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Preface

Before there were computers, there were algorithms. But now that there are com-
puters, there are even more algorithms, and algorithms lie at the heart of computing.

This book provides a comprehensive introduction to the modern study of com-
puter algorithms. It presents many algorithms and covers them in considerable
depth, yet makes their design and analysis accessible to all levels of readers. We
have tried to keep explanations elementary without sacrificing depth of coverage
or mathematical rigor.

Each chapter presents an algorithm, a design technique, an application area, or a
related topic. Algorithms are described in English and in a pseudocode designed to
be readable by anyone who has done a little programming. The book contains 244
figures—many with multiple parts—illustrating how the algorithms work. Since
we emphasize efficiency as a design criterion, we include careful analyses of the
running times of all our algorithms.

The text is intended primarily for use in undergraduate or graduate courses in
algorithms or data structures. Because it discusses engineering issues in algorithm
design, as well as mathematical aspects, it is equally well suited for self-study by
technical professionals.

In this, the third edition, we have once again updated the entire book. The
changes cover a broad spectrum, including new chapters, revised pseudocode, and
a more active writing style.

To the teacher

We have designed this book to be both versatile and complete. You should find it
useful for a variety of courses, from an undergraduate course in data structures up
through a graduate course in algorithms. Because we have provided considerably
more material than can fit in a typical one-term course, you can consider this book
to be a “buffet” or “smorgasbord” from which you can pick and choose the material
that best supports the course you wish to teach.
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You should find it easy to organize your course around just the chapters you
need. We have made chapters relatively self-contained, so that you need not worry
about an unexpected and unnecessary dependence of one chapter on another. Each
chapter presents the easier material first and the more difficult material later, with
section boundaries marking natural stopping points. In an undergraduate course,
you might use only the earlier sections from a chapter; in a graduate course, you
might cover the entire chapter.

We have included 957 exercises and 158 problems. Each section ends with exer-
cises, and each chapter ends with problems. The exercises are generally short ques-
tions that test basic mastery of the material. Some are simple self-check thought
exercises, whereas others are more substantial and are suitable as assigned home-
work. The problems are more elaborate case studies that often introduce new ma-
terial; they often consist of several questions that lead the student through the steps
required to arrive at a solution.

Departing from our practice in previous editions of this book, we have made
publicly available solutions to some, but by no means all, of the problems and ex-
ercises. Our Web site, http://mitpress.mit.edu/algorithms/, links to these solutions.
You will want to check this site to make sure that it does not contain the solution to
an exercise or problem that you plan to assign. We expect the set of solutions that
we post to grow slowly over time, so you will need to check it each time you teach
the course.

We have starred (%) the sections and exercises that are more suitable for graduate
students than for undergraduates. A starred section is not necessarily more diffi-
cult than an unstarred one, but it may require an understanding of more advanced
mathematics. Likewise, starred exercises may require an advanced background or
more than average creativity.

To the student

We hope that this textbook provides you with an enjoyable introduction to the
field of algorithms. We have attempted to make every algorithm accessible and
interesting. To help you when you encounter unfamiliar or difficult algorithms, we
describe each one in a step-by-step manner. We also provide careful explanations
of the mathematics needed to understand the analysis of the algorithms. If you
already have some familiarity with a topic, you will find the chapters organized so
that you can skim introductory sections and proceed quickly to the more advanced
material.

This is a large book, and your class will probably cover only a portion of its
material. We have tried, however, to make this a book that will be useful to you
now as a course textbook and also later in your career as a mathematical desk
reference or an engineering handbook.
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What are the prerequisites for reading this book?

* You should have some programming experience. In particular, you should un-
derstand recursive procedures and simple data structures such as arrays and
linked lists.

* You should have some facility with mathematical proofs, and especially proofs
by mathematical induction. A few portions of the book rely on some knowledge
of elementary calculus. Beyond that, Parts I and VIII of this book teach you all
the mathematical techniques you will need.

We have heard, loud and clear, the call to supply solutions to problems and
exercises. Our Web site, http://mitpress.mit.edu/algorithms/, links to solutions for
a few of the problems and exercises. Feel free to check your solutions against ours.
We ask, however, that you do not send your solutions to us.

To the professional

The wide range of topics in this book makes it an excellent handbook on algo-
rithms. Because each chapter is relatively self-contained, you can focus in on the
topics that most interest you.

Most of the algorithms we discuss have great practical utility. We therefore
address implementation concerns and other engineering issues. We often provide
practical alternatives to the few algorithms that are primarily of theoretical interest.

If you wish to implement any of the algorithms, you should find the transla-
tion of our pseudocode into your favorite programming language to be a fairly
straightforward task. We have designed the pseudocode to present each algorithm
clearly and succinctly. Consequently, we do not address error-handling and other
software-engineering issues that require specific assumptions about your program-
ming environment. We attempt to present each algorithm simply and directly with-
out allowing the idiosyncrasies of a particular programming language to obscure
its essence.

We understand that if you are using this book outside of a course, then you
might be unable to check your solutions to problems and exercises against solutions
provided by an instructor. Our Web site, http://mitpress.mit.edu/algorithms/, links
to solutions for some of the problems and exercises so that you can check your
work. Please do not send your solutions to us.

To our colleagues

We have supplied an extensive bibliography and pointers to the current literature.
Each chapter ends with a set of chapter notes that give historical details and ref-
erences. The chapter notes do not provide a complete reference to the whole field
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of algorithms, however. Though it may be hard to believe for a book of this size,
space constraints prevented us from including many interesting algorithms.

Despite myriad requests from students for solutions to problems and exercises,
we have chosen as a matter of policy not to supply references for problems and
exercises, to remove the temptation for students to look up a solution rather than to
find it themselves.

Changes for the third edition

What has changed between the second and third editions of this book? The mag-
nitude of the changes is on a par with the changes between the first and second
editions. As we said about the second-edition changes, depending on how you
look at it, the book changed either not much or quite a bit.

A quick look at the table of contents shows that most of the second-edition chap-
ters and sections appear in the third edition. We removed two chapters and one
section, but we have added three new chapters and two new sections apart from
these new chapters.

We kept the hybrid organization from the first two editions. Rather than organiz-
ing chapters by only problem domains or according only to techniques, this book
has elements of both. It contains technique-based chapters on divide-and-conquer,
dynamic programming, greedy algorithms, amortized analysis, NP-Completeness,
and approximation algorithms. But it also has entire parts on sorting, on data
structures for dynamic sets, and on algorithms for graph problems. We find that
although you need to know how to apply techniques for designing and analyzing al-
gorithms, problems seldom announce to you which techniques are most amenable
to solving them.

Here is a summary of the most significant changes for the third edition:

*  We added new chapters on van Emde Boas trees and multithreaded algorithms,
and we have broken out material on matrix basics into its own appendix chapter.

*  We revised the chapter on recurrences to more broadly cover the divide-and-
conquer technique, and its first two sections apply divide-and-conquer to solve
two problems. The second section of this chapter presents Strassen’s algorithm
for matrix multiplication, which we have moved from the chapter on matrix
operations.

*  We removed two chapters that were rarely taught: binomial heaps and sorting
networks. One key idea in the sorting networks chapter, the 0-1 principle, ap-
pears in this edition within Problem 8-7 as the 0-1 sorting lemma for compare-
exchange algorithms. The treatment of Fibonacci heaps no longer relies on
binomial heaps as a precursor.
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*  We revised our treatment of dynamic programming and greedy algorithms. Dy-
namic programming now leads off with a more interesting problem, rod cutting,
than the assembly-line scheduling problem from the second edition. Further-
more, we emphasize memoization a bit more than we did in the second edition,
and we introduce the notion of the subproblem graph as a way to understand
the running time of a dynamic-programming algorithm. In our opening exam-
ple of greedy algorithms, the activity-selection problem, we get to the greedy
algorithm more directly than we did in the second edition.

* The way we delete a node from binary search trees (which includes red-black
trees) now guarantees that the node requested for deletion is the node that is
actually deleted. In the first two editions, in certain cases, some other node
would be deleted, with its contents moving into the node passed to the deletion
procedure. With our new way to delete nodes, if other components of a program
maintain pointers to nodes in the tree, they will not mistakenly end up with stale
pointers to nodes that have been deleted.

* The material on flow networks now bases flows entirely on edges. This ap-
proach is more intuitive than the net flow used in the first two editions.

* With the material on matrix basics and Strassen’s algorithm moved to other
chapters, the chapter on matrix operations is smaller than in the second edition.

* We have modified our treatment of the Knuth-Morris-Pratt string-matching al-
gorithm.

*  We corrected several errors. Most of these errors were posted on our Web site
of second-edition errata, but a few were not.

* Based on many requests, we changed the syntax (as it were) of our pseudocode.
We now use “="to indicate assignment and “==""to test for equality, just as C,
C++, Java, and Python do. Likewise, we have eliminated the keywords do and
then and adopted “//” as our comment-to-end-of-line symbol. We also now use
dot-notation to indicate object attributes. Our pseudocode remains procedural,
rather than object-oriented. In other words, rather than running methods on
objects, we simply call procedures, passing objects as parameters.

*  We added 100 new exercises and 28 new problems. We also updated many
bibliography entries and added several new ones.

* Finally, we went through the entire book and rewrote sentences, paragraphs,
and sections to make the writing clearer and more active.
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Web site

You can use our Web site, http://mitpress.mit.edu/algorithms/, to obtain supple-
mentary information and to communicate with us. The Web site links to a list of
known errors, solutions to selected exercises and problems, and (of course) a list
explaining the corny professor jokes, as well as other content that we might add.
The Web site also tells you how to report errors or make suggestions.

How we produced this book

Like the second edition, the third edition was produced in IEIEX 2¢. We used the
Times font with mathematics typeset using the MathTime Pro 2 fonts. We thank
Michael Spivak from Publish or Perish, Inc., Lance Carnes from Personal TeX,
Inc., and Tim Tregubov from Dartmouth College for technical support. As in the
previous two editions, we compiled the index using Windex, a C program that we
wrote, and the bibliography was produced with BIBTEX. The PDF files for this
book were created on a MacBook running OS 10.5.

We drew the illustrations for the third edition using MacDraw Pro, with some
of the mathematical expressions in illustrations laid in with the psfrag package
for I5STEX 2¢. Unfortunately, MacDraw Pro is legacy software, having not been
marketed for over a decade now. Happily, we still have a couple of Macintoshes
that can run the Classic environment under OS 10.4, and hence they can run Mac-
Draw Pro—mostly. Even under the Classic environment, we find MacDraw Pro to
be far easier to use than any other drawing software for the types of illustrations
that accompany computer-science text, and it produces beautiful output.! Who
knows how long our pre-Intel Macs will continue to run, so if anyone from Apple
is listening: Please create an OS X-compatible version of MacDraw Pro!

Acknowledgments for the third edition

We have been working with the MIT Press for over two decades now, and what a
terrific relationship it has been! We thank Ellen Faran, Bob Prior, Ada Brunstein,
and Mary Reilly for their help and support.

We were geographically distributed while producing the third edition, working
in the Dartmouth College Department of Computer Science, the MIT Computer

Iwe investigated several drawing programs that run under Mac OS X, but all had significant short-
comings compared with MacDraw Pro. We briefly attempted to produce the illustrations for this
book with a different, well known drawing program. We found that it took at least five times as long
to produce each illustration as it took with MacDraw Pro, and the resulting illustrations did not look
as good. Hence the decision to revert to MacDraw Pro running on older Macintoshes.
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Science and Artificial Intelligence Laboratory, and the Columbia University De-
partment of Industrial Engineering and Operations Research. We thank our re-
spective universities and colleagues for providing such supportive and stimulating
environments.

Julie Sussman, P.P.A., once again bailed us out as the technical copyeditor. Time
and again, we were amazed at the errors that eluded us, but that Julie caught. She
also helped us improve our presentation in several places. If there is a Hall of Fame
for technical copyeditors, Julie is a sure-fire, first-ballot inductee. She is nothing
short of phenomenal. Thank you, thank you, thank you, Julie! Priya Natarajan also
found some errors that we were able to correct before this book went to press. Any
errors that remain (and undoubtedly, some do) are the responsibility of the authors
(and probably were inserted after Julie read the material).

The treatment for van Emde Boas trees derives from Erik Demaine’s notes,
which were in turn influenced by Michael Bender. We also incorporated ideas
from Javed Aslam, Bradley Kuszmaul, and Hui Zha into this edition.

The chapter on multithreading was based on notes originally written jointly with
Harald Prokop. The material was influenced by several others working on the Cilk
project at MIT, including Bradley Kuszmaul and Matteo Frigo. The design of the
multithreaded pseudocode took its inspiration from the MIT Cilk extensions to C
and by Cilk Arts’s Cilk++ extensions to C++.

We also thank the many readers of the first and second editions who reported
errors or submitted suggestions for how to improve this book. We corrected all the
bona fide errors that were reported, and we incorporated as many suggestions as
we could. We rejoice that the number of such contributors has grown so great that
we must regret that it has become impractical to list them all.

Finally, we thank our wives—Nicole Cormen, Wendy Leiserson, Gail Rivest,
and Rebecca Ivry—and our children—Ricky, Will, Debby, and Katie Leiserson;
Alex and Christopher Rivest; and Molly, Noah, and Benjamin Stein—for their love
and support while we prepared this book. The patience and encouragement of our
families made this project possible. We affectionately dedicate this book to them.

THOMAS H. CORMEN Lebanon, New Hampshire
CHARLES E. LEISERSON Cambridge, Massachusetts
RONALD L. RIVEST Cambridge, Massachusetts
CLIFFORD STEIN New York, New York

February 2009
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I Foundations



Introduction

This part will start you thinking about designing and analyzing algorithms. It is
intended to be a gentle introduction to how we specify algorithms, some of the
design strategies we will use throughout this book, and many of the fundamental
ideas used in algorithm analysis. Later parts of this book will build upon this base.

Chapter 1 provides an overview of algorithms and their place in modern com-
puting systems. This chapter defines what an algorithm is and lists some examples.
It also makes a case that we should consider algorithms as a technology, along-
side technologies such as fast hardware, graphical user interfaces, object-oriented
systems, and networks.

In Chapter 2, we see our first algorithms, which solve the problem of sorting
a sequence of n numbers. They are written in a pseudocode which, although not
directly translatable to any conventional programming language, conveys the struc-
ture of the algorithm clearly enough that you should be able to implement it in the
language of your choice. The sorting algorithms we examine are insertion sort,
which uses an incremental approach, and merge sort, which uses a recursive tech-
nique known as “divide-and-conquer.” Although the time each requires increases
with the value of n, the rate of increase differs between the two algorithms. We
determine these running times in Chapter 2, and we develop a useful notation to
express them.

