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a b s t r a c t

Background: To recognize parasite eggs automatically, the automatic segmentation of parasite egg
images is very important for the extraction of characteristics and genera classification.
Methods: A Cascaded-Automatic Segmentation approach was proposed. Firstly, image contrast between
the border of an egg and its background for all samples was strengthened by the Radon-Like Features
algorithm and the enhanced image was processed into a binary image to get an initial set. Then, the
elliptical targets are located with Randomized Hough Transform (RHT). The fitted data of an elliptical
border are considered the initial border data and the accurate border of a Schistosoma japonicum egg can
be finally segmented using an Active Contour Model (Snake).
Results: Seventy-three cases of S. japonicum eggs in fecal samples were found; 61 images contained a
parasite egg and 12 did not. Although the illumination, noise pollution, boundary definitions of eggs, and
egg position are different, they are all segmented and labeled accurately.
Discussion: The results proved that accurate borders of S. japonicum eggs could be recognized precisely
using the proposed method, and the robustness of the method is good even in images with heavy noise.
This indicates that the proposed method can overcome the disadvantages of the traditional threshold
segmentation method, which has limited adaptability to images with heavy background noise.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The microscopic image recognition of parasite eggs is one of
the most important means of diagnosis for humans infected by
parasites. In recent years, parasite researchers and computer
researchers have been cooperatively studying to enable the auto-
matic recognition of parasite eggs in microscopic images in order
to reduce the erroneous judgment rate that is caused by indivi-
dual's lacking experience in manual identification. They also aimed
to achieve remote real-time differential diagnosis. To date, many
research papers have focused on how to classify specific kinds of
eggs, and only a few papers have dealt with how to identify the
accurate borders of a parasite egg [1–10]. Among these, papers
[6,9,10] were from China, while the other reports were from
outside of this country. Automatic segmentation of parasite eggs

image is very important for the extraction of characteristics and
the classification of parasite eggs in later stages. If the automatic
segmentation of parasite eggs is not performed, they cannot be
recognized automatically. In the aforementioned papers, only a
few have reported on automatic segmentation based on the
threshold method of parasite egg objects [1,3,4,6]. Other reports
on the segmentation of parasite eggs can only be made with
human participation to accurately obtain parasite eggs from
images. In these research, Yang et al. [1] started research into
the recognition of parasite eggs in fecal samples, but the experi-
mental materials contained much less noise than those utilized in
this paper, which were captured directly from fecal samples
without any preprocessing. Dogantekin et al. [3] and Castañón
et al. [4] proposed two different parasite egg segmentation
methods based on threshold operations, but the threshold method
was too simple to resolve the problem identified in the current
paper. In addition, reported segmentation methods are generally
applied to parasite egg images which are obtained from culture
medium containing smaller background noise. Nevertheless, egg
images from clinical testing samples are often obtained from fecal
extracts; they have the same features regarding the surrounding
and internal contents. Also, it is difficult to accurately identify egg
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boundaries from fecal extract images with heavy background
noise using the approach based on threshold segmentation.
Therefore, to achieve computer automatic-recognition and real-
time diagnosis for clinical parasite eggs, it is necessary to use an
automatic segmentation approach for parasite egg images that are
gathered from fecal extracts. After analyzing the disadvantages of
existing methods and performing a number of experiments, a
Cascaded-Automatic Segmentation method from coarse to fine,
which solves the boundary segmentation of eggs in fecal sample
images, is presented in this paper. This method is based on a
combination of state-of-the-art methods used in all of the steps in
the processing flow. Those methods perform very well in their
own domain, but making them work together is still a very
challenging task. The images of samples captured from fecal
extracts have very heavy noise interference. In particular, eggs
and their surrounding debris show the same appearance, and the
key features of eggs are only around their edge. Therefore, the key
step to automatically recognize and classify eggs using a computer
is identifying the boundary regions of eggs. The processing flow of
the method is shown in Fig. 1. First, original images were filtered
and enhanced by a method named Radon-Like Feature filter
[11,12], which enhances the boundary of the parasite egg. Then,
a point set filter was applied to filter out the noisy points and
improve the segment performance. This filter is based on a
number of existing methods in the domain of image thinning,
labeling and connected component analysis [13–20]. Next, the
Randomized Hough Transform method was used to extract the
point set of a raw edge [21–26]. Lastly, the point set extracted in
the above step was used as the initial point set in a segmentation
method named the active contour model, which extracts the
accurate edges of the egg [27–35]. Here, we describe in detail all
of the methods used and present some experimental results and
parameters used in these experiments.

