
COMP 550 Algorithms and Analysis
 Spring 2015

Mid-Term 3 (Sample)
60 min

Name __________________________

PID __________________________

Honor Pledge:

I have not given nor received unauthorized assistance in completing this

exam.

Signature __________________________

Note:

(1) All “lg”s are based 2 if unspecified.

(2) Points of subproblems are evenly distributed within each problem

unless specified.

(3) Your score will be put on the second page – to protect your privacy.

1. (20’) You are given the following Red-Black Tree, where red nodes are

double circled. Draw the tree after deleting “9”, “8”, “7”, respectively.

(Hint: Showing it step by step is encouraged, which may earn you more

points when your final tree looks wrong.)

2. (20’) Sorting with search trees. Given a set of n numbers, we could sort

them by the following two steps: (i) Insert them one by one in the

appearance order into a search tree, and (ii) Perform an in-order tree walk

to print all elements in sorted order.

(a) (4’) What’s the time complexity of in-order tree walk (asymptotically,
as a function of n)?

(b) (5’) What’s the worst case time complexity of BST sorting
(asymptotically, as a function of n)? Briefly explain why.

(c) (11’) What restrictions (rules) do we need to follow in order to make
the BST sorting algorithm stable (Hint: specifically, during each
insertion)? Briefly prove your claim. Note: stable sorting algorithms
maintain the relative order of records with equal keys (i.e., values).

3. (14’) Perform a breadth-first search to the graph below, with vertex a as
the source.

(a) Draw the breadth-first search tree.

(b) Give the in-queue order of all nodes.

4. (16’) Perform a depth-first search to the graph below, with vertex a as
the source. Assume that the inner for loop of the DFS procedure considers
the vertices in alphabetical order, and assume that each adjacency list is
ordered alphabetically.

(a) Draw the depth-first search tree.

(b) Show the discovery and finishing times for each vertex

5. (30’) 0/1 Knapsack Problem.

Given n items, pack the knapsack to get the
maximum total value. Each item i has some
weight wi>0 and some value bi>0. Total weight
that we can carry is no more than some fixed
number W (all wi , bi and W are integer values).

The Problem, in other words, is to find the

maximum ∑i ϵT bi, subject to ∑i ϵT wi <= W.

(a) (5’) One way is to explore all possible combinations, and select the one
with maximum total value that satisfies the constraint (total weight
does not exceed W). What’s the time complexity of the algorithm?

(b) (10’) Now we use Dynamic Programming to solve the problem. Assume
all items are labeled from 1 to n. Define Sk = {items labeled 1, 2, ..., k}.
Form a recursion of B[k,w], which is the maximum value draw from
subset Sk, where w represents the exact weight for the optimal subset
of items from 1 to k. (Hint: when w < wk, the kth item can’t be part of
the optimal solution; while when w >= wk, we need to consider both
cases that either the kth item is or is not part of the optimal solution.)

(c) (10’) Run your algorithm on the following data: n = 4 (# of elements), W
= 5 (max weight), Elements (weight, benefit): (2,3), (3,4), (4,5), (5,6)

(d) (5’) What is the time complexity of your algorithm?