Chapter 3 precisely defines this notation, which we call asymptotic notation. It
starts by defining several asymptotic notations, which we use for bounding algo-
rithm running times from above and/or below. The rest of Chapter 3 is primarily
a presentation of mathematical notation, more to ensure that your use of notation
matches that in this book than to teach you new mathematical concepts.
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Chapter 4 delves further into the divide-and-conquer method introduced in
Chapter 2. It provides additional examples of divide-and-conquer algorithms, in-
cluding Strassen’s surprising method for multiplying two square matrices. Chap-
ter 4 contains methods for solving recurrences, which are useful for describing
the running times of recursive algorithms. One powerful technique is the “mas-
ter method,” which we often use to solve recurrences that arise from divide-and-
conquer algorithms. Although much of Chapter 4 is devoted to proving the cor-
rectness of the master method, you may skip this proof yet still employ the master
method.

Chapter 5 introduces probabilistic analysis and randomized algorithms. We typ-
ically use probabilistic analysis to determine the running time of an algorithm in
cases in which, due to the presence of an inherent probability distribution, the
running time may differ on different inputs of the same size. In some cases, we
assume that the inputs conform to a known probability distribution, so that we are
averaging the running time over all possible inputs. In other cases, the probability
distribution comes not from the inputs but from random choices made during the
course of the algorithm. An algorithm whose behavior is determined not only by its
input but by the values produced by a random-number generator is a randomized
algorithm. We can use randomized algorithms to enforce a probability distribution
on the inputs—thereby ensuring that no particular input always causes poor perfor-
mance—or even to bound the error rate of algorithms that are allowed to produce
incorrect results on a limited basis.

Appendices A-D contain other mathematical material that you will find helpful
as you read this book. You are likely to have seen much of the material in the
appendix chapters before having read this book (although the specific definitions
and notational conventions we use may differ in some cases from what you have
seen in the past), and so you should think of the Appendices as reference material.
On the other hand, you probably have not already seen most of the material in
Part I. All the chapters in Part I and the Appendices are written with a tutorial
flavor.



1 The Role of Algorithms in Computing

What are algorithms? Why is the study of algorithms worthwhile? What is the role
of algorithms relative to other technologies used in computers? In this chapter, we
will answer these questions.

1.1 Algorithms

Informally, an algorithm is any well-defined computational procedure that takes
some value, or set of values, as input and produces some value, or set of values, as
output. An algorithm is thus a sequence of computational steps that transform the
input into the output.

We can also view an algorithm as a tool for solving a well-specified computa-
tional problem. The statement of the problem specifies in general terms the desired
input/output relationship. The algorithm describes a specific computational proce-
dure for achieving that input/output relationship.

For example, we might need to sort a sequence of numbers into nondecreasing
order. This problem arises frequently in practice and provides fertile ground for
introducing many standard design techniques and analysis tools. Here is how we
formally define the sorting problem:

Input: A sequence of n numbers (ay, as, ..., d,).

Output: A permutation (reordering) (a}, a5, ..., a,) of the input sequence such
thata| <a), <--- <a,,.

For example, given the input sequence (31, 41, 59, 26, 41, 58), a sorting algorithm
returns as output the sequence (26, 31, 41, 41, 58, 59). Such an input sequence is
called an instance of the sorting problem. In general, an instance of a problem
consists of the input (satisfying whatever constraints are imposed in the problem
statement) needed to compute a solution to the problem.
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Because many programs use it as an intermediate step, sorting is a fundamental
operation in computer science. As a result, we have a large number of good sorting
algorithms at our disposal. Which algorithm is best for a given application depends
on—among other factors—the number of items to be sorted, the extent to which
the items are already somewhat sorted, possible restrictions on the item values,
the architecture of the computer, and the kind of storage devices to be used: main
memory, disks, or even tapes.

An algorithm is said to be correct if, for every input instance, it halts with the
correct output. We say that a correct algorithm solves the given computational
problem. An incorrect algorithm might not halt at all on some input instances, or it
might halt with an incorrect answer. Contrary to what you might expect, incorrect
algorithms can sometimes be useful, if we can control their error rate. We shall see
an example of an algorithm with a controllable error rate in Chapter 31 when we
study algorithms for finding large prime numbers. Ordinarily, however, we shall
be concerned only with correct algorithms.

An algorithm can be specified in English, as a computer program, or even as
a hardware design. The only requirement is that the specification must provide a
precise description of the computational procedure to be followed.

What kinds of problems are solved by algorithms?

Sorting is by no means the only computational problem for which algorithms have
been developed. (You probably suspected as much when you saw the size of this
book.) Practical applications of algorithms are ubiquitous and include the follow-
ing examples:

* The Human Genome Project has made great progress toward the goals of iden-
tifying all the 100,000 genes in human DNA, determining the sequences of the
3 billion chemical base pairs that make up human DNA, storing this informa-
tion in databases, and developing tools for data analysis. Each of these steps
requires sophisticated algorithms. Although the solutions to the various prob-
lems involved are beyond the scope of this book, many methods to solve these
biological problems use ideas from several of the chapters in this book, thereby
enabling scientists to accomplish tasks while using resources efficiently. The
savings are in time, both human and machine, and in money, as more informa-
tion can be extracted from laboratory techniques.

* The Internet enables people all around the world to quickly access and retrieve
large amounts of information. With the aid of clever algorithms, sites on the
Internet are able to manage and manipulate this large volume of data. Examples
of problems that make essential use of algorithms include finding good routes
on which the data will travel (techniques for solving such problems appear in
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Chapter 24), and using a search engine to quickly find pages on which particular
information resides (related techniques are in Chapters 11 and 32).

Electronic commerce enables goods and services to be negotiated and ex-
changed electronically, and it depends on the privacy of personal informa-
tion such as credit card numbers, passwords, and bank statements. The core
technologies used in electronic commerce include public-key cryptography and
digital signatures (covered in Chapter 31), which are based on numerical algo-
rithms and number theory.

Manufacturing and other commercial enterprises often need to allocate scarce
resources in the most beneficial way. An oil company may wish to know where
to place its wells in order to maximize its expected profit. A political candidate
may want to determine where to spend money buying campaign advertising in
order to maximize the chances of winning an election. An airline may wish
to assign crews to flights in the least expensive way possible, making sure that
each flight is covered and that government regulations regarding crew schedul-
ing are met. An Internet service provider may wish to determine where to place
additional resources in order to serve its customers more effectively. All of
these are examples of problems that can be solved using linear programming,
which we shall study in Chapter 29.

Although some of the details of these examples are beyond the scope of this

book, we do give underlying techniques that apply to these problems and problem
areas. We also show how to solve many specific problems, including the following:

We are given a road map on which the distance between each pair of adjacent
intersections is marked, and we wish to determine the shortest route from one
intersection to another. The number of possible routes can be huge, even if we
disallow routes that cross over themselves. How do we choose which of all
possible routes is the shortest? Here, we model the road map (which is itself
a model of the actual roads) as a graph (which we will meet in Part VI and
Appendix B), and we wish to find the shortest path from one vertex to another
in the graph. We shall see how to solve this problem efficiently in Chapter 24.

We are given two ordered sequences of symbols, X = (xi, x5, ..., X,) and
Y = (y1,¥2,..., Yu), and we wish to find a longest common subsequence of
X and Y. A subsequence of X is just X with some (or possibly all or none) of
its elements removed. For example, one subsequence of (4, B,C, D, E, F, G)
would be (B, C, E, G). The length of a longest common subsequence of X
and Y gives one measure of how similar these two sequences are. For example,
if the two sequences are base pairs in DNA strands, then we might consider
them similar if they have a long common subsequence. If X has m symbols
and Y has n symbols, then X and Y have 2" and 2" possible subsequences,
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respectively. Selecting all possible subsequences of X and Y and matching
them up could take a prohibitively long time unless m and n are very small.
We shall see in Chapter 15 how to use a general technique known as dynamic
programming to solve this problem much more efficiently.

* We are given a mechanical design in terms of a library of parts, where each part
may include instances of other parts, and we need to list the parts in order so
that each part appears before any part that uses it. If the design comprises n
parts, then there are n! possible orders, where n! denotes the factorial function.
Because the factorial function grows faster than even an exponential function,
we cannot feasibly generate each possible order and then verify that, within
that order, each part appears before the parts using it (unless we have only a
few parts). This problem is an instance of topological sorting, and we shall see
in Chapter 22 how to solve this problem efficiently.

*  We are given n points in the plane, and we wish to find the convex hull of
these points. The convex hull is the smallest convex polygon containing the
points. Intuitively, we can think of each point as being represented by a nail
sticking out from a board. The convex hull would be represented by a tight
rubber band that surrounds all the nails. Each nail around which the rubber
band makes a turn is a vertex of the convex hull. (See Figure 33.6 on page 1029
for an example.) Any of the 2" subsets of the points might be the vertices
of the convex hull. Knowing which points are vertices of the convex hull is
not quite enough, either, since we also need to know the order in which they
appear. There are many choices, therefore, for the vertices of the convex hull.
Chapter 33 gives two good methods for finding the convex hull.

These lists are far from exhaustive (as you again have probably surmised from
this book’s heft), but exhibit two characteristics that are common to many interest-
ing algorithmic problems:

1. They have many candidate solutions, the overwhelming majority of which do
not solve the problem at hand. Finding one that does, or one that is “best,” can
present quite a challenge.

2. They have practical applications. Of the problems in the above list, finding the
shortest path provides the easiest examples. A transportation firm, such as a
trucking or railroad company, has a financial interest in finding shortest paths
through a road or rail network because taking shorter paths results in lower
labor and fuel costs. Or a routing node on the Internet may need to find the
shortest path through the network in order to route a message quickly. Or a
person wishing to drive from New York to Boston may want to find driving
directions from an appropriate Web site, or she may use her GPS while driving.
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Not every problem solved by algorithms has an easily identified set of candidate
solutions. For example, suppose we are given a set of numerical values represent-
ing samples of a signal, and we want to compute the discrete Fourier transform of
these samples. The discrete Fourier transform converts the time domain to the fre-
quency domain, producing a set of numerical coefficients, so that we can determine
the strength of various frequencies in the sampled signal. In addition to lying at
the heart of signal processing, discrete Fourier transforms have applications in data
compression and multiplying large polynomials and integers. Chapter 30 gives
an efficient algorithm, the fast Fourier transform (commonly called the FFT), for
this problem, and the chapter also sketches out the design of a hardware circuit to
compute the FFT.

Data structures

This book also contains several data structures. A data structure is a way to store
and organize data in order to facilitate access and modifications. No single data
structure works well for all purposes, and so it is important to know the strengths
and limitations of several of them.

Technique

Although you can use this book as a “cookbook” for algorithms, you may someday
encounter a problem for which you cannot readily find a published algorithm (many
of the exercises and problems in this book, for example). This book will teach you
techniques of algorithm design and analysis so that you can develop algorithms on
your own, show that they give the correct answer, and understand their efficiency.
Different chapters address different aspects of algorithmic problem solving. Some
chapters address specific problems, such as finding medians and order statistics in
Chapter 9, computing minimum spanning trees in Chapter 23, and determining a
maximum flow in a network in Chapter 26. Other chapters address techniques,
such as divide-and-conquer in Chapter 4, dynamic programming in Chapter 15,
and amortized analysis in Chapter 17.

Hard problems

Most of this book is about efficient algorithms. Our usual measure of efficiency
is speed, i.e., how long an algorithm takes to produce its result. There are some
problems, however, for which no efficient solution is known. Chapter 34 studies
an interesting subset of these problems, which are known as NP-complete.

Why are NP-complete problems interesting? First, although no efficient algo-
rithm for an NP-complete problem has ever been found, nobody has ever proven
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that an efficient algorithm for one cannot exist. In other words, no one knows
whether or not efficient algorithms exist for NP-complete problems. Second, the
set of NP-complete problems has the remarkable property that if an efficient algo-
rithm exists for any one of them, then efficient algorithms exist for all of them. This
relationship among the NP-complete problems makes the lack of efficient solutions
all the more tantalizing. Third, several NP-complete problems are similar, but not
identical, to problems for which we do know of efficient algorithms. Computer
scientists are intrigued by how a small change to the problem statement can cause
a big change to the efficiency of the best known algorithm.

You should know about NP-complete problems because some of them arise sur-
prisingly often in real applications. If you are called upon to produce an efficient
algorithm for an NP-complete problem, you are likely to spend a lot of time in a
fruitless search. If you can show that the problem is NP-complete, you can instead
spend your time developing an efficient algorithm that gives a good, but not the
best possible, solution.

As a concrete example, consider a delivery company with a central depot. Each
day, it loads up each delivery truck at the depot and sends it around to deliver goods
to several addresses. At the end of the day, each truck must end up back at the depot
so that it is ready to be loaded for the next day. To reduce costs, the company wants
to select an order of delivery stops that yields the lowest overall distance traveled
by each truck. This problem is the well-known “traveling-salesman problem,” and
it is NP-complete. It has no known efficient algorithm. Under certain assumptions,
however, we know of efficient algorithms that give an overall distance which is
not too far above the smallest possible. Chapter 35 discusses such “approximation
algorithms.”

Parallelism

For many years, we could count on processor clock speeds increasing at a steady
rate. Physical limitations present a fundamental roadblock to ever-increasing clock
speeds, however: because power density increases superlinearly with clock speed,
chips run the risk of melting once their clock speeds become high enough. In order
to perform more computations per second, therefore, chips are being designed to
contain not just one but several processing “cores.” We can liken these multicore
computers to several sequential computers on a single chip; in other words, they are
a type of “parallel computer.” In order to elicit the best performance from multicore
computers, we need to design algorithms with parallelism in mind. Chapter 27
presents a model for “multithreaded” algorithms, which take advantage of multiple
cores. This model has advantages from a theoretical standpoint, and it forms the
basis of several successful computer programs, including a championship chess
program.
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Exercises

1.1-1
Give a real-world example that requires sorting or a real-world example that re-
quires computing a convex hull.

1.1-2
Other than speed, what other measures of efficiency might one use in a real-world
setting?

1.1-3
Select a data structure that you have seen previously, and discuss its strengths and
limitations.

1.1-4
How are the shortest-path and traveling-salesman problems given above similar?
How are they different?

1.1-5

Come up with a real-world problem in which only the best solution will do. Then
come up with one in which a solution that is “approximately” the best is good
enough.

1.2 Algorithms as a technology

Suppose computers were infinitely fast and computer memory was free. Would
you have any reason to study algorithms? The answer is yes, if for no other reason
than that you would still like to demonstrate that your solution method terminates
and does so with the correct answer.

If computers were infinitely fast, any correct method for solving a problem
would do. You would probably want your implementation to be within the bounds
of good software engineering practice (for example, your implementation should
be well designed and documented), but you would most often use whichever
method was the easiest to implement.

Of course, computers may be fast, but they are not infinitely fast. And memory
may be inexpensive, but it is not free. Computing time is therefore a bounded
resource, and so is space in memory. You should use these resources wisely, and
algorithms that are efficient in terms of time or space will help you do so.
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Efficiency

Different algorithms devised to solve the same problem often differ dramatically in
their efficiency. These differences can be much more significant than differences
due to hardware and software.

