
A Summations

When an algorithm contains an iterative control construct such as a while or for
loop, we can express its running time as the sum of the times spent on each exe-
cution of the body of the loop. For example, we found in Section 2.2 that the j th
iteration of insertion sort took time proportional to j in the worst case. By adding
up the time spent on each iteration, we obtained the summation (or series)

nX

j D2

j :

When we evaluated this summation, we attained a bound of ‚.n2/ on the worst-
case running time of the algorithm. This example illustrates why you should know
how to manipulate and bound summations.

Section A.1 lists several basic formulas involving summations. Section A.2 of-
fers useful techniques for bounding summations. We present the formulas in Sec-
tion A.1 without proof, though proofs for some of them appear in Section A.2 to
illustrate the methods of that section. You can find most of the other proofs in any
calculus text.

A.1 Summation formulas and properties

Given a sequence a1; a2; : : : ; an of numbers, where n is a nonnegative integer, we
can write the finite sum a1 C a2 C ! ! ! C an as

nX

kD1

ak :

If n D 0, the value of the summation is defined to be 0. The value of a finite series
is always well defined, and we can add its terms in any order.

Given an infinite sequence a1; a2; : : : of numbers, we can write the infinite sum
a1 C a2 C ! ! ! as
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1X

kD1

ak ;

which we interpret to mean

lim
n!1

nX

kD1

ak :

If the limit does not exist, the series diverges; otherwise, it converges. The terms
of a convergent series cannot always be added in any order. We can, however,
rearrange the terms of an absolutely convergent series, that is, a series P1

kD1 ak

for which the series P1
kD1 jakj also converges.

Linearity
For any real number c and any finite sequences a1; a2; : : : ; an and b1; b2; : : : ; bn,

nX

kD1

.cak C bk/ D c

nX

kD1

ak C
nX

kD1

bk :

The linearity property also applies to infinite convergent series.
We can exploit the linearity property to manipulate summations incorporating

asymptotic notation. For example,
nX

kD1

‚.f .k// D ‚

 
nX

kD1

f .k/

!

:

In this equation, the ‚-notation on the left-hand side applies to the variable k, but
on the right-hand side, it applies to n. We can also apply such manipulations to
infinite convergent series.

Arithmetic series
The summation

nX

kD1

k D 1 C 2 C ! ! ! C n ;

is an arithmetic series and has the value
nX

kD1

k D
1

2
n.n C 1/ (A.1)

D ‚.n2/ : (A.2)
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Sums of squares and cubes
We have the following summations of squares and cubes:

nX

kD0

k2 D
n.n C 1/.2n C 1/

6
; (A.3)

nX

kD0

k3 D
n2.n C 1/2

4
: (A.4)

Geometric series
For real x ¤ 1, the summation

nX

kD0

xk D 1 C x C x2 C ! ! ! C xn

is a geometric or exponential series and has the value
nX

kD0

xk D
xnC1 " 1

x " 1
: (A.5)

When the summation is infinite and jxj < 1, we have the infinite decreasing geo-
metric series
1X

kD0

xk D
1

1 " x
: (A.6)

Harmonic series
For positive integers n, the nth harmonic number is
Hn D 1 C

1

2
C

1

3
C

1

4
C ! ! ! C

1

n

D
nX

kD1

1

k

D ln n C O.1/ : (A.7)
(We shall prove a related bound in Section A.2.)

Integrating and differentiating series
By integrating or differentiating the formulas above, additional formulas arise. For
example, by differentiating both sides of the infinite geometric series (A.6) and
multiplying by x, we get
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1X

kD0

kxk D
x

.1 " x/2
(A.8)

for jxj < 1.

Telescoping series
For any sequence a0; a1; : : : ; an,

nX

kD1

.ak " ak!1/ D an " a0 ; (A.9)

since each of the terms a1; a2; : : : ; an!1 is added in exactly once and subtracted out
exactly once. We say that the sum telescopes. Similarly,
n!1X

kD0

.ak " akC1/ D a0 " an :

As an example of a telescoping sum, consider the series
n!1X

kD1

1

k.k C 1/
:

Since we can rewrite each term as
1

k.k C 1/
D

1

k
"

1

k C 1
;

we get
n!1X

kD1

1

k.k C 1/
D

n!1X

kD1

!
1

k
"

1

k C 1

"

D 1 "
1

n
:

Products
We can write the finite product a1a2 ! ! ! an as

nY

kD1

ak :

If n D 0, the value of the product is defined to be 1. We can convert a formula with
a product to a formula with a summation by using the identity

lg
 

nY

kD1

ak

!

D
nX

kD1

lg ak :
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Exercises
A.1-1
Find a simple formula for Pn

kD1.2k " 1/.
A.1-2 ?
Show that Pn

kD1 1=.2k " 1/ D ln.
p

n/ C O.1/ by manipulating the harmonic
series.
A.1-3
Show that P1

kD0 k2xk D x.1 C x/=.1 " x/3 for 0 < jxj < 1.
A.1-4 ?
Show that P1

kD0.k " 1/=2k D 0.
A.1-5 ?
Evaluate the sum P1

kD1.2k C 1/x2k.
A.1-6
Prove that Pn

kD1 O.fk.i// D O
#Pn

kD1 fk.i/
$ by using the linearity property of

summations.
A.1-7
Evaluate the product Qn

kD1 2 ! 4k.
A.1-8 ?
Evaluate the product Qn

kD2.1 " 1=k2/.

A.2 Bounding summations

We have many techniques at our disposal for bounding the summations that de-
scribe the running times of algorithms. Here are some of the most frequently used
methods.

Mathematical induction
The most basic way to evaluate a series is to use mathematical induction. As an
example, let us prove that the arithmetic series Pn

kD1 k evaluates to 1
2
n.nC1/. We

can easily verify this assertion for n D 1. We make the inductive assumption that
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it holds for n, and we prove that it holds for n C 1. We have
nC1X

kD1

k D
nX

kD1

k C .n C 1/

D
1

2
n.n C 1/ C .n C 1/

D
1

2
.n C 1/.n C 2/ :

You don’t always need to guess the exact value of a summation in order to use
mathematical induction. Instead, you can use induction to prove a bound on a sum-
mation. As an example, let us prove that the geometric series Pn

kD0 3k is O.3n/.
More specifically, let us prove that Pn

kD0 3k # c3n for some constant c. For the
initial condition n D 0, we have P0

kD0 3k D 1 # c ! 1 as long as c $ 1. Assuming
that the bound holds for n, let us prove that it holds for n C 1. We have
nC1X

kD0

3k D
nX

kD0

3k C 3nC1

# c3n C 3nC1 (by the inductive hypothesis)
D

!
1

3
C

1

c

"
c3nC1

# c3nC1

as long as .1=3 C 1=c/ # 1 or, equivalently, c $ 3=2. Thus, Pn
kD0 3k D O.3n/,

as we wished to show.
We have to be careful when we use asymptotic notation to prove bounds by in-

duction. Consider the following fallacious proof that Pn
kD1 k D O.n/. Certainly,P1

kD1 k D O.1/. Assuming that the bound holds for n, we now prove it for n C 1:
nC1X

kD1

k D
nX

kD1

k C .n C 1/

D O.n/ C .n C 1/ % wrong!!
D O.n C 1/ :

The bug in the argument is that the “constant” hidden by the “big-oh” grows with n
and thus is not constant. We have not shown that the same constant works for all n.

Bounding the terms
We can sometimes obtain a good upper bound on a series by bounding each term
of the series, and it often suffices to use the largest term to bound the others. For
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example, a quick upper bound on the arithmetic series (A.1) is
nX

kD1

k #
nX

kD1

n

D n2 :

In general, for a series Pn
kD1 ak, if we let amax D max1"k"n ak, then

nX

kD1

ak # n ! amax :

The technique of bounding each term in a series by the largest term is a weak
method when the series can in fact be bounded by a geometric series. Given the
series Pn

kD0 ak, suppose that akC1=ak # r for all k $ 0, where 0 < r < 1 is a
constant. We can bound the sum by an infinite decreasing geometric series, since
ak # a0rk, and thus

nX

kD0

ak #
1X

kD0

a0rk

D a0

1X

kD0

rk

D a0

1

1 " r
:

We can apply this method to bound the summation P1
kD1.k=3k/. In order to

start the summation at k D 0, we rewrite it as P1
kD0..k C 1/=3kC1/. The first

term (a0) is 1=3, and the ratio (r) of consecutive terms is
.k C 2/=3kC2

.k C 1/=3kC1
D

1

3
!

k C 2

k C 1

#
2

3

for all k $ 0. Thus, we have
1X

kD1

k

3k
D

1X

kD0

k C 1

3kC1

#
1

3
!

