Learning Temporal Transformations From
Time-Lapse Videos

Yipin Zhou Tamara L. Berg

University of North Carolina at Chapel Hill
{yipin,tlberg}@cs.unc.edu

Abstract. Based on life-long observations of physical, chemical, and bi-
ologic phenomena in the natural world, humans can often easily picture
in their minds what an object will look like in the future. But, what
about computers? In this paper, we learn computational models of ob-
ject transformations from time-lapse videos. In particular, we explore the
use of generative models to create depictions of objects at future times.
These models explore several different prediction tasks: generating a fu-
ture state given a single depiction of an object, generating a future state
given two depictions of an object at different times, and generating future
states recursively in a recurrent framework. We provide both qualitative
and quantitative evaluations of the generated results, and also conduct
a human evaluation to compare variations of our models.
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1 Introduction

Before they can speak or understand language, babies have a grasp of some
natural phenomena. They realize that if they drop the spoon it will fall to the
ground (and their parent will pick it up). As they grow older, they develop
understanding of more complex notions like object constancy and time. Children
acquire much of this knowledge by observing and interacting with the world.
In this paper we seek to learn computational models of how the world works
through observation. Specifically, we learn models for natural transformations
from video. To enable this learning, we collect time-lapse videos demonstrating
four different natural state transformations: melting, blooming, baking, and rot-
ting. Several of these transformations are applicable to a variety of objects. For
example, butter, ice cream, and snow melt, bread and pizzas bake, and many
different objects rot. We train models for each transformation — irrespective of
the object undergoing the transformation — under the assumption that these
transformations have shared underlying physical properties that can be learned.
To model transformations, we train deep networks to generate depictions
of the future state of objects. We explore several different generation tasks for
modeling natural transformations. The first task is to generate the future state
depiction of an object from a single image of the object (Sec 3.1). Here the input
is a frame depicting an object at time t, and output is a generated depiction
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of the object at time t—+k, where k is specified as a conditional label input to
the network. For this task we explore two auto-encoder based architectures. The
first architecture is a baseline algorithm built from a standard auto-encoder
framework. The second architecture is a generative adversarial network where
in addition to the baseline auto-encoder, a discriminator network is added to
encourage more realistic outputs.

For our second and third future prediction tasks, we introduce different ways
of encoding time in the generation process. In our two-stack model (Sec 3.2) the
input is two images of an object at time t and t+m and the model learns to
generate a future image according to the implicit time gap between the input
images (ie generate a prediction of the object at time t+2m). These models are
trained on images with varying time gaps. Finally, in our last prediction task,
our goal is to recursively generate the future states of an object given a single
input image of the object. For this task, we use a recurrent neural network to
recursively generate future depictions (Sec 3.3). For each of the described future
generation tasks, we also explore the effectiveness of pre-training on a large set
of images, followed by fine-tuning on time-lapse data for improving performance.

Future prediction has been explored in previous works for generating the
next frame or next few frames of a video [1-3]. Our focus, in comparison, is to
model general natural object transformations and to model future prediction at
a longer time scale (minutes to days) than previous approaches.

We evaluate the generated results of each model both quantitatively and
qualitatively under a variety of different training scenarios (Sec 4). In addition,
we perform human evaluations of model variations and image retrieval exper-
iments. Finally, to help understand what these models have learned, we also
visualize common motion patterns of the learned transformations. These results
are discussed in Sec 5.

The innovations introduced by our paper include: 1) A new problem of model-
ing natural object transformations with deep networks, 2) A new dataset of 1463
time-lapse videos depicting 4 common object transformations, 3) Exploration of
deep network architectures for modeling and generating future depictions, 4)
Quantitative, qualitative, and human evaluations of the generated results, and
5) Visualizations of the learned transformation patterns.

1.1 Related work

Object state recognition: Previous works [4-6] have looked at the problem
of recognizing attributes, which has significant conceptual overlap with the idea
of object state recognition. For example “in full bloom” could be viewed as an
attribute of flowers. Parikh and Grauman [5] train models to recognize the rel-
ative strength of attributes such as face A is “smiling more” than face B from
ordered sets of images. One way to view our work is as providing methods to
train relative state models in the temporal domain. Most relevant to our work,
given a set of object transformation terms, such as ripe vs unripe, [7] learns
visual classification and regression models for object transformations from a col-
lection of photos. In contrast, our work takes a deep learning approach and learns
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transformations from video — perhaps a more natural input format for learning
temporal information.