As an example, in Chapter 2, we will see two algorithms for sorting. The first,
known as insertion sort, takes time roughly equal to ¢,n? to sort n items, where ¢,
is a constant that does not depend on n. That is, it takes time roughly proportional
to n2. The second, merge sort, takes time roughly equal to c,n Ign, where lgn
stands for log, n and ¢, is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that ¢; < c¢;.
We shall see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as c;7 - n and merge sort’s running time as c,n - Ilgn. Then we see that where
insertion sort has a factor of » in its running time, merge sort has a factor of Ign,
which is much smaller. (For example, when n = 1000, lgn is approximately 10,
and when n equals one million, Ign is approximately only 20.) Although insertion
sort usually runs faster than merge sort for small input sizes, once the input size n
becomes large enough, merge sort’s advantage of lgn vs. n will more than com-
pensate for the difference in constant factors. No matter how much smaller c; is
than c,, there will always be a crossover point beyond which merge sort is faster.

For a concrete example, let us pit a faster computer (computer A) running inser-
tion sort against a slower computer (computer B) running merge sort. They each
must sort an array of 10 million numbers. (Although 10 million numbers might
seem like a lot, if the numbers are eight-byte integers, then the input occupies
about 80 megabytes, which fits in the memory of even an inexpensive laptop com-
puter many times over.) Suppose that computer A executes 10 billion instructions
per second (faster than any single sequential computer at the time of this writing)
and computer B executes only 10 million instructions per second, so that com-
puter A is 1000 times faster than computer B in raw computing power. To make
the difference even more dramatic, suppose that the world’s craftiest programmer
codes insertion sort in machine language for computer A, and the resulting code
requires 2n? instructions to sort 7 numbers. Suppose further that just an average
programmer implements merge sort, using a high-level language with an inefficient
compiler, with the resulting code taking 50n Ig n instructions. To sort 10 million
numbers, computer A takes

2 - (107)? instructions

1019 instructions/second

= 20,000 seconds (more than 5.5 hours) ,

while computer B takes
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50 - 107 1g 107 instructions
107 instructions/second

~ 1163 seconds (less than 20 minutes) .

By using an algorithm whose running time grows more slowly, even with a poor
compiler, computer B runs more than 17 times faster than computer A! The advan-
tage of merge sort is even more pronounced when we sort 100 million numbers:
where insertion sort takes more than 23 days, merge sort takes under four hours.
In general, as the problem size increases, so does the relative advantage of merge
sort.

Algorithms and other technologies

The example above shows that we should consider algorithms, like computer hard-
ware, as a technology. Total system performance depends on choosing efficient
algorithms as much as on choosing fast hardware. Just as rapid advances are being
made in other computer technologies, they are being made in algorithms as well.

You might wonder whether algorithms are truly that important on contemporary
computers in light of other advanced technologies, such as

* advanced computer architectures and fabrication technologies,
* easy-to-use, intuitive, graphical user interfaces (GUIs),

* object-oriented systems,

* integrated Web technologies, and

* fast networking, both wired and wireless.

The answer is yes. Although some applications do not explicitly require algorith-
mic content at the application level (such as some simple, Web-based applications),
many do. For example, consider a Web-based service that determines how to travel
from one location to another. Its implementation would rely on fast hardware, a
graphical user interface, wide-area networking, and also possibly on object ori-
entation. However, it would also require algorithms for certain operations, such
as finding routes (probably using a shortest-path algorithm), rendering maps, and
interpolating addresses.

Moreover, even an application that does not require algorithmic content at the
application level relies heavily upon algorithms. Does the application rely on fast
hardware? The hardware design used algorithms. Does the application rely on
graphical user interfaces? The design of any GUI relies on algorithms. Does the
application rely on networking? Routing in networks relies heavily on algorithms.
Was the application written in a language other than machine code? Then it was
processed by a compiler, interpreter, or assembler, all of which make extensive use
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of algorithms. Algorithms are at the core of most technologies used in contempo-
rary computers.

Furthermore, with the ever-increasing capacities of computers, we use them to
solve larger problems than ever before. As we saw in the above comparison be-
tween insertion sort and merge sort, it is at larger problem sizes that the differences
in efficiency between algorithms become particularly prominent.

Having a solid base of algorithmic knowledge and technique is one characteristic
that separates the truly skilled programmers from the novices. With modern com-
puting technology, you can accomplish some tasks without knowing much about
algorithms, but with a good background in algorithms, you can do much, much
more.

Exercises

1.2-1
Give an example of an application that requires algorithmic content at the applica-
tion level, and discuss the function of the algorithms involved.

1.2-2
Suppose we are comparing implementations of insertion sort and merge sort on the
same machine. For inputs of size n, insertion sort runs in 812 steps, while merge
sort runs in 64n lgn steps. For which values of n does insertion sort beat merge
sort?

1.2-3
What is the smallest value of 7 such that an algorithm whose running time is 10072
runs faster than an algorithm whose running time is 2" on the same machine?

Problems

1-1 Comparison of running times

For each function f(n) and time ¢ in the following table, determine the largest
size n of a problem that can be solved in time #, assuming that the algorithm to
solve the problem takes f(n) microseconds.
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Chapter notes

There are many excellent texts on the general topic of algorithms, including those
by Aho, Hopcroft, and Ullman [5, 6]; Baase and Van Gelder [28]; Brassard and
Bratley [54]; Dasgupta, Papadimitriou, and Vazirani [82]; Goodrich and Tamassia
[148]; Hofri [175]; Horowitz, Sahni, and Rajasekaran [181]; Johnsonbaugh and
Schaefer [193]; Kingston [205]; Kleinberg and Tardos [208]; Knuth [209, 210,
211]; Kozen [220]; Levitin [235]; Manber [242]; Mehlhorn [249, 250, 251]; Pur-
dom and Brown [287]; Reingold, Nievergelt, and Deo [293]; Sedgewick [306];
Sedgewick and Flajolet [307]; Skiena [318]; and Wilf [356]. Some of the more
practical aspects of algorithm design are discussed by Bentley [42, 43] and Gonnet
[145]. Surveys of the field of algorithms can also be found in the Handbook of The-
oretical Computer Science, Volume A [342] and the CRC Algorithms and Theory of
Computation Handbook [25]. Overviews of the algorithms used in computational
biology can be found in textbooks by Gusfield [156], Pevzner [275], Setubal and
Meidanis [310], and Waterman [350].
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Getting Started

This chapter will familiarize you with the framework we shall use throughout the
book to think about the design and analysis of algorithms. It is self-contained, but
it does include several references to material that we introduce in Chapters 3 and 4.
(It also contains several summations, which Appendix A shows how to solve.)

We begin by examining the insertion sort algorithm to solve the sorting problem
introduced in Chapter 1. We define a “pseudocode” that should be familiar to you if
you have done computer programming, and we use it to show how we shall specify
our algorithms. Having specified the insertion sort algorithm, we then argue that it
correctly sorts, and we analyze its running time. The analysis introduces a notation
that focuses on how that time increases with the number of items to be sorted.
Following our discussion of insertion sort, we introduce the divide-and-conquer
approach to the design of algorithms and use it to develop an algorithm called
merge sort. We end with an analysis of merge sort’s running time.

2.1 Insertion sort

Our first algorithm, insertion sort, solves the sorting problem introduced in Chap-
ter 1:

Input: A sequence of n numbers (a,d,,...,a,).

Output: A permutation (reordering) (a}, a5, ..., a,) of the input sequence such
thata} <a), <--- <a,.

The numbers that we wish to sort are also known as the keys. Although conceptu-
ally we are sorting a sequence, the input comes to us in the form of an array with n
elements.

In this book, we shall typically describe algorithms as programs written in a
pseudocode that is similar in many respects to C, C++, Java, Python, or Pascal. If
you have been introduced to any of these languages, you should have little trouble
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Figure 2.1 Sorting a hand of cards using insertion sort.

reading our algorithms. What separates pseudocode from “real” code is that in
pseudocode, we employ whatever expressive method is most clear and concise to
specify a given algorithm. Sometimes, the clearest method is English, so do not
be surprised if you come across an English phrase or sentence embedded within
a section of “real” code. Another difference between pseudocode and real code
is that pseudocode is not typically concerned with issues of software engineering.
Issues of data abstraction, modularity, and error handling are often ignored in order
to convey the essence of the algorithm more concisely.

We start with insertion sort, which is an efficient algorithm for sorting a small
number of elements. Insertion sort works the way many people sort a hand of
playing cards. We start with an empty left hand and the cards face down on the
table. We then remove one card at a time from the table and insert it into the
correct position in the left hand. To find the correct position for a card, we compare
it with each of the cards already in the hand, from right to left, as illustrated in
Figure 2.1. At all times, the cards held in the left hand are sorted, and these cards
were originally the top cards of the pile on the table.

We present our pseudocode for insertion sort as a procedure called INSERTION-
SORT, which takes as a parameter an array A[l..n] containing a sequence of
length 7 that is to be sorted. (In the code, the number 7 of elements in A is denoted
by A.length.) The algorithm sorts the input numbers in place: it rearranges the
numbers within the array A, with at most a constant number of them stored outside
the array at any time. The input array A contains the sorted output sequence when
the INSERTION-SORT procedure is finished.
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Figure 2.2 The operation of INSERTION-SORT on the array A = (5,2, 4, 6, 1, 3). Array indices
appear above the rectangles, and values stored in the array positions appear within the rectangles.
(a)—(e) The iterations of the for loop of lines 1-8. In each iteration, the black rectangle holds the
key taken from A[;], which is compared with the values in shaded rectangles to its left in the test of
line 5. Shaded arrows show array values moved one position to the right in line 6, and black arrows
indicate where the key moves to in line 8. (f) The final sorted array.

INSERTION-SORT(A)

1 for j = 2to A.length

2 key = AlJ]

3 // Tnsert A[j] into the sorted sequence A[1..j — 1].
4 i=j—1

5 while ; > 0 and A[i] > key

6 Ali + 1] = A]i]

7 i=i-1
8 Ali + 1] = key

Loop invariants and the correctness of insertion sort

Figure 2.2 shows how this algorithm works for A = (5, 2, 4, 6, 1, 3). The in-
dex j indicates the “current card” being inserted into the hand. At the beginning
of each iteration of the for loop, which is indexed by j, the subarray consisting
of elements A[l..j — 1] constitutes the currently sorted hand, and the remaining
subarray A[j + 1..n] corresponds to the pile of cards still on the table. In fact,
elements A[l..j — 1] are the elements originally in positions 1 through j — 1, but
now in sorted order. We state these properties of A[1..j — 1] formally as a loop
invariant:

At the start of each iteration of the for loop of lines 1-8, the subarray
A[l..j —1] consists of the elements originally in A[1.. j — 1], but in sorted
order.

We use loop invariants to help us understand why an algorithm is correct. We
must show three things about a loop invariant:
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Initialization: It is true prior to the first iteration of the loop.

Maintenance: If it is true before an iteration of the loop, it remains true before the
next iteration.

Termination: When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to every iteration
of the loop. (Of course, we are free to use established facts other than the loop
invariant itself to prove that the loop invariant remains true before each iteration.)
Note the similarity to mathematical induction, where to prove that a property holds,
you prove a base case and an inductive step. Here, showing that the invariant holds
before the first iteration corresponds to the base case, and showing that the invariant
holds from iteration to iteration corresponds to the inductive step.

The third property is perhaps the most important one, since we are using the loop
invariant to show correctness. Typically, we use the loop invariant along with the
condition that caused the loop to terminate. The termination property differs from
how we usually use mathematical induction, in which we apply the inductive step
infinitely; here, we stop the “induction” when the loop terminates.

Let us see how these properties hold for insertion sort.

Initialization: We start by showing that the loop invariant holds before the first
loop iteration, when j = 2. The subarray A[l..j — 1], therefore, consists
of just the single element A[1], which is in fact the original element in A[1].
Moreover, this subarray is sorted (trivially, of course), which shows that the
loop invariant holds prior to the first iteration of the loop.

Maintenance: Next, we tackle the second property: showing that each iteration
maintains the loop invariant. Informally, the body of the for loop works by
moving A[j — 1], A[j — 2], A[j — 3], and so on by one position to the right
until it finds the proper position for A[j] (lines 4-7), at which point it inserts
the value of A[j] (line 8). The subarray A[l .. j] then consists of the elements
originally in A[1.. j], but in sorted order. Incrementing j for the next iteration
of the for loop then preserves the loop invariant.

A more formal treatment of the second property would require us to state and
show a loop invariant for the while loop of lines 5-7. At this point, however,

I'When the loop is a for loop, the moment at which we check the loop invariant just prior to the first
iteration is immediately after the initial assignment to the loop-counter variable and just before the
first test in the loop header. In the case of INSERTION-SORT, this time is after assigning 2 to the
variable j but before the first test of whether j < A.length.
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we prefer not to get bogged down in such formalism, and so we rely on our
informal analysis to show that the second property holds for the outer loop.

Termination: Finally, we examine what happens when the loop terminates. The

condition causing the for loop to terminate is that j > A.length = n. Because
each loop iteration increases j by 1, we must have j = n 4 1 at that time.
Substituting n 4 1 for j in the wording of loop invariant, we have that the
subarray A[l..n] consists of the elements originally in A[1..n], but in sorted
order. Observing that the subarray A[l .. n] is the entire array, we conclude that
the entire array is sorted. Hence, the algorithm is correct.

We shall use this method of loop invariants to show correctness later in this

chapter and in other chapters as well.

Pseudocode conventions

We use the following conventions in our pseudocode.

Indentation indicates block structure. For example, the body of the for loop that
begins on line 1 consists of lines 2—8, and the body of the while loop that begins
on line 5 contains lines 67 but not line 8. Our indentation style applies to
if-else statements” as well. Using indentation instead of conventional indicators
of block structure, such as begin and end statements, greatly reduces clutter
while preserving, or even enhancing, clarity.’

The looping constructs while, for, and repeat-until and the if-else conditional
construct have interpretations similar to those in C, C++, Java, Python, and
Pascal.* In this book, the loop counter retains its value after exiting the loop,
unlike some situations that arise in C++, Java, and Pascal. Thus, immediately
after a for loop, the loop counter’s value is the value that first exceeded the for
loop bound. We used this property in our correctness argument for insertion
sort. The for loop header in line 1 is for j = 2 to A.length, and so when
this loop terminates, j = A.length 4+ 1 (or, equivalently, j = n + 1, since
n = A.length). We use the keyword to when a for loop increments its loop

2In an if-else statement, we indent else at the same level as its matching if. Although we omit the
keyword then, we occasionally refer to the portion executed when the test following if is true as a
then clause. For multiway tests, we use elseif for tests after the first one.

3Each pseudocode procedure in this book appears on one page so that you will not have to discern
levels of indentation in code that is split across pages.

4Most block-structured languages have equivalent constructs, though the exact syntax may differ.
Python lacks repeat-until loops, and its for loops operate a little differently from the for loops in
this book.
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counter in each iteration, and we use the keyword downto when a for loop
decrements its loop counter. When the loop counter changes by an amount
greater than 1, the amount of change follows the optional keyword by.

* The symbol “//” indicates that the remainder of the line is a comment.

* A multiple assignment of the formi = j = e assigns to both variables i and j
the value of expression e; it should be treated as equivalent to the assignment
j = e followed by the assignmenti = j.