1

1 " 2=3

D 1 :
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A common bug in applying this method is to show that the ratio of consecu-
tive terms is less than 1 and then to assume that the summation is bounded by a
geometric series. An example is the infinite harmonic series, which diverges since
1X

kD1

1

k
D lim

n!1

nX

kD1

1

k

D lim
n!1

‚.lg n/

D 1 :

The ratio of the .kC1/st and kth terms in this series is k=.kC1/ < 1, but the series
is not bounded by a decreasing geometric series. To bound a series by a geometric
series, we must show that there is an r < 1, which is a constant, such that the ratio
of all pairs of consecutive terms never exceeds r . In the harmonic series, no such r
exists because the ratio becomes arbitrarily close to 1.

Splitting summations
One way to obtain bounds on a difficult summation is to express the series as the
sum of two or more series by partitioning the range of the index and then to bound
each of the resulting series. For example, suppose we try to find a lower bound
on the arithmetic series Pn

kD1 k, which we have already seen has an upper bound
of n2. We might attempt to bound each term in the summation by the smallest term,
but since that term is 1, we get a lower bound of n for the summation—far off from
our upper bound of n2.

We can obtain a better lower bound by first splitting the summation. Assume for
convenience that n is even. We have

nX

kD1

k D
n=2X

kD1

k C
nX

kDn=2C1

k

$
n=2X

kD1

0 C
nX

kDn=2C1

.n=2/

D .n=2/2

D !.n2/ ;

which is an asymptotically tight bound, since Pn
kD1 k D O.n2/.

For a summation arising from the analysis of an algorithm, we can often split
the summation and ignore a constant number of the initial terms. Generally, this
technique applies when each term ak in a summationPn

kD0 ak is independent of n.
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Then for any constant k0 > 0, we can write
nX

kD0

ak D
k0!1X

kD0

ak C
nX

kDk0

ak

D ‚.1/ C
nX

kDk0

ak ;

since the initial terms of the summation are all constant and there are a constant
number of them. We can then use other methods to bound Pn

kDk0
ak. This tech-

nique applies to infinite summations as well. For example, to find an asymptotic
upper bound on
1X

kD0

k2

2k
;

we observe that the ratio of consecutive terms is
.k C 1/2=2kC1

k2=2k
D

.k C 1/2

2k2

#
8

9

if k $ 3. Thus, the summation can be split into
1X

kD0

k2

2k
D

2X

kD0

k2

2k
C

1X

kD3

k2

2k

#
2X

kD0

k2

2k
C

9

8

1X

kD0

!
8

9

"k

D O.1/ ;

since the first summation has a constant number of terms and the second summation
is a decreasing geometric series.

The technique of splitting summations can help us determine asymptotic bounds
in much more difficult situations. For example, we can obtain a bound of O.lg n/
on the harmonic series (A.7):

Hn D
nX

kD1

1

k
:

We do so by splitting the range 1 to n into blg nc C 1 pieces and upper-bounding
the contribution of each piece by 1. For i D 0; 1; : : : ; blg nc, the i th piece consists



1154 Appendix A Summations

of the terms starting at 1=2i and going up to but not including 1=2iC1. The last
piece might contain terms not in the original harmonic series, and thus we have

nX

kD1

1

k
#

blg ncX

iD0

2i !1X

j D0

1

2i C j

#
blg ncX

iD0

2i !1X

j D0

1

2i

D
blg ncX

iD0

1

# lg n C 1 : (A.10)

Approximation by integrals
When a summation has the form Pn

kDm f .k/, where f .k/ is a monotonically in-
creasing function, we can approximate it by integrals:
Z n

m!1

f .x/ dx #
nX

kDm

f .k/ #
Z nC1

m

f .x/ dx : (A.11)

Figure A.1 justifies this approximation. The summation is represented as the area
of the rectangles in the figure, and the integral is the shaded region under the curve.
When f .k/ is a monotonically decreasing function, we can use a similar method
to provide the bounds
Z nC1

m

f .x/ dx #
nX

kDm

f .k/ #
Z n

m!1

f .x/ dx : (A.12)

The integral approximation (A.12) gives a tight estimate for the nth harmonic
number. For a lower bound, we obtain

nX

kD1

1

k
$

Z nC1

1

dx

x

D ln.n C 1/ : (A.13)
For the upper bound, we derive the inequality

nX

kD2

1

k
#

Z n

1

dx

x

D ln n ;
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n+1n–1n–2m+2mm –1

f (m)

f (m+1)

f (m+2)

f (n–2)

f (n–1)

f (n)
f (x)

x… … n

… …

(a)
m+1

n+1n–1n–2m+2mm –1

f (m)

f (m+1)

f (m+2)

f (n–2)

f (n–1)

f (n)

f (x)

x… … n

… …

(b)
m+1

Figure A.1 Approximation of Pn
kDm f .k/ by integrals. The area of each rectangle is shown

within the rectangle, and the total rectangle area represents the value of the summation. The in-
tegral is represented by the shaded area under the curve. By comparing areas in (a), we getR n

m!1 f .x/ dx #
Pn

kDm f .k/, and then by shifting the rectangles one unit to the right, we get
Pn

kDm f .k/ #
R nC1

m f .x/ dx in (b).
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which yields the bound
nX

kD1

1

k
# ln n C 1 : (A.14)

Exercises
A.2-1
Show that Pn

kD1 1=k2 is bounded above by a constant.
A.2-2
Find an asymptotic upper bound on the summation
blg ncX

kD0

˙
n=2k

%
:

A.2-3
Show that the nth harmonic number is !.lg n/ by splitting the summation.
A.2-4
Approximate Pn

kD1 k3 with an integral.
A.2-5
Why didn’t we use the integral approximation (A.12) directly on Pn

kD1 1=k to
obtain an upper bound on the nth harmonic number?

Problems

A-1 Bounding summations
Give asymptotically tight bounds on the following summations. Assume that r $ 0
and s $ 0 are constants.

a.
nX

kD1

kr .

b.
nX

kD1

lgs k.
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c.
nX

kD1

kr lgs k.

Appendix notes

Knuth [209] provides an excellent reference for the material presented here. You
can find basic properties of series in any good calculus book, such as Apostol [18]
or Thomas et al. [334].



B Sets, Etc.

Many chapters of this book touch on the elements of discrete mathematics. This
appendix reviews more completely the notations, definitions, and elementary prop-
erties of sets, relations, functions, graphs, and trees. If you are already well versed
in this material, you can probably just skim this chapter.

B.1 Sets

A set is a collection of distinguishable objects, called its members or elements. If
an object x is a member of a set S , we write x 2 S (read “x is a member of S”
or, more briefly, “x is in S”). If x is not a member of S , we write x 62 S . We
can describe a set by explicitly listing its members as a list inside braces. For
example, we can define a set S to contain precisely the numbers 1, 2, and 3 by
writing S D f1; 2; 3g. Since 2 is a member of the set S , we can write 2 2 S , and
since 4 is not a member, we have 4 … S . A set cannot contain the same object more
than once,1 and its elements are not ordered. Two sets A and B are equal, written
A D B , if they contain the same elements. For example, f1; 2; 3; 1g D f1; 2; 3g D
f3; 2; 1g.