Timelapse data analysis: Timelapse data captures changes in time and has
been used for various applications. [8] hallucinates an input scene image at a dif-
ferent time of day by making use of a timelapse video dataset exhibiting lighting
changes in an example-based color transfer technique. [9] presents an algorithm
that synthesizes timelapse videos of landmarks from large internet image col-
lections. In their follow-up work, [10] imports additional camera motion while
composing videos to create transformations in time and space.

Future prediction: Future prediction has been applied to various tasks such
as estimating the future trajectories of cars[11], pedestrians[12], or general ob-
jects[13] in images or videos. In the ego-centric activity domain, [14] encodes
the prediction problem as a binary task of selecting which of two video clips is
first in temporal ordering. Given large amounts of unlabeled video data from the
internet, [15] trains a deep network to predict visual representations of future
images, enabling them to anticipate both actions and objects before they appear.
Image/Frame generation: Generative models have attracted extensive atten-
tion in machine learning [16-21]. Recently many works have focused on gener-
ating novel natural or high-quality images. [22] applies deep structure networks
trained on synthetic data to generate 3D chairs. [23] combines variational auto-
encoders with an attention mechanism to recurrently generate different parts
of a single image. Generative adversarial networks (GANs) have shown great
promise for improving image generation quality [24]. GANs are composed of two
parts, a generative model and a discriminative model, to be trained jointly. Some
extensions have combined GAN structure with multi-scale laplacian pyramid to
produce high-resolution generation results [25]. Recently [26] incorporated deep
convolutional neural network structures into GANs to improve image quality.
[27] proposed a network to generate the contents of an arbitrary image region
according to its surroundings. Some related approaches [1-3] have trained gen-
eration models to reconstruct input video frames and/or generate the next few
consecutive frames of a video. We also explore the use of DCGANSs for future
prediction, focusing on modeling object transformations over relatively long time
scales.

2 Object-centric timelapse dataset

Given the high-level goal of understanding temporal transformations of objects,
we require a collection of videos showing temporal state changes. Therefore,
we collect a large set of object-centric timelapse videos from the web. Time-
lapse videos are ideal for our purposes since they are designed to show an entire
transformation (or a portion of a transformation) within a short period of time.

2.1 Data collection

We observe that time-lapse photography is quite popular due to the relative
ease of data collection. A search on YouTube for “time lapse” results in over
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[Rotting: 185 [Melting: 453 [Baking: 242[Blooming: 583

Strawberry: 35|Ice cream: 128|Cookies: 55 [Flower: 583
Watermelon: 9|Chocolate: 18 |Bread: 57

Tomato: 25 Butter: 9 Pizza: 59

Banana: 26 Snow: 54 Cake: 48

Apple: 23 Wax: 60 Other: 23

Peach: 8 Ice: 184

Other: 59

Table 1. Statistics of our transformation categories. Some categories contain multiple
objects (e.g. ice cream, chocolate, etc melting) while others apply only to a specific
object (e.g. flowers blooming). Values indicate the total number of videos collected for
each category.

11 million results. Anyone with a personal camera, GoPro, or even a cell phone
can capture a simple time-lapse video and many people post and publicly share
these videos on the web. We collect our object-based timelapse video dataset
by directly querying keywords through the YouTube API. For this paper, we
query 4 state transformation categories: Blooming, Melting, Baking and Rotting,
combined with various object categories. This results in a dataset of more than
5000 videos. This dataset could be extended to a wider variety of transformations
or to more complex multi-object transformations, but as a first step we focus on
these 4 as our initial goal set of transformations for learning.

For ease of learning, ideally these videos should be object-centric with a static
camera capturing an entire object transformation. However, many videos in the
initial data collection stage do not meet these requirements. Therefore, we clean
the data using Amazon Mechanical Turk (AMT) as a crowdsourcing platform.
Each video is examined by 3 Turkers who are asked questions related to video
quality. Videos that are not timelapse, contain severe camera motion or are not
consistent with the query labels are removed. We also manually adjust parts
of the videos which are playing backwards (a technique used in some time-lapse
videos), contain more than one round of the specified transformation, and remove
irrelevant prolog/epilog. Finally our resulting dataset contains 1463 high quality
object based timelapse videos. Table. 1 shows the statistics of transformation
categories and their respective object counts. Fig. 1 shows example frames of
each transformation category.