2. Materials and methods

2.1. General materials

Seventy-three cases of Schistosoma japonicum eggs in fecal
samples and 43 cases of Clonorchis sinensis eggs in samples were
obtained from clinics. They were supplied by Professor Wu Zhong-
dao's team of the Parasite Research and Teaching Department,
Zhongshan School of Medicine in Sun Yat-sen University. These
samples were collected in Jiangxi and other regions in China. The
microscopic images were acquired using an 8 million pixel digital
microscope acquisition system. Overall, 104 images contained
parasite eggs and 12 images did not. The resolution of these
images was resized to 256�192 pixels.

2.2. The boundary enhancement based on Radon-Like Features

The Radon-Like Features method was proposed by Kumar et al.
of Harvard University, for use in the enhancement and segmenta-
tion of neuron cell images [11]. This technique differs greatly from
traditional de-noising and enhancement algorithms due to its
multi-dimensional, multi-scale and multi-directional filtering
properties. In this approach, the enhanced image was generated
by averaging the multi-dimensional feature vectors, while the
feature vectors were obtained from the original image that was
processed by Gaussian-Second-Derivative filters in multi-
directions and multi-scales and then operated using an integral
line in multiple directions. Because this approach synthetically
considers the effects of multi-scale and multi-directional features
on enhancement results, it has strong adaptability for images with
very complex scenes and heavy background noise. The Radon-Like
Features algorithm processes can be divided into four steps.

Step 1 involves processing the original images using the
following formula:

Rðx; yÞ ¼maxσ;ϕΔGðσ;ϕÞ � Iðx; yÞ ð1Þ
where G(σ,ϕ) is the Gaussian-Second-Derivative (GSD) filter, σ and
ϕ are the scale and the orientation of the GSD function, respec-
tively, and � denotes the convolution. We can get m�n GSD
filters when letting σ take m different values and ϕ take n different
values, and then the transformation R(x,y) captures response of
the most dominant GSD filter at each pixel.

In Step 2, the set P of the boundary points of R(x,y) is found by
using a Canny operator

P ¼ CannyðRðx; yÞÞ ð2Þ

Step 3 calculates the integral in formula (3) with 101/step from
01 to 13601

TðI; lðtÞÞ ¼
R tiþ 1
ti

RðlðtÞÞ∂t
jjlðtiþ1Þ� lðtiÞjj2

; tA ½ti; tiþ1� ð3Þ

where ti is a point of the set P of the boundary points calculated by
formula (2), and l is a line which starts at the point ti and whose
direction angle increases by 101/step. If tiþ1 is on the line segment
at one direction and with a start-point of ti, t shall be one point of
the line segment between the nodes ti and tiþ1. From formula (3),
if the pixel in R(x,y) is not in set P, the linear integral values along
36 directions for formula (3) are all zero; if the pixel in R(x,y) is in
set P, 36-dimensional eigenvector along l in 36 directions is
obtained using formula (3). Then, the mean of 36-dimensional
eigenvector obtained for each pixel is the result of the enhance-
ment process. After the original image of fecal extract (shown in
Fig. 2(a)) is processed using steps 1–2, the enhanced result is
obtained (see Fig. 2(b)). In order to generate an initial boundary-
point set, or one with some noise remaining, the image processedFig. 1. The processing flow of Cascaded-Automatic Segmentation for an egg.
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by the above steps also needs to be binary-processed after the
enhancement is completed. The binary processing method is as
follows:

threas¼ TminþðTmax�TminÞλ ð4Þ

T 0 ¼
1; T4threas
0; Trthreas

(
ð5Þ

where T is an enhanced image, Tmax and Tmin are its maximum and
minimum, respectively, λ is a ratio parameter for selecting thresh-
old, and T0 is the final binary image obtained, as shown in Fig. 2(c).