We adopt special notations for frequently encountered sets:
! ; denotes the empty set, that is, the set containing no members.
! Z denotes the set of integers, that is, the set f: : : ; "2; "1; 0; 1; 2; : : :g.
! R denotes the set of real numbers.
! N denotes the set of natural numbers, that is, the set f0; 1; 2; : : :g.2

1A variation of a set, which can contain the same object more than once, is called a multiset.
2Some authors start the natural numbers with 1 instead of 0. The modern trend seems to be to start
with 0.
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If all the elements of a set A are contained in a set B , that is, if x 2 A implies
x 2 B , then we write A & B and say that A is a subset of B . A set A is a
proper subset of B , written A ' B , if A & B but A ¤ B . (Some authors use the
symbol “'” to denote the ordinary subset relation, rather than the proper-subset
relation.) For any set A, we have A & A. For two sets A and B , we have A D B
if and only if A & B and B & A. For any three sets A, B , and C , if A & B
and B & C , then A & C . For any set A, we have ; & A.

We sometimes define sets in terms of other sets. Given a set A, we can define a
set B & A by stating a property that distinguishes the elements of B . For example,
we can define the set of even integers by fx W x 2 Z and x=2 is an integerg. The
colon in this notation is read “such that.” (Some authors use a vertical bar in place
of the colon.)

Given two sets A and B , we can also define new sets by applying set operations:
! The intersection of sets A and B is the set

A \ B D fx W x 2 A and x 2 Bg :

! The union of sets A and B is the set

A [ B D fx W x 2 A or x 2 Bg :

! The difference between two sets A and B is the set

A " B D fx W x 2 A and x … Bg :

Set operations obey the following laws:
Empty set laws:

A \ ; D ; ;

A [ ; D A :

Idempotency laws:
A \ A D A ;

A [ A D A :

Commutative laws:
A \ B D B \ A ;

A [ B D B [ A :
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AAAAA

A

BBBBB

"

"

.B \ C / [

[

DD

DD

A " .B \ C / .A " B/ .A " C /

CCCCC

Figure B.1 A Venn diagram illustrating the first of DeMorgan’s laws (B.2). Each of the sets A, B ,
and C is represented as a circle.

Associative laws:
A \ .B \ C / D .A \ B/ \ C ;

A [ .B [ C / D .A [ B/ [ C :

Distributive laws:
A \ .B [ C / D .A \ B/ [ .A \ C / ;

A [ .B \ C / D .A [ B/ \ .A [ C / :
(B.1)

Absorption laws:
A \ .A [ B/ D A ;

A [ .A \ B/ D A :

DeMorgan’s laws:

A " .B \ C / D .A " B/ [ .A " C / ;

A " .B [ C / D .A " B/ \ .A " C / :
(B.2)

Figure B.1 illustrates the first of DeMorgan’s laws, using a Venn diagram: a graph-
ical picture in which sets are represented as regions of the plane.

Often, all the sets under consideration are subsets of some larger set U called the
universe. For example, if we are considering various sets made up only of integers,
the set Z of integers is an appropriate universe. Given a universe U , we define the
complement of a set A as A D U " A D fx W x 2 U and x 62 Ag. For any set
A & U , we have the following laws:

A D A ;

A \ A D ; ;

A [ A D U :
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We can rewrite DeMorgan’s laws (B.2) with set complements. For any two sets
B; C & U , we have
B \ C D B [ C ;

B [ C D B \ C :

Two sets A and B are disjoint if they have no elements in common, that is, if
A \ B D ;. A collection S D fSig of nonempty sets forms a partition of a set S if
! the sets are pairwise disjoint, that is, Si ; Sj 2 S and i ¤ j imply Si \ Sj D ;,

and
! their union is S , that is,

S D
[

Si 2S

Si :

In other words, S forms a partition of S if each element of S appears in exactly
one Si 2 S .

The number of elements in a set is the cardinality (or size) of the set, denoted jS j.
Two sets have the same cardinality if their elements can be put into a one-to-one
correspondence. The cardinality of the empty set is j;j D 0. If the cardinality of a
set is a natural number, we say the set is finite; otherwise, it is infinite. An infinite
set that can be put into a one-to-one correspondence with the natural numbers N is
countably infinite; otherwise, it is uncountable. For example, the integers Z are
countable, but the reals R are uncountable.

For any two finite sets A and B , we have the identity
jA [ Bj D jAj C jBj " jA \ Bj ; (B.3)
from which we can conclude that
jA [ Bj # jAj C jBj :

If A and B are disjoint, then jA \ Bj D 0 and thus jA [ Bj D jAj C jBj. If
A & B , then jAj # jBj.

A finite set of n elements is sometimes called an n-set. A 1-set is called a
singleton. A subset of k elements of a set is sometimes called a k-subset.

We denote the set of all subsets of a set S , including the empty set and S itself,
by 2S ; we call 2S the power set of S . For example, 2fa;bg D f;; fag ; fbg ; fa; bgg.
The power set of a finite set S has cardinality 2jS j (see Exercise B.1-5).

We sometimes care about setlike structures in which the elements are ordered.
An ordered pair of two elements a and b is denoted .a; b/ and is defined formally
as the set .a; b/ D fa; fa; bgg. Thus, the ordered pair .a; b/ is not the same as the
ordered pair .b; a/.
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The Cartesian product of two sets A and B , denoted A ( B , is the set of all
ordered pairs such that the first element of the pair is an element of A and the
second is an element of B . More formally,
A ( B D f.a; b/ W a 2 A and b 2 Bg :

For example, fa; bg(fa; b; cg D f.a; a/; .a; b/; .a; c/; .b; a/; .b; b/; .b; c/g. When
A and B are finite sets, the cardinality of their Cartesian product is
jA ( Bj D jAj ! jBj : (B.4)

The Cartesian product of n sets A1; A2; : : : ; An is the set of n-tuples
A1 ( A2 ( ! ! ! ( An D f.a1; a2; : : : ; an/ W ai 2 Ai for i D 1; 2; : : : ; ng ;

whose cardinality is
jA1 ( A2 ( ! ! ! ( Anj D jA1j ! jA2j ! ! ! jAnj

if all sets are finite. We denote an n-fold Cartesian product over a single set A by
the set
An D A ( A ( ! ! ! ( A ;

whose cardinality is jAnj D jAjn if A is finite. We can also view an n-tuple as a
finite sequence of length n (see page 1166).

Exercises
B.1-1
Draw Venn diagrams that illustrate the first of the distributive laws (B.1).
B.1-2
Prove the generalization of DeMorgan’s laws to any finite collection of sets:
A1 \ A2 \ ! ! ! \ An D A1 [ A2 [ ! ! ! [ An ;

A1 [ A2 [ ! ! ! [ An D A1 \ A2 \ ! ! ! \ An :
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B.1-3 ?
Prove the generalization of equation (B.3), which is called the principle of inclu-
sion and exclusion:
jA1 [ A2 [ ! ! ! [ Anj D

jA1j C jA2j C ! ! ! C jAnj
" jA1 \ A2j " jA1 \ A3j " ! ! ! (all pairs)
C jA1 \ A2 \ A3j C ! ! ! (all triples)

:::

C ."1/n!1 jA1 \ A2 \ ! ! ! \ Anj :

B.1-4
Show that the set of odd natural numbers is countable.
B.1-5
Show that for any finite set S , the power set 2S has 2jS j elements (that is, there
are 2jS j distinct subsets of S).
B.1-6
Give an inductive definition for an n-tuple by extending the set-theoretic definition
for an ordered pair.

B.2 Relations

A binary relation R on two sets A and B is a subset of the Cartesian product A(B .
If .a; b/ 2 R, we sometimes write a R b. When we say that R is a binary relation
on a set A, we mean that R is a subset of A ( A. For example, the “less than”
relation on the natural numbers is the set f.a; b/ W a; b 2 N and a < bg. An n-ary
relation on sets A1; A2; : : : ; An is a subset of A1 ( A2 ( ! ! ! ( An.

A binary relation R & A ( A is reflexive if
a R a

for all a 2 A. For example, “D” and “#” are reflexive relations on N, but “<” is
not. The relation R is symmetric if
a R b implies b R a

for all a; b 2 A. For example, “D” is symmetric, but “<” and “#” are not. The
relation R is transitive if
a R b and b R c imply a R c
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for all a; b; c 2 A. For example, the relations “<,” “#,” and “D” are transitive, but
the relation R D f.a; b/ W a; b 2 N and a D b " 1g is not, since 3 R 4 and 4 R 5
do not imply 3 R 5.