2.2 Transformation degree annotation

To learn natural transformation models of objects from videos, we need to first
label the degree of transformation throughout the videos. In language, people
use text labels to describe different states, for instance, fresh vs rotted apple.
However, the transformation from one state to another is really a continuous
evolution. Therefore, we represent the degree of transformation with a real num-
ber, assigning the start state a value of 0 (not at all rotten) and the end state
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Blooming Melting

Fig. 1. Example frames from our dataset of each transformation category: Blooming,
Melting, Baking, and Rotting. In each column, time increases as you move down the
column, showing how an object transforms.

(completely rotten) a value of 1. To annotate objects from different videos we
could naively assign the first frame a value of 0 and the last frame a value of 1,
interpolating in between. However, we observe that some time-lapse videos may
not depict entire transformations, resulting in poor alignments.

Therefore, we design a labeling task for people to assign degrees of transfor-
mation to videos. Directly estimating a real value for frames turns out to be im-
practical as people may have different conceptions of transformation degree. In-
stead our interface displays reference frames of an object category-transformation
and asks Turkers to align frames from a target video to the reference frames
according to degree of transformation. Specifically, for each object category-
transformation pair we select 5 reference frames from a reference video showing:
transformation degree values of 0, 0.25, 0.5, 0.75, and 1. Then, for the rest of the
videos in that object-transformation category, we ask Turkers to select frames
visually displaying the same degree of transformation as the reference frames. If
the displayed video does not depict an entire transformation, Turkers may align
less than 5 frames with the reference. Each target video is aligned by 3 Turkers
and the median of their responses is used as annotation labels(linearly interpo-
lating degrees between labeled target frames). This provides us with consistent
degree annotations between videos.

3 Future state generation Tasks & Approaches

Our goal is to generate depictions of the future state of objects. In this work, we
explore frameworks for 3 temporal prediction tasks. In the first task (Sec 3.1),
called pairwise generation, we input an object-centric frame and the model gen-
erates an image showing the future state of this object. Here the degree of the
future state transformation — how far in the future we want the depiction to
show — is controlled by a conditional term in the model. In the second task
(Sec 3.2) we have two inputs to the model: two frames from the same video
showing a state transformation at two points in time. The goal of this model
is to generate a third image that continues the trend of the transformation de-
picted by the first and second input. We call this “two stack” generation. In the
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Fig. 2. Model architectures of three generation tasks: (a) Pairwise generator; (b) Two
stack generator; (c) Recurrent generator.

third task (Sec 3.3), called “recurrent generation”, the input is a single frame
and the goal is to recursively generate images that exhibit future degrees of the
transformation in a recurrent model framework.

3.1 Pairwise generation

In this task, we input a frame and generate an image showing the future state.
We model the task using an autoencoder style convolutional neural network. The
model architecture is shown in Fig. 2(a), where the input and output size are
64x64 with 3 channels and encoding and decoding parts are symmetric. Both
encoding and decoding parts consists of 4 convolution/deconvolution layers with
the kernel size 5x5 and a stride of 2, meaning that at each layer the height and
width of the output feature map decreases/increases by a factor of 2 with 64,
128, 256, 512/512, 256, 128, 64 channels respectively. Each conv/deconv layer,
except the last layer, is followed by a batch normalization operation[28] and
ReLU activation function[29]. For the last layer we use Tanh as the activation
function. The size of the hidden variable z (center) is 512. We represent the
conditional term encoding the degree of elapsed time between the input and
output as a 4 dimensional one-hot vector, representing 4 possible degrees. This
is connected with a linear layer (512) and concatenated with z to adjust the
degree of the future depiction. Below we describe experiments with different loss
functions and training approaches for this network.

p-mse: As a baseline, we use pixel-wised mean square error(p-MSE) between
prediction output and ground truth as the loss function. Previous image gener-
ation works[1, 2, 30, 3, 27] postulate that pixel-wised Iy criterion is one cause of
output generation blurriness. We also observe this effect in the outputs produced
by this baseline model.