2.3. The thinning and connected-component analysis

It can be seen from Fig. 2(c) that a lot of noise still remains in
the image processed by the Radon-Like Features approach and
binarization because fecal extracts contain a large amount of noise.
The initial point set, which was used for segmentation based on
the Active Contour Model, is still not able to be directly derived
from it. For the segmented eggs, pixels of the connected point set
formed by noise are less obvious than the pixels of the boundary
formed by the studied egg. Therefore, a threshold value is given to
determine whether the connected region is formed by noise or by
the studied egg itself. If the percentage of pixels from one
connected region and the sum of the pixels of all connected
regions are greater than the threshold value, the connected region
is the boundary of the studied egg. Furthermore, when there is
more than one egg in the image, it is possible to detect connected
regions with pixel percentages greater than the threshold value,
thus enabling their boundaries to be located.

To reduce the noise interference on the performance of the egg
detection and improve its detection accuracy, “thinning and
connected-component” analysis was applied to the binary image
T0 before making the boundary detection of eggs; this was
achieved by the previous filtering. According to the characteristics
of the binary image of eggs, a one-dimensional vector of pixels in
connected regions of the image T0 is constructed by
PixelCount ¼ fzijzi ¼ CountðiÞ; i¼ 1;2;…g, where i represents the
i-th connected region, and zi ¼ CountðiÞ is the number of pixels
contained in the i-th connected region. A ranking function of the
set “PixelCount” is defined by PCRankðiÞ ¼ RankðSortðPixelCount;
‘descend’Þ; iÞ, where the order location of pixel numbers of the i-
th connected region “PCRank(i)” is the ranking of the sequence
that consists of sorting numbers of all connected regions in the
image T0 in descending order, which reflects the amount of pixels
contained in the i-th connected region more or less than those of
other connected regions in the image T0. Then, the following four
criteria for reducing noise are used: the pixel-number ordinal of a
region, St1, the pixel-number proportion of a region, St2, the
center deviation of a region in the x direction, St3, and the center

deviation of a region in the y direction, St4. Four conditional
formulae are used as follows:

PCRankðiÞZSt1 ð6Þ

CountðiÞ
CountðtotalÞ ¼

CountðiÞ
∑
iAT 0

CountðiÞrSt2 ð7Þ

jXCenterðiÞ�ðWidthðT 0Þ=2Þj
ðWidthðT 0Þ=2Þ 4St3 ð8Þ

jYCenterðiÞ�ðHeightðT 0Þ=2Þj
ðHeightðT 0Þ=2Þ 4St4 ð9Þ

where CountðtotalÞ is the sum of all pixel numbers for all of the
connected regions in T0, XCenterðiÞ and YCenterðiÞ are the mean of all
pixel-coordinates of the i-th region in the x direction and the y
direction, respectively, WidthðT 0Þ is the width of T0, and HeightðT 0Þ
is the height of T0. In this paper, St1¼4, St2¼0.1 and St3¼St4¼0.8.

During the “thinning and connected-component” analysis, T0

was first thinned [12–15], and then connected-component analysis
was implemented on the thinned binary image [16–20]; next all
connected-components were labeled. The number of pixels of
each connected region in the thinned binary image was counted
and the set PixelCount was formed by them; following this, a
connected region was used to assess whether the noise compo-
nent was a result of the calculations of formulae (6)–(9). If an
analysis result for a connected region met formulae (6)–(9), it was
considered noise and needed to be removed from T0.