* Variables (such as i, j, and key) are local to the given procedure. We shall not
use global variables without explicit indication.

*  We access array elements by specifying the array name followed by the in-
dex in square brackets. For example, A[i] indicates the ith element of the
array A. The notation ““..” is used to indicate a range of values within an ar-
ray. Thus, A[l.. j] indicates the subarray of A consisting of the j elements
A[l], A[2], ..., A[j].

*  We typically organize compound data into objects, which are composed of
attributes. We access a particular attribute using the syntax found in many
object-oriented programming languages: the object name, followed by a dot,
followed by the attribute name. For example, we treat an array as an object
with the attribute length indicating how many elements it contains. To specify
the number of elements in an array A, we write A.length.

We treat a variable representing an array or object as a pointer to the data rep-
resenting the array or object. For all attributes f of an object x, setting y = x
causes y.f to equal x.f. Moreover, if we now set x.f = 3, then afterward not
only does x.f equal 3, but y.f equals 3 as well. In other words, x and y point
to the same object after the assignment y = x.

Our attribute notation can “cascade.” For example, suppose that the attribute f
is itself a pointer to some type of object that has an attribute g. Then the notation
x.f.g is implicitly parenthesized as (x.f).g. In other words, if we had assigned
y = x.f, then x.f.g is the same as y.g.

Sometimes, a pointer will refer to no object at all. In this case, we give it the
special value NIL.

*  We pass parameters to a procedure by value: the called procedure receives its
own copy of the parameters, and if it assigns a value to a parameter, the change
is not seen by the calling procedure. When objects are passed, the pointer to
the data representing the object is copied, but the object’s attributes are not. For
example, if x is a parameter of a called procedure, the assignment x = y within
the called procedure is not visible to the calling procedure. The assignment
x.f = 3, however, is visible. Similarly, arrays are passed by pointer, so that
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a pointer to the array is passed, rather than the entire array, and changes to
individual array elements are visible to the calling procedure.

* A return statement immediately transfers control back to the point of call in
the calling procedure. Most return statements also take a value to pass back to
the caller. Our pseudocode differs from many programming languages in that
we allow multiple values to be returned in a single return statement.

* The boolean operators “and” and “or” are short circuiting. That is, when we
evaluate the expression “x and y” we first evaluate x. If x evaluates to FALSE,
then the entire expression cannot evaluate to TRUE, and so we do not evaluate y.
If, on the other hand, x evaluates to TRUE, we must evaluate y to determine the
value of the entire expression. Similarly, in the expression “x or y” we eval-
uate the expression y only if x evaluates to FALSE. Short-circuiting operators
allow us to write boolean expressions such as “x # NIL and x.f = y” without
worrying about what happens when we try to evaluate x.f when x is NIL.

e The keyword error indicates that an error occurred because conditions were
wrong for the procedure to have been called. The calling procedure is respon-
sible for handling the error, and so we do not specify what action to take.

Exercises

2.1-1
Using Figure 2.2 as a model, illustrate the operation of INSERTION-SORT on the
array A = (31,41,59,26,41,58).

2.1-2
Rewrite the INSERTION-SORT procedure to sort into nonincreasing instead of non-
decreasing order.

2.1-3
Consider the searching problem:

Input: A sequence of n numbers A = (a;,ds,,...,a,) and a value v.

Output: An index i such that v = A[i] or the special value NIL if v does not
appear in A.

Write pseudocode for linear search, which scans through the sequence, looking
for v. Using a loop invariant, prove that your algorithm is correct. Make sure that
your loop invariant fulfills the three necessary properties.

2.1-4
Consider the problem of adding two n-bit binary integers, stored in two n-element
arrays A and B. The sum of the two integers should be stored in binary form in
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an (n + 1)-element array C. State the problem formally and write pseudocode for
adding the two integers.

2.2 Analyzing algorithms

Analyzing an algorithm has come to mean predicting the resources that the algo-
rithm requires. Occasionally, resources such as memory, communication band-
width, or computer hardware are of primary concern, but most often it is compu-
tational time that we want to measure. Generally, by analyzing several candidate
algorithms for a problem, we can identify a most efficient one. Such analysis may
indicate more than one viable candidate, but we can often discard several inferior
algorithms in the process.

Before we can analyze an algorithm, we must have a model of the implemen-
tation technology that we will use, including a model for the resources of that
technology and their costs. For most of this book, we shall assume a generic one-
processor, random-access machine (RAM) model of computation as our imple-
mentation technology and understand that our algorithms will be implemented as
computer programs. In the RAM model, instructions are executed one after an-
other, with no concurrent operations.

Strictly speaking, we should precisely define the instructions of the RAM model
and their costs. To do so, however, would be tedious and would yield little insight
into algorithm design and analysis. Yet we must be careful not to abuse the RAM
model. For example, what if a RAM had an instruction that sorts? Then we could
sort in just one instruction. Such a RAM would be unrealistic, since real computers
do not have such instructions. Our guide, therefore, is how real computers are de-
signed. The RAM model contains instructions commonly found in real computers:
arithmetic (such as add, subtract, multiply, divide, remainder, floor, ceiling), data
movement (load, store, copy), and control (conditional and unconditional branch,
subroutine call and return). Each such instruction takes a constant amount of time.

The data types in the RAM model are integer and floating point (for storing real
numbers). Although we typically do not concern ourselves with precision in this
book, in some applications precision is crucial. We also assume a limit on the size
of each word of data. For example, when working with inputs of size n, we typ-
ically assume that integers are represented by c Ign bits for some constant ¢ > 1.
We require ¢ > 1 so that each word can hold the value of n, enabling us to index the
individual input elements, and we restrict ¢ to be a constant so that the word size
does not grow arbitrarily. (If the word size could grow arbitrarily, we could store
huge amounts of data in one word and operate on it all in constant time—clearly
an unrealistic scenario.)
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Real computers contain instructions not listed above, and such instructions rep-
resent a gray area in the RAM model. For example, is exponentiation a constant-
time instruction? In the general case, no; it takes several instructions to compute x”
when x and y are real numbers. In restricted situations, however, exponentiation is
a constant-time operation. Many computers have a “shift left” instruction, which
in constant time shifts the bits of an integer by k positions to the left. In most
computers, shifting the bits of an integer by one position to the left is equivalent
to multiplication by 2, so that shifting the bits by k positions to the left is equiv-
alent to multiplication by 2. Therefore, such computers can compute 2¥ in one
constant-time instruction by shifting the integer 1 by k positions to the left, as long
as k is no more than the number of bits in a computer word. We will endeavor to
avoid such gray areas in the RAM model, but we will treat computation of 2 as a
constant-time operation when k is a small enough positive integer.

In the RAM model, we do not attempt to model the memory hierarchy that is
common in contemporary computers. That is, we do not model caches or virtual
memory. Several computational models attempt to account for memory-hierarchy
effects, which are sometimes significant in real programs on real machines. A
handful of problems in this book examine memory-hierarchy effects, but for the
most part, the analyses in this book will not consider them. Models that include
the memory hierarchy are quite a bit more complex than the RAM model, and so
they can be difficult to work with. Moreover, RAM-model analyses are usually
excellent predictors of performance on actual machines.

Analyzing even a simple algorithm in the RAM model can be a challenge. The
mathematical tools required may include combinatorics, probability theory, alge-
braic dexterity, and the ability to identify the most significant terms in a formula.
Because the behavior of an algorithm may be different for each possible input, we
need a means for summarizing that behavior in simple, easily understood formulas.

Even though we typically select only one machine model to analyze a given al-
gorithm, we still face many choices in deciding how to express our analysis. We
would like a way that is simple to write and manipulate, shows the important char-
acteristics of an algorithm’s resource requirements, and suppresses tedious details.

Analysis of insertion sort

The time taken by the INSERTION-SORT procedure depends on the input: sorting a
thousand numbers takes longer than sorting three numbers. Moreover, INSERTION-
SORT can take different amounts of time to sort two input sequences of the same
size depending on how nearly sorted they already are. In general, the time taken
by an algorithm grows with the size of the input, so it is traditional to describe the
running time of a program as a function of the size of its input. To do so, we need
to define the terms “running time” and “size of input” more carefully.



2.2 Analyzing algorithms 25

The best notion for input size depends on the problem being studied. For many
problems, such as sorting or computing discrete Fourier transforms, the most nat-
ural measure is the number of items in the input—for example, the array size n
for sorting. For many other problems, such as multiplying two integers, the best
measure of input size is the toral number of bits needed to represent the input in
ordinary binary notation. Sometimes, it is more appropriate to describe the size of
the input with two numbers rather than one. For instance, if the input to an algo-
rithm is a graph, the input size can be described by the numbers of vertices and
edges in the graph. We shall indicate which input size measure is being used with
each problem we study.

The running time of an algorithm on a particular input is the number of primitive
operations or “steps” executed. It is convenient to define the notion of step so
that it is as machine-independent as possible. For the moment, let us adopt the
following view. A constant amount of time is required to execute each line of our
pseudocode. One line may take a different amount of time than another line, but
we shall assume that each execution of the ith line takes time c;, where ¢; is a
constant. This viewpoint is in keeping with the RAM model, and it also reflects
how the pseudocode would be implemented on most actual computers.’

In the following discussion, our expression for the running time of INSERTION-
SORT will evolve from a messy formula that uses all the statement costs ¢; to a
much simpler notation that is more concise and more easily manipulated. This
simpler notation will also make it easy to determine whether one algorithm is more
efficient than another.

We start by presenting the INSERTION-SORT procedure with the time “cost”
of each statement and the number of times each statement is executed. For each
Jj =2,3,...,n, where n = A.length, we let t; denote the number of times the
while loop test in line 5 is executed for that value of j. When a for or while loop
exits in the usual way (i.e., due to the test in the loop header), the test is executed
one time more than the loop body. We assume that comments are not executable
statements, and so they take no time.

SThere are some subtleties here. Computational steps that we specify in English are often variants
of a procedure that requires more than just a constant amount of time. For example, later in this
book we might say “sort the points by x-coordinate,” which, as we shall see, takes more than a
constant amount of time. Also, note that a statement that calls a subroutine takes constant time,
though the subroutine, once invoked, may take more. That is, we separate the process of calling the
subroutine — passing parameters to it, etc. —from the process of executing the subroutine.
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INSERTION-SORT (A) cost  times
1 for j = 2to A.length cq n
2 key = A[J] Cs n—1
3 // Insert A[j] into the sorted
sequence A[l..j —1]. 0 n—1
4 i=7j—1 Cyq n—1
5 while i > 0 and A[i] > key Cs Z;’:Z t
6 Ali +1] = A[i] Cs Yot = 1)
7 i=i—1 ¢y Z}lzz(tj —1)
8 Ali + 1] = key cg n—1

The running time of the algorithm is the sum of running times for each state-
ment executed; a statement that takes ¢; steps to execute and executes n times will
contribute ¢;n to the total running time.® To compute T'(n), the running time of
INSERTION-SORT on an input of n values, we sum the products of the cost and
times columns, obtaining

T(n) = can+em—1D+em—1)+ceY t+csy (t—1)

j=2 j=2
+ ¢y Z(lj — 1) + Cg(n — 1) .
j=2

Even for inputs of a given size, an algorithm’s running time may depend on
which input of that size is given. For example, in INSERTION-SORT, the best

case occurs if the array is already sorted. For each j = 2,3,...,n, we then find
that A[i] < key in line 5 when i has its initial value of j — 1. Thus t; = 1 for
j =12,3,...,n, and the best-case running time is

T(n) = cin+can—1)+csn—1)+cs(m—1)4+cg(n—1)

= (cir+cy+cs+ces+cegn—(cy+cs+cs+cg).

We can express this running time as an + b for constants a and b that depend on
the statement costs ¢;; it is thus a linear function of n.

If the array is in reverse sorted order—that is, in decreasing order—the worst
case results. We must compare each element A[;] with each element in the entire
sorted subarray A[l1..j —1],andsot; = j for j = 2,3,...,n. Noting that

This characteristic does not necessarily hold for a resource such as memory. A statement that
references m words of memory and is executed n times does not necessarily reference mn distinct
words of memory.
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Zj=n(n2+l)_1

j=2

and

S nn—1)
(J-—D=—%5—

(see Appendix A for a review of how to solve these summations), we find that in
the worst case, the running time of INSERTION-SORT is

T() = cin+can—1)+caln— 1)+ cs (@ ~ 1)

Ce (@) + ¢y (@) + Cg(l’l — 1)

c Cc C c C c
= (F+5+F)r+(arata+rs-F-F +a)n

—(C2+C4+C5+C8).

We can express this worst-case running time as an? + bn + ¢ for constants a, b,
and ¢ that again depend on the statement costs ¢;; it is thus a quadratic function
of n.

Typically, as in insertion sort, the running time of an algorithm is fixed for a
given input, although in later chapters we shall see some interesting “randomized”
algorithms whose behavior can vary even for a fixed input.

Worst-case and average-case analysis

In our analysis of insertion sort, we looked at both the best case, in which the input
array was already sorted, and the worst case, in which the input array was reverse
sorted. For the remainder of this book, though, we shall usually concentrate on
finding only the worst-case running time, that is, the longest running time for any
input of size n. We give three reasons for this orientation.

* The worst-case running time of an algorithm gives us an upper bound on the
running time for any input. Knowing it provides a guarantee that the algorithm
will never take any longer. We need not make some educated guess about the
running time and hope that it never gets much worse.

* For some algorithms, the worst case occurs fairly often. For example, in search-
ing a database for a particular piece of information, the searching algorithm’s
worst case will often occur when the information is not present in the database.
In some applications, searches for absent information may be frequent.
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* The “average case” is often roughly as bad as the worst case. Suppose that we
randomly choose n numbers and apply insertion sort. How long does it take to
determine where in subarray A[l..j — 1] to insert element A[;]? On average,
half the elements in A[1..j — 1] are less than A[], and half the elements are
greater. On average, therefore, we check half of the subarray A[l..j — 1], and
so ¢; is about j/2. The resulting average-case running time turns out to be a
quadratic function of the input size, just like the worst-case running time.

In some particular cases, we shall be interested in the average-case running time
of an algorithm; we shall see the technique of probabilistic analysis applied to
various algorithms throughout this book. The scope of average-case analysis is
limited, because it may not be apparent what constitutes an “average” input for
a particular problem. Often, we shall assume that all inputs of a given size are
equally likely. In practice, this assumption may be violated, but we can sometimes
use a randomized algorithm, which makes random choices, to allow a probabilistic
analysis and yield an expected running time. We explore randomized algorithms
more in Chapter 5 and in several other subsequent chapters.

Order of growth

We used some simplifying abstractions to ease our analysis of the INSERTION-
SORT procedure. First, we ignored the actual cost of each statement, using the
constants ¢; to represent these costs. Then, we observed that even these constants
give us more detail than we really need: we expressed the worst-case running time
as an® + bn + c for some constants a, b, and ¢ that depend on the statement
costs ¢;. We thus ignored not only the actual statement costs, but also the abstract
COSts ¢;.