p-mse+adv: Following the success of recent image generation works[24,26],
which make use of generative adversarial networks (GANs) to generate better
quality images, we explore the use of this network architecture for temporal
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generation. For their original purpose, these networks generate images from ran-
domly sampled noise. Here, we use a GAN to generate future images from an
image of an object at the current time. Specifically, we use the baseline autoen-
coder previously described and incorporate an adversarial loss in combination
with the pixel-wise MSE. During training this means that in addition to the
auto-encoder, called the generator (G), we also train a binary CNN classifier,
called the discriminator (D). The discriminator takes as input, the output of the
generator and is trained to classify images as real or fake (i.e. generated). These
two networks are adversaries because G is trying to generate images that can
fool D into thinking they are real, and D is trying to determine if the images
generated by G are real. Adding D helps to train a better generator G that
produces more realistic future state images. The architecture of D is the same
as the encoder of G, except that the last output is a scalar and connect with sig-
moid function. D also incorporates the conditional term by connecting a one-hot
vector with a linear layer and reshaping to the same size as the input image then
concatenating in the third dimension. The output of D is a probability, which
will be large if the input is a real image and small if the input is a generated
image. For this framework, the loss is formulated as a combination of the MSE
and adversarial loss:

Lg = Lp:mse + )\adv * Lado (1)

where Ly _,¢c is the mean square error loss, where x is the input image, c is the
conditional term, G(.) is the output of the generation model, and y is the ground
truth future image at time = current time + c.

Lp,mse = |y - G($7 C)‘Q (2)

And, L,q4, is a binary cross-entropy loss with o = 1 that penalizes if the generated
image does not look like a real image. D[.] is the scalar probability output by
the discriminator.

Lagy = —alog(D[G(z,¢),¢]) = (1 = a)log(1 — D[G(z, ¢), c]) (3)

During training, the binary cross-entropy loss is used to train D on both real
and generated images. For details of jointly training adversarial structures, please
refer to [24].

p-g-mse+adv: Inspired by [2], where they introduce gradient based l; or lo
loss to sharpen generated images. We also evaluate a loss function that is a
combination of pixel-wise MSE, gradient based MSE, and adversarial loss:

Lg = Lp,mse + Lg,mse + Aadv * Lado (4)
where Lg s Tepresents mean square error in the gradient domain defined as:
Lg,mse = (gx [y] - gw[G(xa c)])Q + (gy [y] - gU[G(x7 C)])2 (5)

gz[.] and g,[.] are the gradient operations along the x and y axis of images. We
could apply different weights to Ly e and Ly mse, but in this work we simply
weight them equally.
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p-g-mse+adv-+ft: Since we have limited training data for each transformation,
we investigate the use of pre-training for improving generation quality. In this
method we use the same loss function as the last method, but instead of training
the adversarial network from scratch, training proceeds in two stages. The first
stage is a reconstruction stage where we train the generation model using random
static images for the reconstruction task. Here the goal is for the output image
to match the input image as well as possible even though passing through a
bottleneck during generation. In the second stage, the fine-tuning stage, we fine-
tune the network for the temporal generation task using our timelapse data. By
first pre-training for the reconstruction task, we expect the network to obtain a
good initialization, capturing a representation that will be useful for kick-starting
the temporal generation fine-tuning.

3.2 Two stack generation

In this scenario, we want to generate an image that shows the future state of an
object given two input images showing the object in two stages of its transfor-
mation. The output should continue the transformation pattern demonstrated
in the input images, i.e. if the input images depict the object at time t and
t+m, then the output should depict the object at time t+2m. We design the
generation model using two stacks in the encoding part of the model as shown
in Fig. 2(b). The structures of the two stacks are the same and are also identical
to the encoding part of the pairwise generation model. The hidden variables z;
and zy are both 512 dimensions, and are concatenated together and fed into the
decoding part, which is also the same as the previous pairwise generation model.
The two stacks are sequential, trained independently without shared weights.

Given the blurry results of the baseline for pairwise generation, here we only
use three methods p_mse+adv, p_g_mse+adv, and p_g_mse+adv-+ft. The
structure of the discriminator is the same. For the fine-tuning method, during
the reconstruction training, we make the two inputs the same static image. The
optimization procedures are the same as for the pairwise generation task, but
we do not have conditional term here (since time for the future generation is
implicitly specified by the input images).