2.4. The ellipse detection based on Randomized Hough Transform

As S. japonicum eggs are elliptical objects, the ellipse detection
method [21–26] can be used to detect the elliptical target in its
image, and make the ellipse boundary the initial points for
accurate segmentation. The ellipse detection method used in this
paper was the Randomized Hough Transform [21,22]. This method
was first proposed by Xu; however, the problem of how to convert
a normal ellipse equation, which is a form of a nonlinear equation,
from coordinate space to parameter space remained unsolved.
Then, Mclaughlin [22] and Lu and Tan [23] successfully converted
an elliptical equation to a linear equation in different ways, thus
making Randomized Hough Transform widely applicable to the
detection of ellipses. The processing flow of ellipse detection is
shown in Fig. 3.

After the “thinning and connected-component” analysis was
completed, the ellipse detection was processed according to the
flow chart shown in Fig. 3. Five points were randomly selected out
of the proceed T0 and it was determined whether these five points
met the conditions for forming an ellipse. If they were appropriate,
the coordinate parameters of the five points were converted to a
set of ellipse parameters. If z¼(x,y) represents a pixel in the binary

Fig. 2. Parasite egg boundary enhancement and binary processing. (a) Original image. (b) Results of boundary enhancement based on Radon-Like Features. (c) Results of
binary processing.
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image T0, then the following general equation of quadratic curve
can be used:

ax2þ2bxyþcy2þ2dxþ2f yþg¼ 0 ð10Þ

It can be seen from the above equation that the general
calculation of a quadratic curve has 6 degrees of freedom. How-
ever, it requires only 5 parameters to determine an ellipse, so it is
necessary to draw 5 parameters of the ellipse accurately from
formula (10) to change it into the form of certain constraints. In
this paper, the following equation was used for the detection of
elliptical parameters:

x2þy2þUðx2�y2Þ�V2xy�Rx�Sy�T ¼ 0 ð11Þ

Substituting coordinates of the five pixels (zi¼(xi,yi), i¼1,…,5)
randomly chosen from the binary image in formula (11), we
obtained the parameters [U, V, R, S, T]. By comparing the coeffi-
cients between Eq. (10) and formula (11), it is possible to obtain
the following results: a¼1�U, b¼�V, c¼1þU, d¼�R/2, f¼�S/2,
and g¼�T. If the coefficients [a, b, c, d, f, g] met formulae (12) and
(13) simultaneously, pixels zi¼(xi,yi), i¼1,…,5 could be considered
as being on the ellipse, and the elliptical parameters [Xc, Yc, a0, b0,

ϕ] passing through five pixels were obtained by formulae
(14)–(18), where (Xc, Yc) were the center coordinates, a0 and b0

were the major and minor radii of the ellipse (respectively), and ϕ
was the angle of the major axis that rotates around the X-axis
counterclockwise.

Δa0; J40 ð12Þ

Δ=Io0 ð13Þ
where

Δ¼
a b d

b c f

d f g

�������
�������; J ¼

a b
b c

����
����; I ¼ aþc

Xc ¼ cd�bf

b2�ac
ð14Þ

Yc ¼
af �bd

b2�ac
ð15Þ

a0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðaf 2þcd2þgb2�2bdf �acgÞ

ðb2�acÞ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�cÞ2þ4b2

q
�ðaþcÞ�

vuuut ð16Þ

b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðaf 2þcd2þgb2�2bdf �acgÞ

ðb2�acÞ½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�cÞ2þ4b2

q
�ðaþcÞ�

vuuut ð17Þ

ϕ¼
1
2cot

�1 a� c
2b

� �
aoc

π
2þ1

2cot
�1 a� c

2b

� �
a4c

(
ð18Þ

In the paper, five one-dimensional accumulators were used to
accumulate a set of effective elliptical parameters [Xc, Yc, a0, b0, ϕ]
according to the literature [23]. Then, the above process was
repeated, from randomly chosen pixels to calculating parameters
and S times, and estimating where to detect an ellipse in the
current set of points using the following formula:

MinðMaxðCountðiÞÞÞ
S

ZThreas i¼ 1…5 ð19Þ

where Count(i) is the i-th of five one-dimensional accumulators,
Threas is a ratio threshold for determining whether there is an
ellipse in the assigned set of points, and Threa¼0.6 (in this paper).
If the accumulator met the conditions of formula (19) through S
loops, the five peaks in five accumulators would provide five
estimated parameters of the detected ellipse.