We shall now make one more simplifying abstraction: it is the rate of growth,
or order of growth, of the running time that really interests us. We therefore con-
sider only the leading term of a formula (e.g., an?), since the lower-order terms are
relatively insignificant for large values of n. We also ignore the leading term’s con-
stant coefficient, since constant factors are less significant than the rate of growth
in determining computational efficiency for large inputs. For insertion sort, when
we ignore the lower-order terms and the leading term’s constant coefficient, we are
left with the factor of n? from the leading term. We write that insertion sort has a
worst-case running time of ®(n?) (pronounced “theta of n-squared”). We shall use
®-notation informally in this chapter, and we will define it precisely in Chapter 3.

We usually consider one algorithm to be more efficient than another if its worst-
case running time has a lower order of growth. Due to constant factors and lower-
order terms, an algorithm whose running time has a higher order of growth might
take less time for small inputs than an algorithm whose running time has a lower
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order of growth. But for large enough inputs, a ®(n?) algorithm, for example, will
run more quickly in the worst case than a ®(n?) algorithm.

Exercises

2.2-1
Express the function 73 /1000 — 100n% — 1001 + 3 in terms of ®-notation.

2.2-2

Consider sorting n numbers stored in array A by first finding the smallest element
of A and exchanging it with the element in A[1]. Then find the second smallest
element of A, and exchange it with A[2]. Continue in this manner for the first n — 1
elements of A. Write pseudocode for this algorithm, which is known as selection
sort. What loop invariant does this algorithm maintain? Why does it need to run
for only the first n — 1 elements, rather than for all n elements? Give the best-case
and worst-case running times of selection sort in ®-notation.

2.2-3

Consider linear search again (see Exercise 2.1-3). How many elements of the in-
put sequence need to be checked on the average, assuming that the element being
searched for is equally likely to be any element in the array? How about in the
worst case? What are the average-case and worst-case running times of linear
search in ®-notation? Justify your answers.

2.24
How can we modify almost any algorithm to have a good best-case running time?

2.3 Designing algorithms

We can choose from a wide range of algorithm design techniques. For insertion
sort, we used an incremental approach: having sorted the subarray A[l..j — 1],
we inserted the single element A[j] into its proper place, yielding the sorted
subarray A[l .. j].

In this section, we examine an alternative design approach, known as “divide-
and-conquer,” which we shall explore in more detail in Chapter 4. We’ll use divide-
and-conquer to design a sorting algorithm whose worst-case running time is much
less than that of insertion sort. One advantage of divide-and-conquer algorithms is
that their running times are often easily determined using techniques that we will
see in Chapter 4.
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2.3.1 The divide-and-conquer approach

Many useful algorithms are recursive in structure: to solve a given problem, they
call themselves recursively one or more times to deal with closely related sub-
problems. These algorithms typically follow a divide-and-conquer approach: they
break the problem into several subproblems that are similar to the original prob-
lem but smaller in size, solve the subproblems recursively, and then combine these
solutions to create a solution to the original problem.

The divide-and-conquer paradigm involves three steps at each level of the recur-
sion:

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Conquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner.

Combine the solutions to the subproblems into the solution for the original prob-
lem.

The merge sort algorithm closely follows the divide-and-conquer paradigm. In-
tuitively, it operates as follows.

Divide: Divide the n-clement sequence to be sorted into two subsequences of /2
elements each.

Conquer: Sort the two subsequences recursively using merge sort.

Combine: Merge the two sorted subsequences to produce the sorted answer.

The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there is no work to be done, since every sequence of length 1 is already in
sorted order.

The key operation of the merge sort algorithm is the merging of two sorted
sequences in the “combine” step. We merge by calling an auxiliary procedure
MERGE(A, p,q,r), where A is an array and p, g, and r are indices into the array
such that p < g < r. The procedure assumes that the subarrays A[p ..q] and
Alg + 1..r] are in sorted order. It merges them to form a single sorted subarray
that replaces the current subarray A[p..r].

Our MERGE procedure takes time ®(n), where n = r — p + 1 is the total
number of elements being merged, and it works as follows. Returning to our card-
playing motif, suppose we have two piles of cards face up on a table. Each pile is
sorted, with the smallest cards on top. We wish to merge the two piles into a single
sorted output pile, which is to be face down on the table. Our basic step consists
of choosing the smaller of the two cards on top of the face-up piles, removing it
from its pile (which exposes a new top card), and placing this card face down onto
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the output pile. We repeat this step until one input pile is empty, at which time
we just take the remaining input pile and place it face down onto the output pile.
Computationally, each basic step takes constant time, since we are comparing just
the two top cards. Since we perform at most n basic steps, merging takes ©(n)
time.

The following pseudocode implements the above idea, but with an additional
twist that avoids having to check whether either pile is empty in each basic step.
We place on the bottom of each pile a sentinel card, which contains a special value
that we use to simplify our code. Here, we use oo as the sentinel value, so that
whenever a card with oo is exposed, it cannot be the smaller card unless both piles
have their sentinel cards exposed. But once that happens, all the nonsentinel cards
have already been placed onto the output pile. Since we know in advance that
exactly r — p 4 1 cards will be placed onto the output pile, we can stop once we
have performed that many basic steps.

MERGE(4, p.q,r)

2 np,=r—gq

3 letL[l..n;+ 1] and R[1..n, + 1] be new arrays
4 fori = 1ton,

5 Lli] = Alp+i—1]
6 forj = 1ton,

7 R[j] = Alg + j]

9 Rny+1] = o0

10 i=1

1 j=1

12 fork = ptor

13 if L[i] < R[/]

14 Alk] = LJi]

15 i=i+1

16 else A[k] = R[/]
17 j=Jj+1

In detail, the MERGE procedure works as follows. Line 1 computes the length 7,
of the subarray A[p..q], and line 2 computes the length n, of the subarray
Alg + 1..r]. We create arrays L and R (“left” and “right”), of lengths n; + 1
and n, + 1, respectively, in line 3; the extra position in each array will hold the
sentinel. The for loop of lines 4-5 copies the subarray A[p..q] into L[1..n,],
and the for loop of lines 6-7 copies the subarray A[g + 1..r] into R[1..n,].
Lines 8-9 put the sentinels at the ends of the arrays L and R. Lines 10-17, illus-
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Figure 2.3 The operation of lines 10-17 in the call MERGE(A4, 9, 12, 16), when the subarray
A[9..16] contains the sequence (2, 4, 5,7, 1, 2, 3, 6). After copying and inserting sentinels, the
array L contains (2, 4,5, 7, 00), and the array R contains (1, 2, 3, 6, oo). Lightly shaded positions
in A contain their final values, and lightly shaded positions in L and R contain values that have yet
to be copied back into A. Taken together, the lightly shaded positions always comprise the values
originally in A[9..16], along with the two sentinels. Heavily shaded positions in 4 contain values
that will be copied over, and heavily shaded positions in L and R contain values that have already
been copied back into A. (a)-(h) The arrays A, L, and R, and their respective indices k, i, and j
prior to each iteration of the loop of lines 12—-17.

trated in Figure 2.3, perform the r — p + 1 basic steps by maintaining the following
loop invariant:

At the start of each iteration of the for loop of lines 12-17, the subarray
A[p ..k — 1] contains the k — p smallest elements of L[1..n; + 1] and
R[1..n, + 1], in sorted order. Moreover, L[i] and R[] are the smallest
elements of their arrays that have not been copied back into A.

We must show that this loop invariant holds prior to the first iteration of the for
loop of lines 12—17, that each iteration of the loop maintains the invariant, and
that the invariant provides a useful property to show correctness when the loop
terminates.

Initialization: Prior to the first iteration of the loop, we have k = p, so that the
subarray A[p ..k — 1] is empty. This empty subarray contains the k — p = 0
smallest elements of L and R, and since i = j = 1, both L[i] and R[] are the
smallest elements of their arrays that have not been copied back into A.
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Figure 2.3, continued (i) The arrays and indices at termination. At this point, the subarray in
A[9..16] is sorted, and the two sentinels in L and R are the only two elements in these arrays that

have not been copied into A.

Maintenance: To see that each iteration maintains the loop invariant, let us first
suppose that L[i] < R[j]. Then L[i] is the smallest element not yet copied
back into A. Because A[p ..k — 1] contains the kK — p smallest elements, after
line 14 copies L[i] into A[k], the subarray A[p ..k] will contain the k — p + 1
smallest elements. Incrementing k (in the for loop update) and i (in line 15)
reestablishes the loop invariant for the next iteration. If instead L[i] > R[]],
then lines 16—17 perform the appropriate action to maintain the loop invariant.

Termination: At termination, kK = r + 1. By the loop invariant, the subarray

Alp ..k — 1], which is A[p.
elements of L[l..n; + 1] and R[1.

.r], contains the k — p = r — p + 1 smallest
.ny + 1], in sorted order. The arrays L

and R together contain n; + n, +2 = r — p 4+ 3 elements. All but the two
largest have been copied back into A4, and these two largest elements are the

sentinels.



34

Chapter 2 Getting Started

To see that the MERGE procedure runs in ®(n) time, where n =r — p + 1,
observe that each of lines 1-3 and 8-11 takes constant time, the for loops of
lines 4-7 take ®(n, + n,) = O(n) time,” and there are n iterations of the for
loop of lines 12—17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort al-
gorithm. The procedure MERGE-SORT(A, p, r) sorts the elements in the subar-
ray A[p..r]. If p > r, the subarray has at most one element and is therefore
already sorted. Otherwise, the divide step simply computes an index ¢ that par-
titions A[p..r] into two subarrays: A[p..q]|, containing [n/2] elements, and
Alg + 1..r], containing |n/2] elements.?

MERGE-SORT(4, p,r)

1 ifp<r

2 q=[(p+r)/2]

3 MERGE-SORT(A, p,q)

4 MERGE-SORT(A,q + 1,7)
5 MERGE(A, p,q,1)

To sort the entire sequence A = (A[l], A[2], ..., A[n]), we make the initial call
MERGE-SORT(A, 1, A.length), where once again A.length = n. Figure 2.4 il-
lustrates the operation of the procedure bottom-up when 7n is a power of 2. The
algorithm consists of merging pairs of 1-item sequences to form sorted sequences
of length 2, merging pairs of sequences of length 2 to form sorted sequences of
length 4, and so on, until two sequences of length 7 /2 are merged to form the final
sorted sequence of length 7.

2.3.2 Analyzing divide-and-conquer algorithms

When an algorithm contains a recursive call to itself, we can often describe its
running time by a recurrence equation or recurrence, which describes the overall
running time on a problem of size n in terms of the running time on smaller inputs.
We can then use mathematical tools to solve the recurrence and provide bounds on
the performance of the algorithm.

7We shall see in Chapter 3 how to formally interpret equations containing ®-notation.

8The expression [x] denotes the least integer greater than or equal to x, and | x | denotes the greatest
integer less than or equal to x. These notations are defined in Chapter 3. The easiest way to verify
that setting ¢ to | (p + r)/2] yields subarrays A[p..q] and A[g + 1..r] of sizes [n/2] and |n/2],
respectively, is to examine the four cases that arise depending on whether each of p and r is odd or
even.
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sorted sequence
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Figure 2.4 The operation of merge sort on the array A = (5,2,4,7, 1,3, 2, 6). The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

A recurrence for the running time of a divide-and-conquer algorithm falls out
from the three steps of the basic paradigm. As before, we let 7'(n) be the running
time on a problem of size n. If the problem size is small enough, say n < ¢
for some constant ¢, the straightforward solution takes constant time, which we
write as ®(1). Suppose that our division of the problem yields a subproblems,
each of which is 1/b the size of the original. (For merge sort, both @ and b are 2,
but we shall see many divide-and-conquer algorithms in which a # b.) It takes
time 7' (n/b) to solve one subproblem of size n/b, and so it takes time a7 (n/b)
to solve a of them. If we take D(n) time to divide the problem into subproblems
and C(n) time to combine the solutions to the subproblems into the solution to the
original problem, we get the recurrence

O() ifn <c,

T(n) = aT(n/b) + D(n) + C(n) otherwise .

In Chapter 4, we shall see how to solve common recurrences of this form.

Analysis of merge sort

Although the pseudocode for MERGE-SORT works correctly when the number of
elements is not even, our recurrence-based analysis is simplified if we assume that
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the original problem size is a power of 2. Each divide step then yields two subse-
quences of size exactly n/2. In Chapter 4, we shall see that this assumption does
not affect the order of growth of the solution to the recurrence.

We reason as follows to set up the recurrence for 7'(n), the worst-case running
time of merge sort on n numbers. Merge sort on just one element takes constant
time. When we have n > 1 elements, we break down the running time as follows.

Divide: The divide step just computes the middle of the subarray, which takes
constant time. Thus, D(n) = ©(1).

Conquer: We recursively solve two subproblems, each of size n/2, which con-
tributes 27'(n/2) to the running time.

Combine: We have already noted that the MERGE procedure on an n-element
subarray takes time ®(n), and so C(n) = 0(n).

When we add the functions D(n) and C(n) for the merge sort analysis, we are
adding a function that is ®(n) and a function that is ®(1). This sum is a linear
function of n, that is, ®(n). Adding it to the 27°(n/2) term from the “conquer”
step gives the recurrence for the worst-case running time 7'(n) of merge sort:

Q1! ifn=1,
7 = 20 | 1)
2T (n/2) +O®@m) ifn>1.
In Chapter 4, we shall see the “master theorem,” which we can use to show
that 7'(n) is ®(nlgn), where 1gn stands for log, n. Because the logarithm func-
tion grows more slowly than any linear function, for large enough inputs, merge
sort, with its ®(n1gn) running time, outperforms insertion sort, whose running
time is ®(n?), in the worst case.
We do not need the master theorem to intuitively understand why the solution to
the recurrence (2.1) is T'(n) = ®(nlgn). Let us rewrite recurrence (2.1) as
¢ ifn=1,
Tn) = . (2.2)
2T (n/2) +cn ifn>1,
where the constant ¢ represents the time required to solve problems of size 1 as
well as the time per array element of the divide and combine steps.’

91t is unlikely that the same constant exactly represents both the time to solve problems of size 1
and the time per array element of the divide and combine steps. We can get around this problem by
letting ¢ be the larger of these times and understanding that our recurrence gives an upper bound on
the running time, or by letting ¢ be the lesser of these times and understanding that our recurrence
gives a lower bound on the running time. Both bounds are on the order of n Ig n and, taken together,
give a ®(n Ign) running time.
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Figure 2.5 shows how we can solve recurrence (2.2). For convenience, we as-
sume that n is an exact power of 2. Part (a) of the figure shows 7'(n), which we
expand in part (b) into an equivalent tree representing the recurrence. The cn term
is the root (the cost incurred at the top level of recursion), and the two subtrees of
the root are the two smaller recurrences 7'(n/2). Part (¢) shows this process carried
one step further by expanding 7'(n/2). The cost incurred at each of the two sub-
nodes at the second level of recursion is c¢n/2. We continue expanding each node
in the tree by breaking it into its constituent parts as determined by the recurrence,
until the problem sizes get down to 1, each with a cost of c¢. Part (d) shows the
resulting recursion tree.

