b) actual full-migration GEDF schedule
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(c) theoretical improved full-migration GEDF schedule

0         1           2          3          4          5           6          7           8          9         10time
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s4=1.25

s3=1.25

s2=1.25

s1=1.25
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s7=1.0
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(d) actual improved full-migration GEDF schedule

Figure 1: Schedules for scheduling the task set in Ex. 1.
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Task
Response Time (ms)

in theory full-migration improved
τ1 0.80 1.11 1.14
τ2 1.60 2.56 1.88
τ3 2.40 3.73 2.67
τ4 3.20 5.12 3.54
τ5 4.16 6.47 4.57
τ6 5.12 7.83 5.55
τ7 6.08 8.94 6.53
τ8 7.04 9.80 7.51

Table 4: Response-time comparison.

two different speeds—s1 = s2 = s3 = s4 = 1.25 and
s5 = s6 = s7 = s8 = 1. Thus, in our experiments, it
is in fact unnecessary to migrate a task among the first
four processors or the last four processors, as a general
full-migration GEDF scheduler does. That is, we can
group the processors by speeds, and we only commit a
migration if it is an inter-group migration.

Fig. 1(c) depicts the theoretical schedule of the task
set in Ex. 1 under this migration approach. As seen, all
tasks’ response times or even execution progresses are
identical to that in Fig. 1(a), despite the migration rules
have been changed. In fact, any theoretical scheduling
results for full-migration GEDF will also follow in this
less-migration schedule, because we can inter-change
these two schedules by dynamically re-indexing pro-
cessors, and re-indexing two processors of the same
speed makes no difference in theory.

We implement these migration rules by a swap pro-
cedure of the wanted array in schedule(). The
code of this improved scheduler is fgedf-impv.c.
Fig. 1(d) is the actual schedule of the task set in
Ex. 1 under the improved scheduler in the system.
As seen, the migrations are reduced dramatically, and
the response times are improved significantly. Table. 4
shows a response-time comparison, in which for each
task, its theoretical response time, actual response time
under full-migration GEDF, and actual response time
under improved migration rules are provided.

5 Schedulability

To evaluate the implemented schedulers, we conduct
schedulability experiments. In these experiments, we
do run the generated task sets in the actual system,
and record the scheduling log files. In contrast to many
analytical schedulability tests in theoretical work that
evaluate guaranteed schedulability, we focus on mea-
sured schdulability. That is, we actually run the tasks in

our constructed system for a reasonable time duration,
and then check if any deadline has ever been missed.
If so, we mark this task set is not schedulable; other-
wise, we mark this task set is schedulable. Moreover,
we only consider synchronous implicit-deadline peri-
odic tasks, i.e., for any i, φi = 0 and Di = Ti (recall
that a task is specified as τi = (φi, Ci, Di, Ti)).

The constructed system consists of four processors
with a speed 1.25 and other four processors with a
speed 1.0, so the platform total speed, or capacity, is
9. We randomly generate task sets with a total uti-
lization in [7, 9]3 with an incremental step of 0.2. For
each designated total utilization, we generate 100 task
sets, and we run each task set for 10 seconds, i.e.,
10, 000ms. In terms of randomly generating the utiliza-
tion of each individual task (ui), we have three differ-
ent range settings: light [0.1, 0.5], medium [0.5, 0.9],
and heavy [0.9, 1]4. Then, we choose a task’s period
(Ti) from a log-uniform distribution with the range
[10 ms, 1000 ms], i.e., we first uniformly choose an x
from [1, 3] and then 10x is the period. Now, the execu-
tion cost of the task (Ci) can be computed from its uti-
lization (ui) and period (Ti). Note that we approximate
all periods and execution costs to integers since the
middleware only supports integer parameters. There-
fore, the actual utilization of a task could be slightly
lower than its designated utilization. Nevertheless, it
has little affect on our experiments; we only need to
interpret the designated total utilization as a total uti-
lization bound instead of an exact total utilization.

In this project, the schedulability of an algorithm is
defined as the percentage of schedulable task sets un-
der that algorithm among all generated task sets of a
certain designated total utilization. Fig. 2 shows the
measured schedulability under strictly full-migration
GEDF, full-migration GEDF with improved migration
rules, or ordinary speed-oblivious GEDF, where the
last one is the general GEDF designed for identical
multiprocessors, i.e., the scheduler never migrates a
task that is current executing, even if it is executing
on a slower processor and a fast processor is available.

As seen, the purely full-migration GEDF has a

3We only focus on those “hard to schedule” cases, i.e., the total
utilization is approaching the system capacity

4Since we have processors with a speed 1.25, we may support
some “very heavy” tasks with a utilization in (1, 1.25]. However,
it exceeds the speed of the slower processors, and therefore needs
a more complicated feasibility-aware generation pattern. Thus, we
do not consider this situation in this project.
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Figure 2: Measured schedulability.

very poor performance even compared to a speed-
oblivious scheduler, which means the migration over-
heads significantly outweighs the theoretical advan-
tages by those migrations. Furthermore, even when the
improved migration rules are applied, the improved
full-migration scheduler only slightly outperforms the
speed-oblivious one in the case that individual task uti-
lizations are heavy. Thus, this project shows that those
theoretically beneficial migrations may not be worth to
be committed in real implementations. Nevertheless,
such observations and the conclusion are based only on
the platform we construct, where the speed difference
is only 2.5GHz vs. 2.0GHz. Maybe a larger speed gap
would make the merits of those migrations outweigh
the overhead incurred by them, which may potentially
lead to interesting future work.

6 Conclusion

By leveraging CPU frequency scaling techniques, we
have constructed a uniform heterogeneous multipro-
cessor in an identical multiprocessor system. We have
implemented a full-migration GEDF scheduler as a
middleware plug-in, and have improved its migration
rules. We have also evaluated the schedulers by provid-
ing response-time comparisons in a particular example
and by measuring the schedulability of randomly gen-
erated task sets.
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