The results obtained for dealing with Fig. 2(c) using “thinning
and connected-component” analysis are shown in Fig. 4. The oval
object in Fig. 4 was detected by Randomized Hough Transform,
and the ellipse is shown in Fig. 5. It is necessary to state that the

Fig. 3. The ellipse object detection flow based on Randomized Hough Transform.

Fig. 4. The result of “thinning and connected-component” analysis.
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major and minor axes of the ellipse detected here were reduced by
5% in order to improve the robustness of active contour segmenta-
tion in the subsequent step. The aim of this was to make all of the
initial points fall uniformly within eggs, thereby approaching the
egg's boundary in a stably-inflated way using the Active Contour
Model. Here, it is helpful to improve the overall stability of the
algorithm and segmentation accuracy. It can be seen from Fig. 5
that the result of the algorithm is very satisfactory, as the red curve
shows the detected ellipse target.

2.5. The accurate boundary segmentation based on Active Contour
Model

Through a series of cascading operations, from noise filtering to
elliptical object detection, the region and boundary of the egg can
be approximately targeted. If the boundary points of the ellipse
obtained are set as the initial point set of the egg segmentation,
the egg boundary can be accurately identified using the Active
Contour Model [27–35].

The Active Contour Model, also called Snakes, is a local optimal
solution close to the initial boundary. The minimum formula is as
follows:

Esnake ¼
Z 1

0
ðαEelasticðvðsÞÞþβEbendingðvðsÞÞds

þ
Z 1

0
γEexternalðvðsÞÞds ð20Þ

where ν(s)¼[x(s),y(s)], sA[0,1], and ν(s) is the expression of the set
of the initial boundary points after parameter normalization, that

is, the set of elliptical boundary points obtained in the third step.

EelasticðvðiÞÞ ¼
jd0 �jvi�vi�1jj

max1r jrMfjd0 �jvj�vj�1jjg
ð21Þ

In this equation, Eelastic is the elastic energy after neighborhood
normalization, where M¼3, the normalized area is a range 3�3,
and d0 is the average distance between all adjacent points and
control points.

EbendingðvðiÞÞ ¼
jvi�1�2viþviþ1j2

max1r jrMfjvj�1�2vjþvjþ1j2g
ð22Þ

where Ebending is the bending energy after neighborhood normal-
ization, and M is the same as that in formula (21).

EexternalðvðiÞÞ ¼ � MagvðiÞ �Magmin

Magmax�Magmin
ð23Þ

where MagvðiÞ, MagvðiÞ ¼ �j∇½Gσðx; yÞ � Iðx; yÞ�j is the negative gra-
dient modulus of convolving the image I(x,y) with the two-
dimensional Gaussian function, whose standard deviation is σ at
point ν(i), Magmin andMagmax are the maximum and the minimum
gradients, respectively, in the area ranging 3�3 and ν(i) is its
center. The segment result of Fig. 2(a) is shown in Fig. 6, where the
blue curve is the final boundary of the egg.

3. Experiment processing and results

All of the algorithms described above were implemented in
MATLAB 7.9.0, where all of the algorithm parameters of Cascaded-
Automation Segmentation were set as follows:

(1) The direction parameters and the scale parameters of the
Gaussian Second Derivative Filter in the Radon-Like Features
enhancement algorithm were m¼3 and n¼12, σ¼[1.4, 2, 2.8],
ϕ¼[0, π/6, 2π/6, 3π/6,… 11π/6], the rotation step of the
direction was 10 and the threshold for making the image
binary was λ¼0.35.

(2) In the algorithm of the ellipse target detection based on
Randomized Hough transform, four criteria for reducing noise
by the “thinning and connected-component” method were
St1¼4, St2¼0.1, St3¼0.8, and St4¼0.8, with the determining
threshold value of elliptical object detection was Threas¼0.6.