Next, we add the costs across each level of the tree. The top level has total
cost cn, the next level down has total cost c(n/2) + ¢(n/2) = cn, the level after
that has total cost c(n/4)+c(n/4)+c(n/4)+c(n/4) = cn, and so on. In general,
the level i below the top has 2’ nodes, each contributing a cost of ¢(n/2"), so that
the ith level below the top has total cost 2/ ¢(n/2") = cn. The bottom level has n
nodes, each contributing a cost of ¢, for a total cost of cn.

The total number of levels of the recursion tree in Figure 2.5 is lgn + 1, where
n is the number of leaves, corresponding to the input size. An informal inductive
argument justifies this claim. The base case occurs when n = 1, in which case the
tree has only one level. Since Ig1 = 0, we have that Ign + 1 gives the correct
number of levels. Now assume as an inductive hypothesis that the number of levels
of a recursion tree with 2! leaves is lg 2 +1 =i 4+ 1 (since for any value of i,
we have that 1g2° = i). Because we are assuming that the input size is a power
of 2, the next input size to consider is 27!, A tree with n = 2! leaves has
one more level than a tree with 2/ leaves, and so the total number of levels is
G+ +1=1g2" "t +1.

To compute the total cost represented by the recurrence (2.2), we simply add up
the costs of all the levels. The recursion tree has Ign + 1 levels, each costing cn,
for a total cost of cn(lgn + 1) = cnlgn + cn. Ignoring the low-order term and
the constant ¢ gives the desired result of ®(nlgn).

Exercises

2.3-1
Using Figure 2.4 as a model, illustrate the operation of merge sort on the array
A = (3,41,52,26,38,57,9,49).

2.3-2

Rewrite the MERGE procedure so that it does not use sentinels, instead stopping
once either array L or R has had all its elements copied back to A and then copying
the remainder of the other array back into A.
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T(n) cn cn
T(n/2) T(n/2) cnl2 cn/2
T(n/4) T(n/4) T(n/4) T(n/4)
(@) (b) ©
A CH v E“.. cn
cnl/2 CR[2 weresemnn - cn
lgn / \
cnl4 cnl4 cnl4 cnf4  wedie cn
\J c c c c c e c c el cn
R/—/
n
) Total: cnlgn + cn
Figure 2.5 How to construct a recursion tree for the recurrence 7'(n) = 2T (n/2) + cn.

Part (a) shows 7'(n), which progressively expands in (b)—(d) to form the recursion tree. The fully
expanded tree in part (d) has lgn + 1 levels (i.e., it has height Ign, as indicated), and each level
contributes a total cost of c¢n. The total cost, therefore, is cn lgn + cn, which is ®(nlgn).
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2.3-3
Use mathematical induction to show that when 7 is an exact power of 2, the solu-
tion of the recurrence

2 ifn =2,

T(n) =
) 2T(n/2) +n ifn =2F fork > 1

is T (n) =nlgn.

2.3-4

We can express insertion sort as a recursive procedure as follows. In order to sort
A[l..n], we recursively sort A[1..n — 1] and then insert A[n] into the sorted array
A[l..n — 1]. Write a recurrence for the running time of this recursive version of
insertion sort.

2.3-5

Referring back to the searching problem (see Exercise 2.1-3), observe that if the
sequence A is sorted, we can check the midpoint of the sequence against v and
eliminate half of the sequence from further consideration. The binary search al-
gorithm repeats this procedure, halving the size of the remaining portion of the
sequence each time. Write pseudocode, either iterative or recursive, for binary
search. Argue that the worst-case running time of binary search is ®(Ign).

2.3-6

Observe that the while loop of lines 5-7 of the INSERTION-SORT procedure in
Section 2.1 uses a linear search to scan (backward) through the sorted subarray
A[l..j — 1]. Can we use a binary search (see Exercise 2.3-5) instead to improve
the overall worst-case running time of insertion sort to ®(n 1gn)?

2.3-7 %
Describe a ©(n Ign)-time algorithm that, given a set S of n integers and another
integer x, determines whether or not there exist two elements in S whose sum is
exactly x.

Problems

2-1 Insertion sort on small arrays in merge sort

Although merge sort runs in ®(nlgn) worst-case time and insertion sort runs
in ®(n?) worst-case time, the constant factors in insertion sort can make it faster
in practice for small problem sizes on many machines. Thus, it makes sense to
coarsen the leaves of the recursion by using insertion sort within merge sort when
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subproblems become sufficiently small. Consider a modification to merge sort in
which n/k sublists of length k are sorted using insertion sort and then merged
using the standard merging mechanism, where & is a value to be determined.

a. Show that insertion sort can sort the n/k sublists, each of length k, in ®(nk)
worst-case time.

b. Show how to merge the sublists in @ (n 1g(n/k)) worst-case time.

¢. Given that the modified algorithm runs in ® (nk + nlg(n/k)) worst-case time,
what is the largest value of k as a function of n for which the modified algorithm
has the same running time as standard merge sort, in terms of ®-notation?

d. How should we choose k in practice?

2-2  Correctness of bubblesort
Bubblesort is a popular, but inefficient, sorting algorithm. It works by repeatedly
swapping adjacent elements that are out of order.

BUBBLESORT(A)

1 fori = 1to A.length — 1

2 for j = A.length downtoi + 1

3 if A[j] < A[j — 1]

4 exchange A[j] with A[j — 1]

a. Let A" denote the output of BUBBLESORT(A). To prove that BUBBLESORT is
correct, we need to prove that it terminates and that

AN <A <--- < An], (2.3)

where n = A.length. In order to show that BUBBLESORT actually sorts, what
else do we need to prove?

The next two parts will prove inequality (2.3).

b. State precisely a loop invariant for the for loop in lines 2—4, and prove that this
loop invariant holds. Your proof should use the structure of the loop invariant
proof presented in this chapter.

¢. Using the termination condition of the loop invariant proved in part (b), state
a loop invariant for the for loop in lines 14 that will allow you to prove in-
equality (2.3). Your proof should use the structure of the loop invariant proof
presented in this chapter.
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d. What is the worst-case running time of bubblesort? How does it compare to the
running time of insertion sort?

2-3 Correctness of Horner’s rule
The following code fragment implements Horner’s rule for evaluating a polynomial

P(x) = Z apx®
k=0

= aog+x(a;+x(az + -+ x(ap-1 + xa,) ")),

given the coefficients ag, ay,...,a, and a value for x:
1 y=0

for i = n downto 0
3 y=a +x-y

a. In terms of ®-notation, what is the running time of this code fragment for
Horner’s rule?

b. Write pseudocode to implement the naive polynomial-evaluation algorithm that
computes each term of the polynomial from scratch. What is the running time
of this algorithm? How does it compare to Horner’s rule?

¢. Consider the following loop invariant:

At the start of each iteration of the for loop of lines 2-3,

n—(i+1)
— k
y = Ak+i+1 X .
k=0

Interpret a summation with no terms as equaling 0. Following the structure of
the loop invariant proof presented in this chapter, use this loop invariant to show
that, at termination, y = Y j_, axx*.

d. Conclude by arguing that the given code fragment correctly evaluates a poly-
nomial characterized by the coefficients ag, ay,....a,.

2-4 Inversions
Let A[1..n] be an array of n distinct numbers. If i < j and A[i] > A[/], then the
pair (i, j) is called an inversion of A.

a. List the five inversions of the array (2, 3,8, 6, 1).
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b. What array with elements from the set {1,2,...,n} has the most inversions?
How many does it have?

¢. What is the relationship between the running time of insertion sort and the
number of inversions in the input array? Justify your answer.

d. Give an algorithm that determines the number of inversions in any permutation
on n elements in ®(n1gn) worst-case time. (Hint: Modify merge sort.)

Chapter notes

In 1968, Knuth published the first of three volumes with the general title The Art of
Computer Programming [209, 210, 211]. The first volume ushered in the modern
study of computer algorithms with a focus on the analysis of running time, and the
full series remains an engaging and worthwhile reference for many of the topics
presented here. According to Knuth, the word “algorithm” is derived from the
name “al-Khowarizmi,” a ninth-century Persian mathematician.

Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of algo-
rithms—using notations that Chapter 3 introduces, including ®-notation—as a
means of comparing relative performance. They also popularized the use of re-
currence relations to describe the running times of recursive algorithms.

Knuth [211] provides an encyclopedic treatment of many sorting algorithms. His
comparison of sorting algorithms (page 381) includes exact step-counting analyses,
like the one we performed here for insertion sort. Knuth’s discussion of insertion
sort encompasses several variations of the algorithm. The most important of these
is Shell’s sort, introduced by D. L. Shell, which uses insertion sort on periodic
subsequences of the input to produce a faster sorting algorithm.

Merge sort is also described by Knuth. He mentions that a mechanical colla-
tor capable of merging two decks of punched cards in a single pass was invented
in 1938. J. von Neumann, one of the pioneers of computer science, apparently
wrote a program for merge sort on the EDVAC computer in 1945.

The early history of proving programs correct is described by Gries [153], who
credits P. Naur with the first article in this field. Gries attributes loop invariants to
R. W. Floyd. The textbook by Mitchell [256] describes more recent progress in
proving programs correct.
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The order of growth of the running time of an algorithm, defined in Chapter 2,
gives a simple characterization of the algorithm’s efficiency and also allows us to
compare the relative performance of alternative algorithms. Once the input size n
becomes large enough, merge sort, with its ®(nlgn) worst-case running time,
beats insertion sort, whose worst-case running time is ®(n?). Although we can
sometimes determine the exact running time of an algorithm, as we did for insertion
sort in Chapter 2, the extra precision is not usually worth the effort of computing
it. For large enough inputs, the multiplicative constants and lower-order terms of
an exact running time are dominated by the effects of the input size itself.

When we look at input sizes large enough to make only the order of growth of
the running time relevant, we are studying the asymptotic efficiency of algorithms.
That is, we are concerned with how the running time of an algorithm increases with
the size of the input in the limit, as the size of the input increases without bound.
Usually, an algorithm that is asymptotically more efficient will be the best choice
for all but very small inputs.

This chapter gives several standard methods for simplifying the asymptotic anal-
ysis of algorithms. The next section begins by defining several types of “asymp-
totic notation,” of which we have already seen an example in ®-notation. We then
present several notational conventions used throughout this book, and finally we
review the behavior of functions that commonly arise in the analysis of algorithms.

3.1 Asymptotic notation

The notations we use to describe the asymptotic running time of an algorithm
are defined in terms of functions whose domains are the set of natural numbers
N ={0,1,2,...}. Such notations are convenient for describing the worst-case
running-time function 7'(n), which usually is defined only on integer input sizes.
We sometimes find it convenient, however, to abuse asymptotic notation in a va-
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riety of ways. For example, we might extend the notation to the domain of real
numbers or, alternatively, restrict it to a subset of the natural numbers. We should
make sure, however, to understand the precise meaning of the notation so that when
we abuse, we do not misuse it. This section defines the basic asymptotic notations
and also introduces some common abuses.

Asymptotic notation, functions, and running times

We will use asymptotic notation primarily to describe the running times of algo-
rithms, as when we wrote that insertion sort’s worst-case running time is ®(n?).
Asymptotic notation actually applies to functions, however. Recall that we charac-
terized insertion sort’s worst-case running time as an?+bn + ¢, for some constants
a, b, and ¢. By writing that insertion sort’s running time is ®(n?), we abstracted
away some details of this function. Because asymptotic notation applies to func-
tions, what we were writing as ®(n?) was the function an? + bn + ¢, which in
that case happened to characterize the worst-case running time of insertion sort.

In this book, the functions to which we apply asymptotic notation will usually
characterize the running times of algorithms. But asymptotic notation can apply to
functions that characterize some other aspect of algorithms (the amount of space
they use, for example), or even to functions that have nothing whatsoever to do
with algorithms.

Even when we use asymptotic notation to apply to the running time of an al-
gorithm, we need to understand which running time we mean. Sometimes we are
interested in the worst-case running time. Often, however, we wish to characterize
the running time no matter what the input. In other words, we often wish to make
a blanket statement that covers all inputs, not just the worst case. We shall see
asymptotic notations that are well suited to characterizing running times no matter
what the input.

© -notation

In Chapter 2, we found that the worst-case running time of insertion sort is
T(n) = O(n?). Let us define what this notation means. For a given function g(n),
we denote by ©(g(n)) the set of functions

®(g(n)) = {f(n) : there exist positive constants ¢y, ¢,, and n, such that
0 <cig(n) < f(n) < cyg(n)foralln > ne}.!

1'Within set notation, a colon means ‘“such that.”
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c28(n) cg(n)
f(n)
f(n) P
c18(n) cg(n)
n }’l: n ni n
f(n) = O(g(n)) * f(n) = 0(gn)) ©fn) =Qgm)
() (b) ©

Figure 3.1 Graphic examples of the ®, O, and 2 notations. In each part, the value of n¢ shown
is the minimum possible value; any greater value would also work. (a) ®-notation bounds a func-
tion to within constant factors. We write f(n) = ©(g(n)) if there exist positive constants ng, c1,
and ¢ such that at and to the right of n¢, the value of f(n) always lies between cj g(n) and c2g(n)
inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write
f(n) = O(g(n)) if there are positive constants 7¢ and ¢ such that at and to the right of n¢, the value
of f(n) always lies on or below cg(n). (¢) Q2-notation gives a lower bound for a function to within
a constant factor. We write f(n) = Q(g(n)) if there are positive constants ng and ¢ such that at and
to the right of ng, the value of f(n) always lies on or above cg(n).

A function f(n) belongs to the set ®(g(n)) if there exist positive constants ¢
and ¢, such that it can be “sandwiched” between c;g(n) and c,g(n), for suffi-
ciently large n. Because ®(g(n)) is a set, we could write “ f(n) € ®(g(n))”
to indicate that f(n) is a member of ®(g(n)). Instead, we will usually write
“f(n) = O(g(n))” to express the same notion. You might be confused because
we abuse equality in this way, but we shall see later in this section that doing so
has its advantages.

Figure 3.1(a) gives an intuitive picture of functions f(n) and g(n), where
f(n) = ©(g(n)). For all values of n at and to the right of n,, the value of f(n)
lies at or above ¢, g(n) and at or below c,g(n). In other words, for all n > n,, the
function f(n) is equal to g(n) to within a constant factor. We say that g(n) is an
asymptotically tight bound for f(n).

The definition of ®(g(n)) requires that every member f(n) € ©(g(n)) be
asymptotically nonnegative, that is, that f(n) be nonnegative whenever n is suf-
ficiently large. (An asymptotically positive function is one that is positive for all
sufficiently large n.) Consequently, the function g(n) itself must be asymptotically
nonnegative, or else the set ©®(g(n)) is empty. We shall therefore assume that every
function used within ®-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations defined in this chapter as well.
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In Chapter 2, we introduced an informal notion of ®-notation that amounted
to throwing away lower-order terms and ignoring the leading coefficient of the
highest-order term. Let us briefly justify this intuition by using the formal defi-
nition to show that %nz —3n = O(n?). To do so, we must determine positive
constants ¢y, ¢,, and n, such that

1
cn? < 5”2 —3n < con?

for all n > ny. Dividing by n? yields
1 3

1 = 27 <.