3.3 Recurrent generation

In this scenario, we would like to recursively generate future images of an object
given only a single image of its current temporal state. In particular, we use a
recurrent neural network framework for generation where each time step gener-
ates an image of the object at a fixed degree interval in the future. This model
structure is shown in Fig. 2(c). After hidden variable z, we add a LSTM]31]
layer. For each time step, the LSTM layer takes both z and the output from
the previous time step as inputs and sends a 512 dimension vector to the de-
coder. The structure of the encoder and decoder are the same as in the previous
scenarios, where the decoding portions for each time slot share the same weights.
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We evaluate three loss functions in this network: p_mse—+adv, p_g_mse-+tadv
and p_g_mse+adv+ft. The structure of the discriminator is again the same
without the conditional term (as in the two-stack model). For fine-tuning, dur-
ing reconstruction training, we train the model to recurrently output the same
static image as the input at each time step.

4 Experiments

In this section, we discuss the training process and parameter settings for all
experiments (Sec 4.1). Then, we describe dataset pre-processing and augmenta-
tion (Sec 4.2). Finally, we discuss quantitative and qualitative analysis of results
for: pairwise generation (Sec 4.3), two-stack generation (Sec 4.4), and recurrent
generation (Sec 4.5).

4.1 Training & Parameter settings

Unless otherwise specified training and parameter setting details are applied to
all models. During training, we apply Adam Stochastic Optimization[32] with
learning rate 0.0002 and minibatch of size 64. The models are implemented using
the Tensorflow deep learning toolbox[33]. In the loss functions where we combine
mean square error loss with adversarial loss (as in equation(1)), we set the weight
of the adversarial loss to Ayq, = 0.2 for all experiments.

4.2 Dataset preprocessing & augmentation

Timelapse dataset: Some of the collected videos depict more than one object
or the object is not located in the center of the frames. In order to help the model
concentrate on learning the transformation itself rather object localization, for
each video in the dataset, we obtain a cropped version of the frames centered on
the main object. We randomly split the videos into training and testing sets in
a ratio of 0.85 : 0.15. Then, we sample frame pairs (for pairwise generation) or
groups of frames (for two-stack and recurrent generation) from the training and
testing videos. Frames are resized to 64x64 for generation. To prevent overfitting,
we also perform data augmentation on training pairs or groups by incorporating
frame crops and left-right flipping.

Reconstruction dataset: This dataset contains static images used to pre-
train our models on reconstruction tasks. Initially, we tried training only on
objects depicted in the timelapse videos and observed performance improvement.
However, collecting images of specific object categories is a tedious task at large-
scale. Therefore, we also tried pre-training on random images (scene images or
images of random objects) and found that the results were competitive. This
implies that the content of the images is not as important as encouraging the
networks to learn how to reconstruct arbitrary input images well. We randomly
download 50101 images from ImageNet[34] as our reconstruction dataset. The
advantage of this strategy is that we are able to use the same group of images
for every transformation model and task.
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Fig. 3. Pairwise generation results for: Blooming (rows 1-3), Melting (rows 4-5), Baking
(rows 6-7) and Rotting (rows 8-9). Input(a), p-mse(b), p-mse+adv(c), p-g-mse+adv(d),
p-g-mse+adv+ft(e), Ground truth frames(f). Black frames in the ground truth indicate
video did not depict transformation that far in the future.

(a]

Pairwise Two stack Recurrent
PSNR | SSIM | MSE || PSNR | SSIM | MSE || PSNR | SSIM | MSE
p-mse+adv 17.0409[0.5576|0.0227{|17.7425(0.5970(0.0185||17.2758|0.5747(0.0211

p-g-mse+adv 17.0660(0.5720]0.0224||17.9157]0.6122]0.0177{|17.2951|0.5749|0.0214
p-g-mse+adv+ft|17.4784/0.6036|0.0207|/18.6812|0.6566|0.0153|(18.3357|0.6283|0.0166

Table 2. Quantitative Evaluation of: Pairwise generation, Two stack generation, and
Recurrent tasks. For PSNR and SSIM larger is better, while for MSE lower is better.