(3) The normalized parameter of the Active Contour Model algo-
rithm was M¼3.

3.1. The segmentation experiment of a single Schistosoma egg

3.1.1. Comparison of de-noising results
We chose a mean-square error (MSE) and peak signal to noise

ratio (PSNR) to evaluate the quality and changing degrees of
pictures after de-noising. The formulae used are as follows:

PSNR¼ 10log 10
2552

MSE

 !
ð24Þ

MSE¼ 1
K
ðΣS1�S0Þ; ð25Þ

where S1 is the original image, S0 is the de-noised image and K is
the size of the picture. Smaller MSE indicates that the error
between the original image and the de-noised image is smaller;
a higher PSNR indicates that the performance of the de-noising
method is better.

The evaluation results of de-noising with Radon-Like Features
and traditional methods are listed in Table 1.

Fig. 5. The result of ellipse target detection based on Randomized Hough
Transform.

Fig. 6. The result of an egg labeled by Cascaded-Automatic Segmentation. The
edges are highlighted in blue.
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It can be seen from Table 1 that the PSNR value of de-noising
and enhancing with the Radon-Like Features method is 40.0718
and the MSE value is 6.3959; the MSE is the smallest and the PSNR
is the highest compared with other methods of noise reduction.
This indicates that this method has high de-noising performance
and good usability with a small loss of useful information in the
images.

3.1.2. Comparison of segmentation results
We performed comparative experiments of automatic

segmentation in the sample images of 60 cases separately using
“Cascaded-Automatic Segmentation” and traditional segmentation
methods. The traditional method in the paper involved processing
sequences of segmentation under the MATLAB 7.9.0 environment,
including gray-scale transformation, contrast adaptive histogram
equalization, 5�5 template median filtering noise, enhancement
of the image contrast with a Laplacian operator, edge detection
with the Canny operator, and smoothing of the image edge with
Diamond Structure Element. The segmentation results for both
methods are listed in Table 2.

The “Cascaded-Automatic Segmentation” program was imple-
mented on the sample images of 60 cases; some of their automatic
segmentation results are shown in Fig. 7. Although the illumina-
tion, noise pollution, egg boundary definitions and egg positions
were different, they were all segmented and labeled accurately. It
is clear, therefore, that good segmentation results for parasite eggs
captured from a variety of conditions can be obtained by using the
Cascade-Automatic Segmentation approach proposed in this
paper.

3.2. Segmentation experiment of multi-targets

For those sample images containing several similar elliptical
targets, multiple targets can be segmented using the Cascade-
Automatic Segmentation approach, and it can then be determined
whether the image shows S. japonicum eggs or noise depending on
the edge characteristics of S. japonicum eggs. The sample images of
2 cases were analyzed in this paper; the automatic segmentation
results are shown in Fig. 8.

3.3. Segmentation experiments with C. sinensis eggs

There are significant differences in the appearance of
S. japonicum eggs and those of C. sinensis. The size of the long
axis of C. sinensis eggs ranges from 27 to 35 μm, and the short axis
ranges from 12 to 20 μm; the long axis of S. japonicum eggs is from
70 to 100 μm, and the short axis ranges from 50 to 60 μm. With
regard to shape, C. sinensis eggs are similar in shape to sesame,
while S. japonicum eggs are elliptical or nearly round. In addition,
the shells of C. sinensis eggs are thicker; there is a protruding
cap at the narrow end and little spots on the other end. Due to
the differences between C. sinensis eggs and S. japonicum eggs,
the smooth edge of the egg shell can allow identification of
S. japonicum eggs, as the edge of a C. sinensis egg is not smooth
and is discontinuous, occasionally containing other elements.
In order to effectively and quickly distinguish between S. japoni-
cum eggs and C. sinensis eggs, the grayscale image of the egg must
be processed by smoothing before edge extraction is performed.
The segmentation results generated by implementing comparative
experiments on S. japonicum eggs from 30 cases and C. sinensis
eggs from an additional 30 cases are shown in Tables 3 and 4.