We can make the right-hand inequality hold for any value of n > 1 by choosing any
constant ¢, > 1/2. Likewise, we can make the left-hand inequality hold for any
value of n > 7 by choosing any constant ¢; < 1/14. Thus, by choosing ¢; = 1/14,
¢, = 1/2, and ny = 7, we can verify that 1> — 3n = ©(n?). Certainly, other
choices for the constants exist, but the important thing is that some choice exists.
Note that these constants depend on the function %nz — 3n; a different function
belonging to ©(n?) would usually require different constants.

We can also use the formal definition to verify that 6n° # ®(n?). Suppose
for the purpose of contradiction that ¢, and nq exist such that 6n° < c¢,n? for
all n > ny. But then dividing by n? yields n < ¢,/6, which cannot possibly hold
for arbitrarily large n, since ¢, is constant.

Intuitively, the lower-order terms of an asymptotically positive function can be
ignored in determining asymptotically tight bounds because they are insignificant
for large n. When n is large, even a tiny fraction of the highest-order term suf-
fices to dominate the lower-order terms. Thus, setting ¢; to a value that is slightly
smaller than the coefficient of the highest-order term and setting ¢, to a value that
is slightly larger permits the inequalities in the definition of ®-notation to be sat-
isfied. The coefficient of the highest-order term can likewise be ignored, since it
only changes c; and ¢, by a constant factor equal to the coefficient.

As an example, consider any quadratic function f(n) = an® + bn + ¢, where
a, b, and ¢ are constants and @ > 0. Throwing away the lower-order terms and
ignoring the constant yields f(n) = ©(n?). Formally, to show the same thing, we
take the constants ¢; = a/4, ¢, = 7a/4, and ny = 2-max(|b| /a, /|c|/a). You
may verify that 0 < ¢;n? < an? + bn + ¢ < c,n? for all n > n,. In general,
for any polynomial p(n) = Zf:o a;n', where the a; are constants and ag > 0, we
have p(n) = ®(n?) (see Problem 3-1).

Since any constant is a degree-0 polynomial, we can express any constant func-
tion as ®(n°), or ©(1). This latter notation is a minor abuse, however, because the
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expression does not indicate what variable is tending to infinity.> We shall often
use the notation ®(1) to mean either a constant or a constant function with respect
to some variable.

O-notation

The ®-notation asymptotically bounds a function from above and below. When
we have only an asymptotic upper bound, we use O-notation. For a given func-
tion g(n), we denote by O(g(n)) (pronounced “big-oh of g of n” or sometimes
just “oh of g of n”) the set of functions

O(g(n)) = {f(n) : there exist positive constants ¢ and n, such that
0< f(n) <cg(n)foralln >ny}.

We use O-notation to give an upper bound on a function, to within a constant
factor. Figure 3.1(b) shows the intuition behind O-notation. For all values n at and
to the right of ng, the value of the function f(n) is on or below cg(n).

We write f(n) = O(g(n)) to indicate that a function f(n) is a member of the
set O(g(n)). Note that f(n) = O(g(n)) implies f(n) = O(g(n)), since O-
notation is a stronger notion than O-notation. Written set-theoretically, we have
O(g(n)) € O(g(n)). Thus, our proof that any quadratic function an? + bn + c,
where a > 0, is in ©(n?) also shows that any such quadratic function is in O(n?).
What may be more surprising is that when a > 0, any linear function an + b is
in O(n?), which is easily verified by taking ¢ = a + |b| and ny = max(1,—b/a).

If you have seen O-notation before, you might find it strange that we should
write, for example, n = O(n?). In the literature, we sometimes find O-notation
informally describing asymptotically tight bounds, that is, what we have defined
using ®-notation. In this book, however, when we write f(n) = O(g(n)), we
are merely claiming that some constant multiple of g(n) is an asymptotic upper
bound on f(n), with no claim about how tight an upper bound it is. Distinguish-
ing asymptotic upper bounds from asymptotically tight bounds is standard in the
algorithms literature.

Using O-notation, we can often describe the running time of an algorithm
merely by inspecting the algorithm’s overall structure. For example, the doubly
nested loop structure of the insertion sort algorithm from Chapter 2 immediately
yields an O(n?) upper bound on the worst-case running time: the cost of each it-
eration of the inner loop is bounded from above by O(1) (constant), the indices i

2The real problem is that our ordinary notation for functions does not distinguish functions from
values. In A-calculus, the parameters to a function are clearly specified: the function n2 could be
written as An.n2, or even Ar.r2. Adopting a more rigorous notation, however, would complicate
algebraic manipulations, and so we choose to tolerate the abuse.
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and j are both at most 7, and the inner loop is executed at most once for each of
the n? pairs of values for i and ;.

Since O-notation describes an upper bound, when we use it to bound the worst-
case running time of an algorithm, we have a bound on the running time of the algo-
rithm on every input—the blanket statement we discussed earlier. Thus, the O(n?)
bound on worst-case running time of insertion sort also applies to its running time
on every input. The ®(n2) bound on the worst-case running time of insertion sort,
however, does not imply a ®(n2) bound on the running time of insertion sort on
every input. For example, we saw in Chapter 2 that when the input is already
sorted, insertion sort runs in ®(7) time.

Technically, it is an abuse to say that the running time of insertion sort is O (n?),
since for a given n, the actual running time varies, depending on the particular
input of size n. When we say “the running time is O(n?),” we mean that there is a
function f(n) that is O(n?) such that for any value of 7, no matter what particular
input of size n is chosen, the running time on that input is bounded from above by
the value f(n). Equivalently, we mean that the worst-case running time is O (n?).

Q -notation

Just as O-notation provides an asymptotic upper bound on a function, £2-notation
provides an asymptotic lower bound. For a given function g(n), we denote
by Q(g(n)) (pronounced “big-omega of g of n” or sometimes just “omega of g
of n”) the set of functions

Q(g(n)) = {f(n) : there exist positive constants ¢ and 7, such that
0<cgn) < f(n)foralln > ny}.

Figure 3.1(c) shows the intuition behind €2-notation. For all values n at or to the
right of ng, the value of f(n) is on or above cg(n).

From the definitions of the asymptotic notations we have seen thus far, it is easy
to prove the following important theorem (see Exercise 3.1-5).

Theorem 3.1
For any two functions f(n) and g(n), we have f(n) = ©(g(n)) if and only if
f(n) = 0(g(n)) and f(n) = Q2(g(n)). u

As an example of the application of this theorem, our proof that an® + bn + ¢ =
©(n?) for any constants a, b, and ¢, where a > 0, immediately implies that
an® 4+ bn + ¢ = Q(n?) and an® 4+ bn +c¢ = O(n?). In practice, rather than using
Theorem 3.1 to obtain asymptotic upper and lower bounds from asymptotically
tight bounds, as we did for this example, we usually use it to prove asymptotically
tight bounds from asymptotic upper and lower bounds.
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When we say that the running time (no modifier) of an algorithm is (g(n)),
we mean that no matter what particular input of size n is chosen for each value
of n, the running time on that input is at least a constant times g (n), for sufficiently
large n. Equivalently, we are giving a lower bound on the best-case running time
of an algorithm. For example, the best-case running time of insertion sort is $2(n),
which implies that the running time of insertion sort is ().

The running time of insertion sort therefore belongs to both ©(n) and O(n?),
since it falls anywhere between a linear function of # and a quadratic function of .
Moreover, these bounds are asymptotically as tight as possible: for instance, the
running time of insertion sort is not £2(n?), since there exists an input for which
insertion sort runs in ®(n) time (e.g., when the input is already sorted). It is not
contradictory, however, to say that the worst-case running time of insertion sort
is (n?), since there exists an input that causes the algorithm to take (n?) time.

Asymptotic notation in equations and inequalities

We have already seen how asymptotic notation can be used within mathematical
formulas. For example, in introducing O-notation, we wrote “n = 0(n?).” We
might also write 2n% +3n + 1 = 2n? + ©(n). How do we interpret such formulas?

When the asymptotic notation stands alone (that is, not within a larger formula)
on the right-hand side of an equation (or inequality), as in n = O(n?), we have
already defined the equal sign to mean set membership: n € O(n?). In general,
however, when asymptotic notation appears in a formula, we interpret it as stand-
ing for some anonymous function that we do not care to name. For example, the
formula 21n2 + 3n + 1 = 2n% + ©(n) means that 2n% + 3n + 1 = 2n2 + f(n),
where f(n) is some function in the set ®(n). In this case, we let f(n) = 3n + 1,
which indeed is in ©(n).

Using asymptotic notation in this manner can help eliminate inessential detail
and clutter in an equation. For example, in Chapter 2 we expressed the worst-case
running time of merge sort as the recurrence

T(n)=2Tn/2) 4+ O).

If we are interested only in the asymptotic behavior of 7'(n), there is no point in
specifying all the lower-order terms exactly; they are all understood to be included
in the anonymous function denoted by the term ®(n).

The number of anonymous functions in an expression is understood to be equal
to the number of times the asymptotic notation appears. For example, in the ex-
pression

PUGE

i=1
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there is only a single anonymous function (a function of 7). This expression is thus
not the same as O(1) + O(2) + --- + O(n), which doesn’t really have a clean
interpretation.

In some cases, asymptotic notation appears on the left-hand side of an equation,
as in

2n* + O(n) = O(n?) .

We interpret such equations using the following rule: No matter how the anony-
mous functions are chosen on the left of the equal sign, there is a way to choose
the anonymous functions on the right of the equal sign to make the equation valid.
Thus, our example means that for any function f(n) € ®(n), there is some func-
tion g(n) € ©(n?) such that 2n* + f(n) = g(n) for all n. In other words, the
right-hand side of an equation provides a coarser level of detail than the left-hand
side.
We can chain together a number of such relationships, as in

2 +3n+1 = 2n>+0(n)
= O(n?).

We can interpret each equation separately by the rules above. The first equa-
tion says that there is some function f(n) € ®(n) such that 2n> + 3n + 1 =
2n% + f(n) for all n. The second equation says that for any function g(n) € ©(n)
(such as the f(n) just mentioned), there is some function h(n) € ©(n?) such
that 2n2 + g(n) = h(n) for all n. Note that this interpretation implies that
2n% + 3n + 1 = ©(n?), which is what the chaining of equations intuitively gives
us.

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymp-
totically tight. The bound 2n?> = O(n?) is asymptotically tight, but the bound
2n = O(n?) is not. We use o-notation to denote an upper bound that is not asymp-
totically tight. We formally define o(g(n)) (“little-oh of g of n”) as the set

0o(g(n)) = {f(n) : for any positive constant ¢ > 0, there exists a constant
ng > 0suchthat 0 < f(n) < cg(n) foralln > ny}.

For example, 2n = o(n?), but 2n* # o(n?).

The definitions of O-notation and o-notation are similar. The main difference
is that in f(n) = O(g(n)), the bound 0 < f(n) < cg(n) holds for some con-
stant ¢ > 0, but in f(n) = 0(g(n)), the bound 0 < f(n) < cg(n) holds for all
constants ¢ > 0. Intuitively, in o-notation, the function f(n) becomes insignificant
relative to g(n) as n approaches infinity; that is,
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LS
im =
n—0o g(n)
Some authors use this limit as a definition of the o-notation; the definition in this
book also restricts the anonymous functions to be asymptotically nonnegative.

0. 3.1

®-notation

By analogy, w-notation is to 2-notation as o-notation is to O-notation. We use
w-notation to denote a lower bound that is not asymptotically tight. One way to
define it is by

f(n) € w(g(n)) if and only if g(n) € o( f(n)) .
Formally, however, we define w(g(n)) (“little-omega of g of n”) as the set
w(g(n)) = {f(n) : for any positive constant ¢ > 0, there exists a constant
no > 0 such that 0 < cg(n) < f(n) forall n > ny} .

For example, n?/2 = w(n), but n?/2 # w(n?). The relation f(n) = w(g(n))
implies that

O

im = 00
n—oo g(n)
if the limit exists. That is, f(n) becomes arbitrarily large relative to g(n) as n
approaches infinity.

Comparing functions

Many of the relational properties of real numbers apply to asymptotic comparisons
as well. For the following, assume that f(n) and g(n) are asymptotically positive.

Transitivity:

f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)),
f(n) = O(g(n)) and g(n) = O(h(n)) imply f(n) = O(h(n)),
f(n) = Q(g(n)) and g(n) = Qh(n)) imply f(n) = Q(h(n)) .
f(n) = o(g(n)) and g(n) = o(h(n)) imply f(n) = o(h(n)),
f(n) = w(gm) and g(n) = w(h(n)) imply f(n) = w(hn)).
Reflexivity:
fn)y = O(f(n),
fn) = 0(f(n),
fln) = Q(f(n).
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Symmetry:

f(n) = ©(g(n)) if and only if g(n) = O(f(n)).
Transpose symmetry:

f(n) = O(g(n)) ifandonlyif g(n) = Q(f(n)),
f(n) = o(g(n)) ifandonlyif g(n) = w(f(n)).

Because these properties hold for asymptotic notations, we can draw an analogy
between the asymptotic comparison of two functions f and g and the comparison
of two real numbers a and b:

f(n)=0(g(n)) islike a<b,
f(n) =Q(gn) islike a=>b,
f(n)=0(gm) islike a=5h,
f(n)=o(gn) islke a<b,
f) =w(gn) islke a>b.
We say that f(n) is asymptotically smaller than g (n) if f(n) = o(g(n)),and f(n)
is asymptotically larger than g(n) if f(n) = w(g(n)).

One property of real numbers, however, does not carry over to asymptotic nota-
tion:

Trichotomy: For any two real numbers a and b, exactly one of the following must
hold: a < b,a =b,ora > b.

Although any two real numbers can be compared, not all functions are asymptot-
ically comparable. That is, for two functions f(n) and g(n), it may be the case
that neither f(n) = O(g(n)) nor f(n) = Q(g(n)) holds. For example, we cannot
compare the functions 7 and n!**"” using asymptotic notation, since the value of
the exponent in n! 5" oscillates between 0 and 2, taking on all values in between.

Exercises

3.1-1
Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic defi-
nition of ®-notation, prove that max( f(n), g(n)) = O(f(n) + g(n)).

3.12
Show that for any real constants a and b, where b > 0,

(n+a)’ =0nb) . (3.2)
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3.1-3
Explain why the statement, “The running time of algorithm A is at least O(n?),” is
meaningless.

3.14
Is 2"+ = 0(2")7 Is 22" = 0(2")?

3.1-5
Prove Theorem 3.1.

3.1-6
Prove that the running time of an algorithm is ®(g(n)) if and only if its worst-case
running time is O(g(n)) and its best-case running time is 2(g(n)).

3.1-7
Prove that 0(g(n)) N w(g(n)) is the empty set.