4.3 Pairwise generation

In the pairwise generation task, we input an image of an object and the model
outputs depiction of the future state of the object, where the degree of trans-
formation is controlled by a conditional term. The conditional term is a 4 di-
mensional one-hot vector which indicates whether the predicted output should
be 0, 0.25, 0.5 or 0.75 degrees in the future from the input frame. We sample
frame pairs from timelapse videos based on annotated degree value intervals. A
0 degree interval means that the input and output training images are identical.
We consider 0 degree pairs as auxiliary pairs, useful for two reasons: 1) They
help augment the training data with video frames (which display different prop-
erties from still images), and 2) The prediction quality of image reconstruction
is highly correlated with the quality of future generation. Pairs from 0 degree
transformations can be easily be evaluated in terms of reconstruction quality
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Fig. 4. Two stack generation results for Blooming (a), Melting (b), Baking (c) and Rot-
ting (d). For each we show the two input frames (col 1-2), and results for: p_mse+adv
(col 3), p-g-mse+adv (col 4), p_g-mse+adv+ft (col 5) and ground truth (col 6)

since the prediction should ideally exactly match the ground truth image. Pre-
dictions for future degree transformations are somewhat more subjective. For
example, from a bud the resulting generated bloom may look like a perfectly
valid flower, but may not match the exact flower shape that this particular bud
grew into (an example is shown in Fig. 3 row 1).

We train pairwise generation models separately for each of the 4 transforma-
tion categories using p_mse, p_mse+adv and p_g_mse+adv methods, trained
for 12500 iterations on timelapse data from scratch. For the p_g_mse+adv+ft
method, the models are first trained on the reconstruction dataset for 5000
iterations with the conditional term fixed as ‘0 degree’ and then fine-tuned on
timelapse data for another 5500 iterations. We observe that the fine-tuning train-
ing converges faster than training from scratch (example results with 3 different
degree conditional terms in Fig. 3). We observe that the baseline suffers from a
high degree of blurriness. Incorporating other terms into the loss function im-
proves results, as does pre-training with fine-tuning. Table. 2 (cols 2-4) shows
evaluations of pairwise-generation reconstruction. For evaluation, we compute
the Peak Signal to Noise Ratio(PSNR), Structural Similarity Index(SSIM) and
Mean Square Error (MSE) values between the output and ground truth. We can
see that incorporating gradient loss slightly improves results while pre-training
further improves performance. This agrees with the qualitative visual results.

4.4 Two stack generation

For two stack generation, the model generates an image showing the future state
of an object given two input depictions at different stages of transformation. As
training data, we sample frame triples from videos with neighboring frame de-
gree intervals: 0, 0.1, 0.2, 0.3, 0.4, and 0.5. We train two stack generation models
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Fig. 5. Two stack generation with varying time between input images. For each exam-
ple we show: the two input images (col 1-2), p-mse4adv (col 3), p_g-mse+adv (col 4),
p-g-mse+adv+ft (col 5) and ground truth (col 6). The models are able to vary their
outputs depending on elapsed time between inputs.
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for each of the 4 transformation categories, trained for 12500 iterations for the
p-mse+adv and p_g_mse+adv methods. For the p_g_mse+adv+ft method,
the models are first pre-trained on the reconstruction dataset for 4000 iterations
and then fine-tuned on timelapse data for 6500 iterations (Fig. 4 shows exam-
ple prediction results). We observe that p_g_mse+adv+ft generates improved
results in terms of both image quality and future state prediction accuracy. We
further evaluate the reconstruction accuracy off these models in Table. 2 (cols
5-7). Furthermore, in this task we expect that the models can not only predict
the future state, but also learn to generate the correct time interval based on the
input images. Fig. 5 shows input images with different amounts of elapsed time.
We can see that the models are able to vary how far in the future to generate
based on the input image interval.

4.5 Recurrent generation

For our recurrent generation task, we want to train a model to generate multiple
future states of an object given a single input frame. Due to limited data we
recursively generate 4 time steps. During training, we sample groups of frames
from timelapse videos. Each group contains 5 frames, the first being the input,
and the rests having 0, 0.1, 0.2, 0.3 degree intervals from the input. As in the
previous tasks, the reconstruction outputs are used for quantitative evaluation.

We train the models separately for the 4 transformation categories. The mod-
els for the p_mse4adv and p_g_-mse+adv methods are trained for 8500 it-
erations on timelapse data from scratch. For the p_g_mse+adv+ft method,
models are pre-trained on the reconstruction dataset for 5000 iterations then
fine-tuned for another 5500 iterations. Fig. 6 shows prediction results (outputs
of 27 374 and 4" time steps) of the three methods. Table. 2 (cols 8-10) shows
the reconstruction evaluation.