A relation that is reflexive, symmetric, and transitive is an equivalence relation.
For example, “D” is an equivalence relation on the natural numbers, but “<” is not.
If R is an equivalence relation on a set A, then for a 2 A, the equivalence class
of a is the set Œa" D fb 2 A W a R bg, that is, the set of all elements equivalent to a.
For example, if we define R D f.a; b/ W a; b 2 N and a C b is an even numberg,
then R is an equivalence relation, since a C a is even (reflexive), a C b is even
implies b C a is even (symmetric), and a C b is even and b C c is even imply
a C c is even (transitive). The equivalence class of 4 is Œ4" D f0; 2; 4; 6; : : :g, and
the equivalence class of 3 is Œ3" D f1; 3; 5; 7; : : :g. A basic theorem of equivalence
classes is the following.

Theorem B.1 (An equivalence relation is the same as a partition)
The equivalence classes of any equivalence relation R on a set A form a partition
of A, and any partition of A determines an equivalence relation on A for which the
sets in the partition are the equivalence classes.

Proof For the first part of the proof, we must show that the equivalence classes
of R are nonempty, pairwise-disjoint sets whose union is A. Because R is reflex-
ive, a 2 Œa", and so the equivalence classes are nonempty; moreover, since every
element a 2 A belongs to the equivalence class Œa", the union of the equivalence
classes is A. It remains to show that the equivalence classes are pairwise disjoint,
that is, if two equivalence classes Œa" and Œb" have an element c in common, then
they are in fact the same set. Suppose that a R c and b R c. By symmetry, c R b,
and by transitivity, a R b. Thus, for any arbitrary element x 2 Œa", we have x R a
and, by transitivity, x R b, and thus Œa" & Œb". Similarly, Œb" & Œa", and thus
Œa" D Œb".

For the second part of the proof, let A D fAig be a partition of A, and define
R D f.a; b/ W there exists i such that a 2 Ai and b 2 Aig. We claim that R is an
equivalence relation on A. Reflexivity holds, since a 2 Ai implies a R a. Symme-
try holds, because if a R b, then a and b are in the same set Ai , and hence b R a.
If a R b and b R c, then all three elements are in the same set Ai , and thus a R c
and transitivity holds. To see that the sets in the partition are the equivalence
classes of R, observe that if a 2 Ai , then x 2 Œa" implies x 2 Ai , and x 2 Ai

implies x 2 Œa".
A binary relation R on a set A is antisymmetric if

a R b and b R a imply a D b :
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For example, the “#” relation on the natural numbers is antisymmetric, since a # b
and b # a imply a D b. A relation that is reflexive, antisymmetric, and transitive
is a partial order, and we call a set on which a partial order is defined a partially
ordered set. For example, the relation “is a descendant of” is a partial order on the
set of all people (if we view individuals as being their own descendants).

In a partially ordered set A, there may be no single “maximum” element a such
that b R a for all b 2 A. Instead, the set may contain several maximal elements a
such that for no b 2 A, where b ¤ a, is it the case that a R b. For example, a
collection of different-sized boxes may contain several maximal boxes that don’t
fit inside any other box, yet it has no single “maximum” box into which any other
box will fit.3

A relation R on a set A is a total relation if for all a; b 2 A, we have a R b
or b R a (or both), that is, if every pairing of elements of A is related by R. A
partial order that is also a total relation is a total order or linear order. For example,
the relation “#” is a total order on the natural numbers, but the “is a descendant
of” relation is not a total order on the set of all people, since there are individuals
neither of whom is descended from the other. A total relation that is transitive, but
not necessarily reflexive and antisymmetric, is a total preorder.

Exercises
B.2-1
Prove that the subset relation “&” on all subsets of Z is a partial order but not a
total order.
B.2-2
Show that for any positive integer n, the relation “equivalent modulo n” is an equiv-
alence relation on the integers. (We say that a ) b .mod n/ if there exists an
integer q such that a " b D qn.) Into what equivalence classes does this relation
partition the integers?
B.2-3
Give examples of relations that are
a. reflexive and symmetric but not transitive,
b. reflexive and transitive but not symmetric,
c. symmetric and transitive but not reflexive.

3To be precise, in order for the “fit inside” relation to be a partial order, we need to view a box as
fitting inside itself.
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B.2-4
Let S be a finite set, and let R be an equivalence relation on S ( S . Show that if
in addition R is antisymmetric, then the equivalence classes of S with respect to R
are singletons.
B.2-5
Professor Narcissus claims that if a relation R is symmetric and transitive, then it is
also reflexive. He offers the following proof. By symmetry, a R b implies b R a.
Transitivity, therefore, implies a R a. Is the professor correct?

B.3 Functions

Given two sets A and B , a function f is a binary relation on A and B such that
for all a 2 A, there exists precisely one b 2 B such that .a; b/ 2 f . The set A is
called the domain of f , and the set B is called the codomain of f . We sometimes
write f W A ! B; and if .a; b/ 2 f , we write b D f .a/, since b is uniquely
determined by the choice of a.

Intuitively, the function f assigns an element of B to each element of A. No
element of A is assigned two different elements of B , but the same element of B
can be assigned to two different elements of A. For example, the binary relation
f D f.a; b/ W a; b 2 N and b D a mod 2g

is a function f W N ! f0; 1g, since for each natural number a, there is exactly one
value b in f0; 1g such that b D a mod 2. For this example, 0 D f .0/, 1 D f .1/,
0 D f .2/, etc. In contrast, the binary relation
g D f.a; b/ W a; b 2 N and a C b is eveng

is not a function, since .1; 3/ and .1; 5/ are both in g, and thus for the choice a D 1,
there is not precisely one b such that .a; b/ 2 g.

Given a function f W A ! B , if b D f .a/, we say that a is the argument of f
and that b is the value of f at a. We can define a function by stating its value for
every element of its domain. For example, we might define f .n/ D 2n for n 2 N,
which means f D f.n; 2n/ W n 2 Ng. Two functions f and g are equal if they
have the same domain and codomain and if, for all a in the domain, f .a/ D g.a/.

A finite sequence of length n is a function f whose domain is the set of n
integers f0; 1; : : : ; n " 1g. We often denote a finite sequence by listing its values:
hf .0/; f .1/; : : : ; f .n " 1/i. An infinite sequence is a function whose domain is
the set N of natural numbers. For example, the Fibonacci sequence, defined by
recurrence (3.22), is the infinite sequence h0; 1; 1; 2; 3; 5; 8; 13; 21; : : :i.
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When the domain of a function f is a Cartesian product, we often omit the extra
parentheses surrounding the argument of f . For example, if we had a function
f W A1 ( A2 ( ! ! ! ( An ! B , we would write b D f .a1; a2; : : : ; an/ instead
of b D f ..a1; a2; : : : ; an//. We also call each ai an argument to the function f ,
though technically the (single) argument to f is the n-tuple .a1; a2; : : : ; an/.

If f W A ! B is a function and b D f .a/, then we sometimes say that b is the
image of a under f . The image of a set A0 & A under f is defined by
f .A0/ D fb 2 B W b D f .a/ for some a 2 A0g :

The range of f is the image of its domain, that is, f .A/. For example, the range
of the function f W N ! N defined by f .n/ D 2n is f .N/ D fm W m D 2n for
some n 2 Ng, in other words, the set of nonnegative even integers.

A function is a surjection if its range is its codomain. For example, the function
f .n/ D bn=2c is a surjective function from N to N, since every element in N

appears as the value of f for some argument. In contrast, the function f .n/ D 2n
is not a surjective function from N to N, since no argument to f can produce 3 as a
value. The function f .n/ D 2n is, however, a surjective function from the natural
numbers to the even numbers. A surjection f W A ! B is sometimes described as
mapping A onto B . When we say that f is onto, we mean that it is surjective.