3.4. Automatic recognition of eggs

In this experiment, we randomly selected S. japonicum eggs
from 20 cases, C. sinensis eggs from 20 cases and impurity noise
images from 20 cases which were used as training samples.
S. japonicum eggs from another 16 cases, C. sinensis eggs from 13
cases and noise images from 19 cases were also used as predicting
samples. The five-dimensional morphological features of all sam-
ples were extracted using the Quantitative Analysis Tool Software
for Parasite Images [36]; these included long axis, ratio of long axis
over short axis, thickness of shell, perimeter of shell and area of
egg. A classification model based on SVM for parasite eggs was
created using the libsvm tool kit on the five-dimensional feature
data of the training sample, and the predicted samples were then
classified and identified in the classification model. The classifica-
tion results are listed in Table 5.

4. Discussion

In order to apply a computer image recognition system to the
clinical examination of parasites, it is necessary to study the image
recognition technology of eggs in fecal extracts. The images of
samples captured from fecal extracts have very heavy noise
interference. In particular, eggs and their surrounding debris show
the same appearance, and the key features of eggs are found in
their edge. Therefore, obtaining the boundary regions of eggs is
key for automatically recognizing and classifying eggs using a
computer. Our proposed method has been proven using 60 cases
of segmentation experiments, as the accurate marking rate of eggs
was 100%. When this is compared to the 38% marking rate
achieved by the traditional segmentation method, it is clear that
the Cascaded-Automatic Segmentation method can greatly
improve the accuracy and robustness of the traditional methods
for S. japonicum eggs in the presence of heavy noise due to the use
of fecal extracts. Also, this provides a good reference for the
segmentation of other types of eggs collected from fecal extracts.

The Cascaded-Automatic Segmentation Method proposed in
this paper shows improved coarse-to-fine segmentation according
to the unique characteristics of eggs, which is achieved by
integrating the Boundary Enhancement based on Radon-Like
Features, Image Binarization, Ellipse Detection based on Rando-
mized Hough Transform and Accurate Boundary Segmentation
based on Active Contour Model algorithms. This method can be

Table 1
The contrast of de-noising methods.

De-noising methods MSE PSNR

Radon-Like Features 6.3959 40.0718
Median Filtering (3�3) 16.2450 36.0236
Mean Filtering (3�3) 21.9127 34.7238
Wiener Filtering (3�3) 13.3783 36.8668
Laplacian Sharpening 11.6889 37.4531

Table 2
Results of processing with “Cascade Automatic Segmentation” and traditional
methods.

Egg type Segmentation result

Traditional
methods

Cascaded-Automatic
Segmentation

Schistosoma japonicum egg
(60 cases)

Success Failure Success Failure
23 37 60 0

Successful rate 38.3% 100%
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used to accurately identify the boundary of S. japonicum eggs in
images that are generated from fecal extracts. Additionally, it can
also be applied to the identification of C. sinensis eggs and multi-
target detection. In this research, it was shown that parasite egg
images from fecal extracts usually contain heavy noise, which
makes egg identification difficult. Thus, a robust de-noising
operation must be applied in the preprocessing step. In our

experiments, the performances of some common de-noising
methods, such as wavelet de-noising and medium filter, failed to
provide satisfactory results. One reason for this may be that the
noise pattern of fecal extracts is more complex and irregular than
white noise. Images of S. japonicum eggs are simple segment
targets because their appearance is an ellipse-like shape. Accord-
ing to the apparent characteristics, we applied the Radon-Like

Fig. 7. The process of Cascaded-Automatic Segmentation. (a) The original images of eggs captured in a variety of conditions; (b) the results of boundary enhancement based
on Radon-Like Features; (c) the results of binary processing; (d) the results of “thinning and connected-component” analysis; (e) the results of ellipse target detection based
on Randomized Hough Transform; (f) the results of eggs labeled by Cascaded-Automatic Segmentation.

Table 3
Results of two kinds of eggs segmented by Cascaded-Automatic Segmentation
without smoothing.