3.1-8

We can extend our notation to the case of two parameters n and m that can go to
infinity independently at different rates. For a given function g(n,m), we denote
by O(g(n,m)) the set of functions

O(g(n,m)) = {f(n,m) : there exist positive constants ¢, ny, and m,
suchthat 0 < f(n,m) <cg(n,m)
foralln > ngorm > mgy} .

Give corresponding definitions for 2(g(n,m)) and O(g(n, m)).

3.2 Standard notations and common functions

This section reviews some standard mathematical functions and notations and ex-
plores the relationships among them. It also illustrates the use of the asymptotic
notations.

Monotonicity

A function f(n) is monotonically increasing it m < n implies f(m) < f(n).
Similarly, it is monotonically decreasing if m < n implies f(m) > f(n). A
function f(n) is strictly increasing if m < n implies f(m) < f(n) and strictly
decreasing if m < n implies f(m) > f(n).
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Floors and ceilings

For any real number x, we denote the greatest integer less than or equal to x by | x |
(read “the floor of x”) and the least integer greater than or equal to x by [x] (read
“the ceiling of x”). For all real x,

x—1 < |x] <x < [x] < x+1. (3.3)
For any integer n,
[n/2]+ [n/2] =n.,

and for any real number x > 0 and integers a, b > 0,

2] ]
) )

The floor function f(x) = |x] is monotonically increasing, as is the ceiling func-

tion f(x) = [x].

Modular arithmetic

For any integer a and any positive integer 7, the value a mod n is the remainder
(or residue) of the quotient a/n:

amodn =a—nla/n| . (3.8)
It follows that
O0<amodn <n. 3.9)

Given a well-defined notion of the remainder of one integer when divided by an-
other, it is convenient to provide special notation to indicate equality of remainders.
If (¢ mod n) = (b mod n), we write a = b (mod n) and say that a is equivalent
to b, modulo n. In other words, a = b (mod n) if a and b have the same remain-
der when divided by n. Equivalently, @ = b (mod n) if and only if n is a divisor
of b —a. We write a # b (mod n) if a is not equivalent to b, modulo 7.
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Polynomials

Given a nonnegative integer d, a polynomial in n of degree d is a function p(n)
of the form

d
p) =Y an',
i=0

where the constants ag,ai,...,ay are the coefficients of the polynomial and
ag # 0. A polynomial is asymptotically positive if and only if a; > 0. For an
asymptotically positive polynomial p(n) of degree d, we have p(n) = ®(n¢). For
any real constant a > 0, the function n¢ is monotonically increasing, and for any
real constant @ < 0, the function n¢ is monotonically decreasing. We say that a
function f'(n) is polynomially bounded if f(n) = O(n*) for some constant k.

Exponentials

For all real @ > 0, m, and n, we have the following identities:

a® = 1,
al = da,
-1
a = 1/a,
(am)n = g™
- ’
aman — am+n .

For all n and a > 1, the function a@” is monotonically increasing in n. When
convenient, we shall assume 0° = 1.

We can relate the rates of growth of polynomials and exponentials by the fol-
lowing fact. For all real constants @ and b such thata > 1,

I’lb

lim — =0, (3.10)

n—oo gl

from which we can conclude that
n® =o(a").

Thus, any exponential function with a base strictly greater than 1 grows faster than
any polynomial function.

Using e to denote 2.71828.. ., the base of the natural logarithm function, we
have for all real x,

3

2 X3

x AT AT W
=l bt =) o (3.1

i=0
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[ b4

where denotes the factorial function defined later in this section. For all real x,
we have the inequality

e*>1+x, (3.12)
where equality holds only when x = 0. When |x| < 1, we have the approximation
l+x<e"<14+x+x2. (3.13)

When x — 0, the approximation of e* by 1 + x is quite good:
¥ =14+ x+0(x?).

(In this equation, the asymptotic notation is used to describe the limiting behavior
as x — 0 rather than as x — 00.) We have for all x,

lim (1 + f) = e, (3.14)
n—00 n

Logarithms

We shall use the following notations:

lgn = log,n (binary logarithm) ,
Inn = log,n (natural logarithm) ,
lg¥n = (Ign)* (exponentiation) ,
lglgn = lg(lgn) (composition) .

An important notational convention we shall adopt is that logarithm functions will
apply only to the next term in the formula, so that lgn + k will mean (Ign) + k
and not Ig(n + k). If we hold b > 1 constant, then for n > 0, the function log, n
is strictly increasing.

Forallreala > 0,b > 0, ¢ > 0, and n,

a = blogha ,
log.(ab) = log,a +1log.b,
log,a" = nlog,a,
log,. a
1 = <, 3.15
0gp d log, b (3.15)
log,(1/a) = —log,a,
1
1 = ,
08 4 log, b
alogb c Clogba , (316)

where, in each equation above, logarithm bases are not 1.
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By equation (3.15), changing the base of a logarithm from one constant to an-
other changes the value of the logarithm by only a constant factor, and so we shall
often use the notation “lgn” when we don’t care about constant factors, such as in
O-notation. Computer scientists find 2 to be the most natural base for logarithms
because so many algorithms and data structures involve splitting a problem into
two parts.

There is a simple series expansion for In(1 + x) when |x| < 1:

x2 X Xt X
In(l1+x) =x 2—|—3 4+5

We also have the following inequalities for x > —1:

< In(l+x) < x, 3.17
I+x = (I+x) < (.17)
where equality holds only for x = 0.

We say that a function f(n) is polylogarithmically bounded if f(n) = O(1g" n)
for some constant k. We can relate the growth of polynomials and polylogarithms
by substituting lg n for n and 2¢ for a in equation (3.10), yielding

1g® 1g®
EM_gim 2.

m
n—o00 (2“)15:’” n—oo né

From this limit, we can conclude that
g n = o(n%)
for any constant @ > 0. Thus, any positive polynomial function grows faster than
any polylogarithmic function.
Factorials
The notation n! (read “n factorial”) is defined for integers n > 0 as
1 ifn =0,
n! =
n-n—1! ifn>0.

Thus,n!'=1-2-3..-n.
A weak upper bound on the factorial function is n! < n", since each of the n
terms in the factorial product is at most n. Stirling’s approximation,

n! = V2mn (g) (1+®(%)) : (3.18)
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where e is the base of the natural logarithm, gives us a tighter upper bound, and a
lower bound as well. As Exercise 3.2-3 asks you to prove,

n! = o),
nl = w?"),
lg(n!) = O(nlgn), (3.19)

where Stirling’s approximation is helpful in proving equation (3.19). The following
equation also holds for alln > 1:

n n
nl = v2mn (—) o (3.20)
e
where
LR (3.21)
o . .
12n + 1 " T 12n

Functional iteration

We use the notation f @ (n) to denote the function f'(n) iteratively applied i times
to an initial value of n. Formally, let f(n) be a function over the reals. For non-
negative integers i, we recursively define

n ifi =0,
£y ifi > 0.
For example, if f(n) = 2n, then @ (n) = 2'n.

FOm) =

The iterated logarithm function

We use the notation Ig" n (read “log star of n”") to denote the iterated logarithm, de-
fined as follows. Let lg(i) n be as defined above, with f(n) = Ign. Because the log-
arithm of a nonpositive number is undefined, lg(i) n is defined only if lg(i Dy >o.
Be sure to distinguish lg(i ) n (the logarithm function applied i times in succession,
starting with argument n) from lg’ n (the logarithm of » raised to the ith power).
Then we define the iterated logarithm function as

lgrn =min{i >0: 1g9n < 1} .
The iterated logarithm is a very slowly growing function:
Ig"2 = 1,
Ig* 4 2
Ig"16 = 3
Ig* 65536 = 4,
Jg* (265536) 5
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Since the number of atoms in the observable universe is estimated to be about 108,
which is much less than 293336 we rarely encounter an input size n such that
Ig*n > 5.

Fibonacci numbers

We define the Fibonacci numbers by the following recurrence:

FO = O ’
FF =1, (3.22)
FF = F_,+F_ fori >2.

Thus, each Fibonacci number is the sum of the two previous ones, yielding the
sequence

0,1, 1,2, 3,5, 8, 13, 21, 34, 55, ... .

Fibonacci numbers are related to the golden ratio ¢ and to its conjugate qAS, which
are the two roots of the equation

x?=x+1 (3.23)
and are given by the following formulas (see Exercise 3.2-6):

1++5

¢ = 5 (3.24)
= 1.61803...,

~ 1-4/5

¢ = 5
= —.61803... .

Specifically, we have

_¢' -9
v

which we can prove by induction (Exercise 3.2-7). Since |$‘ < 1, we have

B

F

<

S
=5

<

[\

which implies that
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g1
F = Lfs + EJ : (3.25)

which is to say that the i th Fibonacci number F; is equal to ¢’ /+/5 rounded to the
nearest integer. Thus, Fibonacci numbers grow exponentially.

Exercises

3.2-1

Show that if f(n) and g(n) are monotonically increasing functions, then so are
the functions f(n) + g(n) and f(g(n)), and if f(n) and g(n) are in addition
nonnegative, then f(n) - g(n) is monotonically increasing.

3.2-2
Prove equation (3.16).

3.2-3
Prove equation (3.19). Also prove that n! = w(2") and n! = o(n").

3.24 %
Is the function [Ign]! polynomially bounded? Is the function [Iglgn]! polynomi-
ally bounded?

3.2-5 %
Which is asymptotically larger: 1g(1g* n) or Ig*(1gn)?

3.2-6
Show that the golden ratio ¢ and its conjugate $ both satisfy the equation
x2=x+1

3.2-7
Prove by induction that the ith Fibonacci number satisfies the equality
P

V5o
where ¢ is the golden ratio and $ is its conjugate.

3.2-8
Show that k Ink = ©(n) implies k = O(n/Inn).
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Problems

3-1 Asymptotic behavior of polynomials
Let

d
p(n) = Zaini )
i=0

where a; > 0, be a degree-d polynomial in 7, and let k be a constant. Use the
definitions of the asymptotic notations to prove the following properties.

a. If k > d, then p(n) = O(n*).
b. If k < d,then p(n) = Qn*).
c. If k =d,then p(n) = O(n*).
d. If k > d, then p(n) = o(n*).

e. Ifk <d, then p(n) = w(n*).

3-2  Relative asymptotic growths

Indicate, for each pair of expressions (A4, B) in the table below, whether 4 is O, o,
Q, w,or ® of B. Assume that k > 1, € > 0, and ¢ > 1 are constants. Your answer
should be in the form of the table with “yes” or “no” written in each box.

A B 0] o Q 1) C]
a. lgkn n¢
b. nk c”
c. Jn psinn
d 2 n/2
e. nlgc Clgn
S lg(n!) lg(n")

3-3 Ordering by asymptotic growth rates

a. Rank the following functions by order of growth; that is, find an arrangement
1,82, ..., 830 of the functions satisfying g = Q(g2), &2 = Q(g3), ...,
g29 = S2(g30). Partition your list into equivalence classes such that functions
f(n) and g(n) are in the same class if and only if f(n) = O(g(n)).
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lgg*n) 2" (J2)er  n? n! (Ign)!
G)" n3 Ig2n lg(n!) 2% n'/len
Inlnn Ig*n n-2"  plelen Inn 1
2len (Ign)'en e" 4em (n+ 1) ign
lg*(lgn) 22k n n nlgn 22"

b. Give an example of a single nonnegative function f(n) such that for all func-
tions g;(n) in part (a), f(n) is neither O(g;(n)) nor (g, (n)).

3-4 Asymptotic notation properties
Let f(n) and g(n) be asymptotically positive functions. Prove or disprove each of
the following conjectures.

a. f(n) = 0(g(n)) implies g(n) = O(f(n)).
b. f(n) + g(n) = O(min(f(n),gn))).

c. f(n) = O(g(n)) implies 1g(f(n)) = O(lg(g(n))), where lg(g(n)) = 1 and
f(n) > 1 for all sufficiently large n.

d. f(n) = O(g(n))implies 2/® = O (25™),
e. f(n)=0((f(n)>.

J. f(n) = O(g(n)) implies g(n) = Q(f(n)).
g f(n) =06(f(n/2)).

h. f(n) +o(f(n) = O(f(n)).

3-5 Variations on O and $2 -
Some authors define 2 in a slightly different way than we do; let’s use €2 (read

“omega infinity”) for this alternative definition. We say that f(n) = ﬁ(g(n)) if
there exists a positive constant ¢ such that f(n) > cg(n) > 0 for infinitely many
integers 7.

a. Show that for any two functions f(n) and g(n) that are asymptotically nonneg-
0
ative, either f(n) = O(g(n)) or f(n) = 2(g(n)) or both, whereas this is not
true if we use €2 in place of €2.
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. . . x .
b. Describe the potential advantages and disadvantages of using €2 instead of €2 to
characterize the running times of programs.

Some authors also define O in a slightly different manner; let’s use O’ for the
alternative definition. We say that f(n) = O’(g(n)) if and only if | f(n)| =

0(g(n)).

¢. What happens to each direction of the “if and only if”” in Theorem 3.1 if we
substitute O’ for O but still use 7?

Some authors define O (read “soft-oh”) to mean O with logarithmic factors ig-
nored:

5(g(n)) = {f(n) : there exist positive constants ¢, k, and n, such that
0< f(n) <cg(n)lg"(n) foralln > ny} .

d. Define Q and © in a similar manner. Prove the corresponding analog to Theo-
rem 3.1.

3-6 Iterated functions

We can apply the iteration operator * used in the 1g* function to any monotonically
increasing function f(n) over the reals. For a given constant ¢ € R, we define the
iterated function f.* by

frm)y=minf{i >0: fPm) <c},

which need not be well defined in all cases. In other words, the quantity f,*(n) is
the number of iterated applications of the function f required to reduce its argu-
ment down to ¢ or less.

For each of the following functions f(n) and constants c, give as tight a bound
as possible on f,*(n).

W)

n—1

fH(n)

s 8

c

0

lgn 1
n/2 1
n/2 2
2

1

2

2

& 9

>SS N8
S
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Chapter notes

Knuth [209] traces the origin of the O-notation to a number-theory text by P. Bach-
mann in 1892. The o-notation was invented by E. Landau in 1909 for his discussion
of the distribution of prime numbers. The 2 and ® notations were advocated by
Knuth [213] to correct the popular, but technically sloppy, practice in the literature
of using O-notation for both upper and lower bounds. Many people continue to
use the O-notation where the ®-notation is more technically precise. Further dis-
cussion of the history and development of asymptotic notations appears in works
by Knuth [209, 213] and Brassard and Bratley [54].

Not all authors define the asymptotic notations in the same way, although the
various definitions agree in most common situations. Some of the alternative def-
initions encompass functions that are not asymptotically nonnegative, as long as
their absolute values are appropriately bounded.

Equation (3.20) is due to Robbins [297]. Other properties of elementary math-
ematical functions can be found in any good mathematical reference, such as
Abramowitz and Stegun [1] or Zwillinger [362], or in a calculus book, such as
Apostol [18] or Thomas et al. [334]. Knuth [209] and Graham, Knuth, and Patash-
nik [152] contain a wealth of material on discrete mathematics as used in computer
science.