A function f W A ! B is an injection if distinct arguments to f produce
distinct values, that is, if a ¤ a0 implies f .a/ ¤ f .a0/. For example, the function
f .n/ D 2n is an injective function from N to N, since each even number b is the
image under f of at most one element of the domain, namely b=2. The function
f .n/ D bn=2c is not injective, since the value 1 is produced by two arguments: 2
and 3. An injection is sometimes called a one-to-one function.

A function f W A ! B is a bijection if it is injective and surjective. For example,
the function f .n/ D ."1/n dn=2e is a bijection from N to Z:
0 ! 0 ;
1 ! "1 ;
2 ! 1 ;
3 ! "2 ;
4 ! 2 ;

:::

The function is injective, since no element of Z is the image of more than one
element of N. It is surjective, since every element of Z appears as the image of
some element of N. Hence, the function is bijective. A bijection is sometimes
called a one-to-one correspondence, since it pairs elements in the domain and
codomain. A bijection from a set A to itself is sometimes called a permutation.

When a function f is bijective, we define its inverse f !1 as
f !1.b/ D a if and only if f .a/ D b :
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For example, the inverse of the function f .n/ D ."1/n dn=2e is

f !1.m/ D

(
2m if m $ 0 ;

"2m " 1 if m < 0 :

Exercises
B.3-1
Let A and B be finite sets, and let f W A ! B be a function. Show that
a. if f is injective, then jAj # jBj;
b. if f is surjective, then jAj $ jBj.

B.3-2
Is the function f .x/ D x C 1 bijective when the domain and the codomain are N?
Is it bijective when the domain and the codomain are Z?
B.3-3
Give a natural definition for the inverse of a binary relation such that if a relation
is in fact a bijective function, its relational inverse is its functional inverse.
B.3-4 ?
Give a bijection from Z to Z ( Z.

B.4 Graphs

This section presents two kinds of graphs: directed and undirected. Certain def-
initions in the literature differ from those given here, but for the most part, the
differences are slight. Section 22.1 shows how we can represent graphs in com-
puter memory.

A directed graph (or digraph) G is a pair .V; E/, where V is a finite set and E
is a binary relation on V . The set V is called the vertex set of G, and its elements
are called vertices (singular: vertex). The set E is called the edge set of G, and its
elements are called edges. Figure B.2(a) is a pictorial representation of a directed
graph on the vertex set f1; 2; 3; 4; 5; 6g. Vertices are represented by circles in the
figure, and edges are represented by arrows. Note that self-loops—edges from a
vertex to itself—are possible.

In an undirected graph G D .V; E/, the edge set E consists of unordered
pairs of vertices, rather than ordered pairs. That is, an edge is a set fu; #g, where
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1 2 3

4 5 6

(a)

1 2 3

4 5 6

(b)

1 2 3

6

(c)

Figure B.2 Directed and undirected graphs. (a) A directed graph G D .V; E/, where V D
f1; 2; 3; 4; 5; 6g and E D f.1; 2/; .2; 2/; .2; 4/; .2; 5/; .4; 1/; .4; 5/; .5; 4/; .6; 3/g. The edge .2; 2/
is a self-loop. (b) An undirected graph G D .V; E/, where V D f1; 2; 3; 4; 5; 6g and E D
f.1; 2/; .1; 5/; .2; 5/; .3; 6/g. The vertex 4 is isolated. (c) The subgraph of the graph in part (a)
induced by the vertex set f1; 2; 3; 6g.

u; # 2 V and u ¤ #. By convention, we use the notation .u; #/ for an edge, rather
than the set notation fu; #g, and we consider .u; #/ and .#; u/ to be the same edge.
In an undirected graph, self-loops are forbidden, and so every edge consists of two
distinct vertices. Figure B.2(b) is a pictorial representation of an undirected graph
on the vertex set f1; 2; 3; 4; 5; 6g.

Many definitions for directed and undirected graphs are the same, although cer-
tain terms have slightly different meanings in the two contexts. If .u; #/ is an edge
in a directed graph G D .V; E/, we say that .u; #/ is incident from or leaves
vertex u and is incident to or enters vertex #. For example, the edges leaving ver-
tex 2 in Figure B.2(a) are .2; 2/, .2; 4/, and .2; 5/. The edges entering vertex 2 are
.1; 2/ and .2; 2/. If .u; #/ is an edge in an undirected graph G D .V; E/, we say
that .u; #/ is incident on vertices u and #. In Figure B.2(b), the edges incident on
vertex 2 are .1; 2/ and .2; 5/.

If .u; #/ is an edge in a graph G D .V; E/, we say that vertex # is adjacent to
vertex u. When the graph is undirected, the adjacency relation is symmetric. When
the graph is directed, the adjacency relation is not necessarily symmetric. If # is
adjacent to u in a directed graph, we sometimes write u ! #. In parts (a) and (b)
of Figure B.2, vertex 2 is adjacent to vertex 1, since the edge .1; 2/ belongs to both
graphs. Vertex 1 is not adjacent to vertex 2 in Figure B.2(a), since the edge .2; 1/
does not belong to the graph.

The degree of a vertex in an undirected graph is the number of edges incident on
it. For example, vertex 2 in Figure B.2(b) has degree 2. A vertex whose degree is 0,
such as vertex 4 in Figure B.2(b), is isolated. In a directed graph, the out-degree
of a vertex is the number of edges leaving it, and the in-degree of a vertex is the
number of edges entering it. The degree of a vertex in a directed graph is its in-
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degree plus its out-degree. Vertex 2 in Figure B.2(a) has in-degree 2, out-degree 3,
and degree 5.

A path of length k from a vertex u to a vertex u0 in a graph G D .V; E/
is a sequence h#0; #1; #2; : : : ; #ki of vertices such that u D #0, u0 D #k, and
.#i!1; #i / 2 E for i D 1; 2; : : : ; k. The length of the path is the number of
edges in the path. The path contains the vertices #0; #1; : : : ; #k and the edges
.#0; #1/; .#1; #2/; : : : ; .#k!1; #k/. (There is always a 0-length path from u to u.) If
there is a path p from u to u0, we say that u0 is reachable from u via p, which we
sometimes write as u

p
! u0 if G is directed. A path is simple4 if all vertices in the

path are distinct. In Figure B.2(a), the path h1; 2; 5; 4i is a simple path of length 3.
The path h2; 5; 4; 5i is not simple.

A subpath of path p D h#0; #1; : : : ; #ki is a contiguous subsequence of its ver-
tices. That is, for any 0 # i # j # k, the subsequence of vertices h#i ; #iC1; : : : ; #j i
is a subpath of p.

In a directed graph, a path h#0; #1; : : : ; #ki forms a cycle if #0 D #k and the
path contains at least one edge. The cycle is simple if, in addition, #1; #2; : : : ; #k

are distinct. A self-loop is a cycle of length 1. Two paths h#0; #1; #2; : : : ; #k!1; #0i
and h# 0

0; # 0
1; # 0

2; : : : ; # 0
k!1; # 0

0i form the same cycle if there exists an integer j such
that # 0

i D #.iCj / mod k for i D 0; 1; : : : ; k " 1. In Figure B.2(a), the path h1; 2; 4; 1i
forms the same cycle as the paths h2; 4; 1; 2i and h4; 1; 2; 4i. This cycle is simple,
but the cycle h1; 2; 4; 5; 4; 1i is not. The cycle h2; 2i formed by the edge .2; 2/ is
a self-loop. A directed graph with no self-loops is simple. In an undirected graph,
a path h#0; #1; : : : ; #ki forms a cycle if k $ 3 and #0 D #k; the cycle is simple if
#1; #2; : : : ; #k are distinct. For example, in Figure B.2(b), the path h1; 2; 5; 1i is a
simple cycle. A graph with no cycles is acyclic.

An undirected graph is connected if every vertex is reachable from all other
vertices. The connected components of a graph are the equivalence classes of
vertices under the “is reachable from” relation. The graph in Figure B.2(b) has
three connected components: f1; 2; 5g, f3; 6g, and f4g. Every vertex in f1; 2; 5g is
reachable from every other vertex in f1; 2; 5g. An undirected graph is connected
if it has exactly one connected component. The edges of a connected component
are those that are incident on only the vertices of the component; in other words,
edge .u; #/ is an edge of a connected component only if both u and # are vertices
of the component.