Egg type Segmentation results Success rate (%)

Success Failure

Schistosoma japonicum (30 cases) 30 0 100
Clonorchis sinensis (30 cases) 20 10 66.7

Table 4
Results of two kinds of eggs segmented by Cascaded-Automatic Segmentation with
smoothing.

Egg type Segmentation
results

Success rate (%)

Success Failure

Schistosoma japonicum (30 cases) 30 0 100
Clonorchis sinensis (30 cases) 28 2 93.3

Fig. 8. The segmentation of multiple targets. (a) The original egg images; (b) results of boundary enhancement and binary processing; (c) results of locating the first target;
(d) results of locating the second target.

J. Zhang et al. / Computers in Biology and Medicine 52 (2014) 18–2724



Feature filter, Binary Processing, “Thinning and Connected-
Component Analysis” and Randomized Hough Transform to the
image for de-noising and identifying initial points of the image
segmentation during preprocessing. First, the original images were
filtered and improved using a Radon-Like Feature method that
would enhance the boundary of parasite egg. Then, the binary
processing method was applied to filter out noise and reduce the
complexity of identifying an initial target. Afterwards, “Thinning
and Connected-Component Analysis” was applied to remove
irregular noisy points from the processed image, which was
considered an improved method compared to the already existing
methods in the domain of image thinning, labeling and connected
component analysis. In order to quickly obtain accurate segmenta-
tion results while processing noise in images by the above method, it
is necessary to test criteria for reducing noise according to environ-
mental conditions of collecting samples; also, this method should
increase boundary smoothing in the preprocessing phase according
to the characteristics of different types of eggs. The Randomized
Hough Transform method was used to extract points of the raw edge
after removing some of interference noise from the image. The points
extracted in the above step were used as the initial points for
accurate segmentation, and the Active Contour Model was used to
extract the edges of the egg. Finally, a S. japonicum egg was
successfully and accurately identified and labeled.

A classification model based on SVM can provide 93.8% and
92.3% recognition accuracy for S. japonicum and C. sinensis eggs,
respectively, due to the following five-dimensional features: long
axis, ratio of long axis over short axis, thickness of the shell,
perimeter of shell and area of the egg. In order to more effectively
discriminate a segmented target, and identify whether it is a
parasite's egg and what kind of parasite it is, the classification
model can be improved using the normal characteristics and
abstract characteristics of parasite's eggs [37] to achieve automatic
identification of these eggs.

In this study, we tried to segment and locate targets from
multiple egg images of 2 cases using the Cascaded-Automatic
Segmentation method. The experiment shows that this method
can achieve automatic segmentation and positioning. In the future,
it will be necessary to develop an online method for automatic
identification by integrating the techniques of automatically push-
ing pieces, focusing and searching an image area with a micro-
scope, in order to provide a method for automatically measuring
the infection rate of parasitic diseases in the clinic.

Summary

The paper proposes a Cascaded-Automatic Segmentation (CAS)
approach by which S. japonicum eggs of fecal samples can be
automatically segmented from their microscopic images, even with
heavy noise. Firstly, image contrast degrees between egg borders and
the background of all samples were strengthened by the Radon-Like
Features algorithm and the enhanced image was processed into a
binary image to obtain an initial data set. Then, the elliptical targets
were located using Randomized Hough Transform (RHT). The fitted

data of an elliptical border were considered the initial border data
and the accurate border of a S. japonicum egg was finally segmented
with Active Contour Model (Snake).

In our present study, 73 cases had S. japonicum eggs in the fecal
samples; 61 images showed a parasite egg and 12 images did not.
Although the illumination, noise pollution, boundary definition of
eggs, and egg position are different, they were all segmented and
labeled accurately in microscopic images. This proves that accurate
borders of S. japonicum eggs could be recognized precisely by the
proposed method and the robustness of the method is good, even
in images with heavy noise. Therefore, our proposed method can
overcome the disadvantages of the traditional threshold segmen-
tation method which has limited adaptability to images with
heavy background noise.
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