5 Additional experiments

Human Evaluations: As previously described, object future state prediction is
sometimes not well defined. Many different possible futures may be considered
reasonable to a human observer. Therefore, we design human experiments to
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Fig. 6. Recurrent generation results for: Blooming (rows 1-2), Melting (rows 3-4),
Baking (rows 5-6) and Rotting (rows 7-8). Input(a), p-mse+adv(b), p_g_mse+adv(c),
p-g-mse+adv+{t(d), Ground truth frames(e).

judge the quality of our generated future states. For each transformation category
and generation task, we randomly pick 500 test cases. Human subjects are shown
one (or two for two stack generation) input image and future images generated
by each method (randomly sorted to avoid biases in human selection). Subjects
are asked to choose the image that most reasonably shows the future object
state.

Results are shown in Table 3, where numbers indicate the fraction of cases
where humans selected results from each method as the best future prediction.
For pairwise generation (cols 2-5), the p_g_mse+adv+ft method achieves the
most human preferences, while the baseline performs worst by a large margin.
For both two stack generation (cols 6-8) and recurrent generation (cols 9-11),
p-mse+adv and p_g_mse-+tadv are competitive, but again making use of pre-
training plus fine-tuning obtains largest number of human preferences.

Image retrieval: We also add a simple retrieval experiment on Pairwise gen-
eration results using pixelwise similarity. We count retrievals within reasonable
distance (20% of video length) to the ground truth as correct, achieving average
accuracies on top-1/5 of p_mse+adv: 0.68/0.94; p_g_mse—+adv: 0.72/0.95; and
p-g-mse+adv+ft: 0.90/0.98.

Visualizations: Object state transformations often lead to physical changes in
the shape of an object. To further understand what our models have learned,
we provide some simple visualizations of motion features computed on gener-
ated images. Visualizations are computed on results of the p_g_mse+adv+ft
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Pairwise Two stack Recurrent
BL | ADV | Grad Ft ADV | Grad Ft ADV | Grad Ft
Blooming|0.1320|0.2300(0.2880]| 0.3500 ||0.3080{0.3240| 0.3680 {|0.3320{0.2860| 0.3820
Melting ]0.1680/0.2520(0.2760| 0.3040 |[0.3400{0.3120| 0.3480 {|0.3180{0.3220| 0.3600
Baking ]0.1620/0.2600(0.2840]| 0.2940 ||0.3120{0.3200| 0.3680 {|0.2780{0.3540| 0.3680
Rotting ]0.1340/0.2020(0.2580]| 0.4060 ||0.3040{0.2640| 0.4320 {|0.2940{0.2900| 0.4160
Average [0.1490(0.2360|0.2765[0.3385(/0.3160(0.3050(0.3790/|0.3055|0.3130|0.3815

Table 3. Human evaluation results: BL stands for p_mse method, ADV (p_mse+adv),
Grad(p-g_-mse+adv) and Ft(p_g_mse+adv-+1t)

CLL Waes
B UL g T

Fig. 7. Visualization results of learned transformations: x axis flows of blooming (a),
y axis flows of melting (b), y axis flows of baking (c) and y axis flows of rotting (d)

recurrent model since we want to show the temporal trends of the learned trans-
formations. For each testing case, we compute 3 optical flow maps in the x and y
directions between the input image and the second, third, and fourth generated
images. We cluster each using kmeans (k=4). Then, for each cluster, we average
the optical flow maps in the x and y directions.

Fig. 7 shows the flow visualization: (a) is the x axis flow for the blooming
transformation. From the visualization we observe the trend of the object grow-
ing spatially. (b) shows the y axis flows for the melting transformation, showing
the object shrinking in the y direction. (c¢) shows baking, consistent with the
object inflating up and down. For rotting (d), we observe that the upper part of
the object inflates with mold or shrinks due to dehydration.

6 Conclusions

In this paper, we have collected a new dataset of timelapse videos depicting
temporal object transformations. Using this dataset, we have trained effective
methods to generate one or multiple future object states. We evaluate each pre-
diction task under a number of different loss functions and show improvements
using adversarial networks and pre-training. Finally, we provide human evalu-
ations and visualizations of the learned models. Future work includes applying
our methods to additional single-object transformations and to more complex
transformations involving multiple objects.
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