A directed graph is strongly connected if every two vertices are reachable from
each other. The strongly connected components of a directed graph are the equiv-

4Some authors refer to what we call a path as a “walk” and to what we call a simple path as just a
“path.” We use the terms “path” and “simple path” throughout this book in a manner consistent with
their definitions.
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Figure B.3 (a) A pair of isomorphic graphs. The vertices of the top graph are mapped to the
vertices of the bottom graph by f .1/ D u; f .2/ D #; f .3/ D w; f .4/ D x; f .5/ D y; f .6/ D ´.
(b) Two graphs that are not isomorphic, since the top graph has a vertex of degree 4 and the bottom
graph does not.

alence classes of vertices under the “are mutually reachable” relation. A directed
graph is strongly connected if it has only one strongly connected component. The
graph in Figure B.2(a) has three strongly connected components: f1; 2; 4; 5g, f3g,
and f6g. All pairs of vertices in f1; 2; 4; 5g are mutually reachable. The ver-
tices f3; 6g do not form a strongly connected component, since vertex 6 cannot
be reached from vertex 3.

Two graphs G D .V; E/ and G0 D .V 0; E 0/ are isomorphic if there exists a
bijection f W V ! V 0 such that .u; #/ 2 E if and only if .f .u/; f .#// 2 E 0.
In other words, we can relabel the vertices of G to be vertices of G0, maintain-
ing the corresponding edges in G and G0. Figure B.3(a) shows a pair of iso-
morphic graphs G and G0 with respective vertex sets V D f1; 2; 3; 4; 5; 6g and
V 0 D fu; #; w; x; y; ´g. The mapping from V to V 0 given by f .1/ D u; f .2/ D #;
f .3/ D w; f .4/ D x; f .5/ D y; f .6/ D ´ provides the required bijective func-
tion. The graphs in Figure B.3(b) are not isomorphic. Although both graphs have
5 vertices and 7 edges, the top graph has a vertex of degree 4 and the bottom graph
does not.

We say that a graph G0 D .V 0; E 0/ is a subgraph of G D .V; E/ if V 0 & V
and E 0 & E. Given a set V 0 & V , the subgraph of G induced by V 0 is the graph
G0 D .V 0; E 0/, where
E 0 D f.u; #/ 2 E W u; # 2 V 0g :
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The subgraph induced by the vertex set f1; 2; 3; 6g in Figure B.2(a) appears in
Figure B.2(c) and has the edge set f.1; 2/; .2; 2/; .6; 3/g.

Given an undirected graph G D .V; E/, the directed version of G is the directed
graph G0 D .V; E 0/, where .u; #/ 2 E 0 if and only if .u; #/ 2 E. That is, we
replace each undirected edge .u; #/ in G by the two directed edges .u; #/ and .#; u/
in the directed version. Given a directed graph G D .V; E/, the undirected version
of G is the undirected graph G0 D .V; E 0/, where .u; #/ 2 E 0 if and only if u ¤ #
and .u; #/ 2 E. That is, the undirected version contains the edges of G “with
their directions removed” and with self-loops eliminated. (Since .u; #/ and .#; u/
are the same edge in an undirected graph, the undirected version of a directed
graph contains it only once, even if the directed graph contains both edges .u; #/
and .#; u/.) In a directed graph G D .V; E/, a neighbor of a vertex u is any vertex
that is adjacent to u in the undirected version of G. That is, # is a neighbor of u if
u ¤ # and either .u; #/ 2 E or .#; u/ 2 E. In an undirected graph, u and # are
neighbors if they are adjacent.

Several kinds of graphs have special names. A complete graph is an undirected
graph in which every pair of vertices is adjacent. A bipartite graph is an undirected
graph G D .V; E/ in which V can be partitioned into two sets V1 and V2 such that
.u; #/ 2 E implies either u 2 V1 and # 2 V2 or u 2 V2 and # 2 V1. That is, all
edges go between the two sets V1 and V2. An acyclic, undirected graph is a forest,
and a connected, acyclic, undirected graph is a (free) tree (see Section B.5). We
often take the first letters of “directed acyclic graph” and call such a graph a dag.

There are two variants of graphs that you may occasionally encounter. A multi-
graph is like an undirected graph, but it can have both multiple edges between ver-
tices and self-loops. A hypergraph is like an undirected graph, but each hyperedge,
rather than connecting two vertices, connects an arbitrary subset of vertices. Many
algorithms written for ordinary directed and undirected graphs can be adapted to
run on these graphlike structures.

The contraction of an undirected graph G D .V; E/ by an edge e D .u; #/ is a
graph G0 D .V 0; E 0/, where V 0 D V " fu; #g [ fxg and x is a new vertex. The set
of edges E 0 is formed from E by deleting the edge .u; #/ and, for each vertex w
incident on u or #, deleting whichever of .u; w/ and .#; w/ is in E and adding the
new edge .x; w/. In effect, u and # are “contracted” into a single vertex.

Exercises
B.4-1
Attendees of a faculty party shake hands to greet each other, and each professor
remembers how many times he or she shook hands. At the end of the party, the
department head adds up the number of times that each professor shook hands.
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Show that the result is even by proving the handshaking lemma: if G D .V; E/ is
an undirected graph, then
X

!2V

degree.#/ D 2 jEj :

B.4-2
Show that if a directed or undirected graph contains a path between two vertices u
and #, then it contains a simple path between u and #. Show that if a directed graph
contains a cycle, then it contains a simple cycle.
B.4-3
Show that any connected, undirected graph G D .V; E/ satisfies jEj $ jV j " 1.
B.4-4
Verify that in an undirected graph, the “is reachable from” relation is an equiv-
alence relation on the vertices of the graph. Which of the three properties of an
equivalence relation hold in general for the “is reachable from” relation on the
vertices of a directed graph?
B.4-5
What is the undirected version of the directed graph in Figure B.2(a)? What is the
directed version of the undirected graph in Figure B.2(b)?
B.4-6 ?
Show that we can represent a hypergraph by a bipartite graph if we let incidence in
the hypergraph correspond to adjacency in the bipartite graph. (Hint: Let one set
of vertices in the bipartite graph correspond to vertices of the hypergraph, and let
the other set of vertices of the bipartite graph correspond to hyperedges.)

B.5 Trees

As with graphs, there are many related, but slightly different, notions of trees. This
section presents definitions and mathematical properties of several kinds of trees.
Sections 10.4 and 22.1 describe how we can represent trees in computer memory.

B.5.1 Free trees
As defined in Section B.4, a free tree is a connected, acyclic, undirected graph. We
often omit the adjective “free” when we say that a graph is a tree. If an undirected
graph is acyclic but possibly disconnected, it is a forest. Many algorithms that work
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(a) (b) (c)

Figure B.4 (a) A free tree. (b) A forest. (c) A graph that contains a cycle and is therefore neither
a tree nor a forest.

for trees also work for forests. Figure B.4(a) shows a free tree, and Figure B.4(b)
shows a forest. The forest in Figure B.4(b) is not a tree because it is not connected.
The graph in Figure B.4(c) is connected but neither a tree nor a forest, because it
contains a cycle.

The following theorem captures many important facts about free trees.

Theorem B.2 (Properties of free trees)
Let G D .V; E/ be an undirected graph. The following statements are equivalent.
1. G is a free tree.
2. Any two vertices in G are connected by a unique simple path.
3. G is connected, but if any edge is removed from E, the resulting graph is dis-

connected.
4. G is connected, and jEj D jV j " 1.
5. G is acyclic, and jEj D jV j " 1.
6. G is acyclic, but if any edge is added to E, the resulting graph contains a cycle.

Proof (1) ) (2): Since a tree is connected, any two vertices in G are connected
by at least one simple path. Suppose, for the sake of contradiction, that vertices u
and # are connected by two distinct simple paths p1 and p2, as shown in Figure B.5.
Let w be the vertex at which the paths first diverge; that is, w is the first vertex
on both p1 and p2 whose successor on p1 is x and whose successor on p2 is y,
where x ¤ y. Let ´ be the first vertex at which the paths reconverge; that is, ´ is
the first vertex following w on p1 that is also on p2. Let p0 be the subpath of p1

from w through x to ´, and let p00 be the subpath of p2 from w through y to ´.
Paths p0 and p00 share no vertices except their endpoints. Thus, the path obtained by
concatenating p0 and the reverse of p00 is a cycle, which contradicts our assumption
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Figure B.5 A step in the proof of Theorem B.2: if (1) G is a free tree, then (2) any two vertices
in G are connected by a unique simple path. Assume for the sake of contradiction that vertices u
and # are connected by two distinct simple paths p1 and p2. These paths first diverge at vertex w,
and they first reconverge at vertex ´. The path p0 concatenated with the reverse of the path p00 forms
a cycle, which yields the contradiction.

that G is a tree. Thus, if G is a tree, there can be at most one simple path between
two vertices.

(2) ) (3): If any two vertices in G are connected by a unique simple path,
then G is connected. Let .u; #/ be any edge in E. This edge is a path from u to #,
and so it must be the unique path from u to #. If we remove .u; #/ from G, there
is no path from u to #, and hence its removal disconnects G.

(3) ) (4): By assumption, the graph G is connected, and by Exercise B.4-3, we
have jEj $ jV j " 1. We shall prove jEj # jV j " 1 by induction. A connected
graph with n D 1 or n D 2 vertices has n " 1 edges. Suppose that G has n $ 3
vertices and that all graphs satisfying (3) with fewer than n vertices also satisfy
jEj # jV j " 1. Removing an arbitrary edge from G separates the graph into k $ 2
connected components (actually k D 2). Each component satisfies (3), or else G
would not satisfy (3). If we view each connected component Vi , with edge set Ei ,
as its own free tree, then because each component has fewer than jV j vertices, by
the inductive hypothesis we have jEi j # jVi j " 1. Thus, the number of edges in all
components combined is at most jV j " k # jV j " 2. Adding in the removed edge
yields jEj # jV j " 1.

(4) ) (5): Suppose that G is connected and that jEj D jV j " 1. We must show
that G is acyclic. Suppose that G has a cycle containing k vertices #1; #2; : : : ; #k ,
and without loss of generality assume that this cycle is simple. Let Gk D .Vk; Ek/
be the subgraph of G consisting of the cycle. Note that jVkj D jEkj D k.
If k < jV j, there must be a vertex #kC1 2 V " Vk that is adjacent to some ver-
tex #i 2 Vk, since G is connected. Define GkC1 D .VkC1; EkC1/ to be the sub-
graph of G with VkC1 D Vk [ f#kC1g and EkC1 D Ek [ f.#i ; #kC1/g. Note that
jVkC1j D jEkC1j D k C 1. If k C 1 < jV j, we can continue, defining GkC2 in
the same manner, and so forth, until we obtain Gn D .Vn; En/, where n D jV j,
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Vn D V , and jEnj D jVnj D jV j. Since Gn is a subgraph of G, we have En & E,
and hence jEj $ jV j, which contradicts the assumption that jEj D jV j " 1. Thus,
G is acyclic.

(5) ) (6): Suppose that G is acyclic and that jEj D jV j " 1. Let k be the
number of connected components of G. Each connected component is a free tree
by definition, and since (1) implies (5), the sum of all edges in all connected com-
ponents of G is jV j " k. Consequently, we must have k D 1, and G is in fact a
tree. Since (1) implies (2), any two vertices in G are connected by a unique simple
path. Thus, adding any edge to G creates a cycle.

(6) ) (1): Suppose that G is acyclic but that adding any edge to E creates a
cycle. We must show that G is connected. Let u and # be arbitrary vertices in G.
If u and # are not already adjacent, adding the edge .u; #/ creates a cycle in which
all edges but .u; #/ belong to G. Thus, the cycle minus edge .u; #/ must contain a
path from u to #, and since u and # were chosen arbitrarily, G is connected.

B.5.2 Rooted and ordered trees
A rooted tree is a free tree in which one of the vertices is distinguished from the
others. We call the distinguished vertex the root of the tree. We often refer to a
vertex of a rooted tree as a node5 of the tree. Figure B.6(a) shows a rooted tree on
a set of 12 nodes with root 7.

Consider a node x in a rooted tree T with root r . We call any node y on the
unique simple path from r to x an ancestor of x. If y is an ancestor of x, then x is
a descendant of y. (Every node is both an ancestor and a descendant of itself.) If y
is an ancestor of x and x ¤ y, then y is a proper ancestor of x and x is a proper
descendant of y. The subtree rooted at x is the tree induced by descendants of x,
rooted at x. For example, the subtree rooted at node 8 in Figure B.6(a) contains
nodes 8, 6, 5, and 9.

If the last edge on the simple path from the root r of a tree T to a node x is .y; x/,
then y is the parent of x, and x is a child of y. The root is the only node in T with
no parent. If two nodes have the same parent, they are siblings. A node with no
children is a leaf or external node. A nonleaf node is an internal node.

5The term “node” is often used in the graph theory literature as a synonym for “vertex.” We reserve
the term “node” to mean a vertex of a rooted tree.
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Figure B.6 Rooted and ordered trees. (a) A rooted tree with height 4. The tree is drawn in a
standard way: the root (node 7) is at the top, its children (nodes with depth 1) are beneath it, their
children (nodes with depth 2) are beneath them, and so forth. If the tree is ordered, the relative left-
to-right order of the children of a node matters; otherwise it doesn’t. (b) Another rooted tree. As a
rooted tree, it is identical to the tree in (a), but as an ordered tree it is different, since the children of
node 3 appear in a different order.

The number of children of a node x in a rooted tree T equals the degree of x.6
The length of the simple path from the root r to a node x is the depth of x in T .
A level of a tree consists of all nodes at the same depth. The height of a node in a
tree is the number of edges on the longest simple downward path from the node to
a leaf, and the height of a tree is the height of its root. The height of a tree is also
equal to the largest depth of any node in the tree.

An ordered tree is a rooted tree in which the children of each node are ordered.
That is, if a node has k children, then there is a first child, a second child, . . . ,
and a kth child. The two trees in Figure B.6 are different when considered to be
ordered trees, but the same when considered to be just rooted trees.

B.5.3 Binary and positional trees
We define binary trees recursively. A binary tree T is a structure defined on a finite
set of nodes that either
! contains no nodes, or

6Notice that the degree of a node depends on whether we consider T to be a rooted tree or a free tree.
The degree of a vertex in a free tree is, as in any undirected graph, the number of adjacent vertices.
In a rooted tree, however, the degree is the number of children—the parent of a node does not count
toward its degree.
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Figure B.7 Binary trees. (a) A binary tree drawn in a standard way. The left child of a node is
drawn beneath the node and to the left. The right child is drawn beneath and to the right. (b)A binary
tree different from the one in (a). In (a), the left child of node 7 is 5 and the right child is absent.
In (b), the left child of node 7 is absent and the right child is 5. As ordered trees, these trees are
the same, but as binary trees, they are distinct. (c) The binary tree in (a) represented by the internal
nodes of a full binary tree: an ordered tree in which each internal node has degree 2. The leaves in
the tree are shown as squares.

! is composed of three disjoint sets of nodes: a root node, a binary tree called its
left subtree, and a binary tree called its right subtree.

The binary tree that contains no nodes is called the empty tree or null tree, some-
times denoted NIL. If the left subtree is nonempty, its root is called the left child of
the root of the entire tree. Likewise, the root of a nonnull right subtree is the right
child of the root of the entire tree. If a subtree is the null tree NIL, we say that the
child is absent or missing. Figure B.7(a) shows a binary tree.

A binary tree is not simply an ordered tree in which each node has degree at
most 2. For example, in a binary tree, if a node has just one child, the position
of the child—whether it is the left child or the right child—matters. In an or-
dered tree, there is no distinguishing a sole child as being either left or right. Fig-
ure B.7(b) shows a binary tree that differs from the tree in Figure B.7(a) because of
the position of one node. Considered as ordered trees, however, the two trees are
identical.

We can represent the positioning information in a binary tree by the internal
nodes of an ordered tree, as shown in Figure B.7(c). The idea is to replace each
missing child in the binary tree with a node having no children. These leaf nodes
are drawn as squares in the figure. The tree that results is a full binary tree: each
node is either a leaf or has degree exactly 2. There are no degree-1 nodes. Conse-
quently, the order of the children of a node preserves the position information.

We can extend the positioning information that distinguishes binary trees from
ordered trees to trees with more than 2 children per node. In a positional tree, the
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Figure B.8 A complete binary tree of height 3 with 8 leaves and 7 internal nodes.

children of a node are labeled with distinct positive integers. The i th child of a
node is absent if no child is labeled with integer i . A k-ary tree is a positional tree
in which for every node, all children with labels greater than k are missing. Thus,
a binary tree is a k-ary tree with k D 2.

A complete k-ary tree is a k-ary tree in which all leaves have the same depth
and all internal nodes have degree k. Figure B.8 shows a complete binary tree of
height 3. How many leaves does a complete k-ary tree of height h have? The root
has k children at depth 1, each of which has k children at depth 2, etc. Thus, the
number of leaves at depth h is kh. Consequently, the height of a complete k-ary
tree with n leaves is logk n. The number of internal nodes of a complete k-ary tree
of height h is

1 C k C k2 C ! ! ! C kh!1 D
h!1X

iD0

ki

D
kh " 1

k " 1

by equation (A.5). Thus, a complete binary tree has 2h " 1 internal nodes.

Exercises
B.5-1
Draw all the free trees composed of the three vertices x, y, and ´. Draw all the
rooted trees with nodes x, y, and ´ with x as the root. Draw all the ordered trees
with nodes x, y, and ´ with x as the root. Draw all the binary trees with nodes x,
y, and ´ with x as the root.
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B.5-2
Let G D .V; E/ be a directed acyclic graph in which there is a vertex #0 2 V
such that there exists a unique path from #0 to every vertex # 2 V . Prove that the
undirected version of G forms a tree.
B.5-3
Show by induction that the number of degree-2 nodes in any nonempty binary tree
is 1 fewer than the number of leaves. Conclude that the number of internal nodes
in a full binary tree is 1 fewer than the number of leaves.
B.5-4
Use induction to show that a nonempty binary tree with n nodes has height at
least blg nc.
B.5-5 ?
The internal path length of a full binary tree is the sum, taken over all internal
nodes of the tree, of the depth of each node. Likewise, the external path length is
the sum, taken over all leaves of the tree, of the depth of each leaf. Consider a full
binary tree with n internal nodes, internal path length i , and external path length e.
Prove that e D i C 2n.
B.5-6 ?
Let us associate a “weight” w.x/ D 2!d with each leaf x of depth d in a binary
tree T , and let L be the set of leaves of T . Prove that Px2L w.x/ # 1. (This is
known as the Kraft inequality.)
B.5-7 ?
Show that if L $ 2, then every binary tree with L leaves contains a subtree having
between L=3 and 2L=3 leaves, inclusive.

Problems

B-1 Graph coloring
Given an undirected graph G D .V; E/, a k-coloring of G is a function c W V !
f0; 1; : : : ; k " 1g such that c.u/ ¤ c.#/ for every edge .u; #/ 2 E. In other words,
the numbers 0; 1; : : : ; k " 1 represent the k colors, and adjacent vertices must have
different colors.
a. Show that any tree is 2-colorable.
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b. Show that the following are equivalent:
1. G is bipartite.
2. G is 2-colorable.
3. G has no cycles of odd length.

c. Let d be the maximum degree of any vertex in a graph G. Prove that we can
color G with d C 1 colors.

d. Show that if G has O.jV j/ edges, then we can color G with O.
p

jV j/ colors.

B-2 Friendly graphs
Reword each of the following statements as a theorem about undirected graphs,
and then prove it. Assume that friendship is symmetric but not reflexive.
a. Any group of at least two people contains at least two people with the same

number of friends in the group.
b. Every group of six people contains either at least three mutual friends or at least

three mutual strangers.
c. Any group of people can be partitioned into two subgroups such that at least

half the friends of each person belong to the subgroup of which that person is
not a member.

d. If everyone in a group is the friend of at least half the people in the group, then
the group can be seated around a table in such a way that everyone is seated
between two friends.

B-3 Bisecting trees
Many divide-and-conquer algorithms that operate on graphs require that the graph
be bisected into two nearly equal-sized subgraphs, which are induced by a partition
of the vertices. This problem investigates bisections of trees formed by removing a
small number of edges. We require that whenever two vertices end up in the same
subtree after removing edges, then they must be in the same partition.
a. Show that we can partition the vertices of any n-vertex binary tree into two

sets A and B , such that jAj # 3n=4 and jBj # 3n=4, by removing a single
edge.

b. Show that the constant 3=4 in part (a) is optimal in the worst case by giving
an example of a simple binary tree whose most evenly balanced partition upon
removal of a single edge has jAj D 3n=4.
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c. Show that by removing at most O.lg n/ edges, we can partition the vertices
of any n-vertex binary tree into two sets A and B such that jAj D bn=2c
and jBj D dn=2e.

Appendix notes

G. Boole pioneered the development of symbolic logic, and he introduced many of
the basic set notations in a book published in 1854. Modern set theory was created
by G. Cantor during the period 1874–1895. Cantor focused primarily on sets of
infinite cardinality. The term “function” is attributed to G. W. Leibniz, who used it
to refer to several kinds of mathematical formulas. His limited definition has been
generalized many times. Graph theory originated in 1736, when L. Euler proved
that it was impossible to cross each of the seven bridges in the city of Königsberg
exactly once and return to the starting point.

The book by Harary [160] provides a useful compendium of many definitions
and results from graph theory.



C Counting and Probability

This appendix reviews elementary combinatorics and probability theory. If you
have a good background in these areas, you may want to skim the beginning of this
appendix lightly and concentrate on the later sections. Most of this book’s chapters
do not require probability, but for some chapters it is essential.

Section C.1 reviews elementary results in counting theory, including standard
formulas for counting permutations and combinations. The axioms of probability
and basic facts concerning probability distributions form Section C.2. Random
variables are introduced in Section C.3, along with the properties of expectation
and variance. Section C.4 investigates the geometric and binomial distributions
that arise from studying Bernoulli trials. The study of the binomial distribution
continues in Section C.5, an advanced discussion of the “tails” of the distribution.

C.1 Counting

Counting theory tries to answer the question “How many?” without actually enu-
merating all the choices. For example, we might ask, “How many different n-bit
numbers are there?” or “How many orderings of n distinct elements are there?” In
this section, we review the elements of counting theory. Since some of the material
assumes a basic understanding of sets, you might wish to start by reviewing the
material in Section B.1.

Rules of sum and product
We can sometimes express a set of items that we wish to count as a union of disjoint
sets or as a Cartesian product of sets.

The rule of sum says that the number of ways to choose one element from one
of two disjoint sets is the sum of the cardinalities of the sets. That is, if A and B
are two finite sets with no members in common, then jA [ Bj D jAj C jBj, which
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follows from equation (B.3). For example, each position on a car’s license plate
is a letter or a digit. The number of possibilities for each position is therefore
26 C 10 D 36, since there are 26 choices if it is a letter and 10 choices if it is a
digit.

The rule of product says that the number of ways to choose an ordered pair is the
number of ways to choose the first element times the number of ways to choose the
second element. That is, if A and B are two finite sets, then jA ( Bj D jAj ! jBj,
which is simply equation (B.4). For example, if an ice-cream parlor offers 28
flavors of ice cream and 4 toppings, the number of possible sundaes with one scoop
of ice cream and one topping is 28 ! 4 D 112.

Strings
A string over a finite set S is a sequence of elements of S . For example, there are 8
binary strings of length 3:
000; 001; 010; 011; 100; 101; 110; 111 :

We sometimes call a string of length k a k-string. A substring s0 of a string s
is an ordered sequence of consecutive elements of s. A k-substring of a string
is a substring of length k. For example, 010 is a 3-substring of 01101001 (the
3-substring that begins in position 4), but 111 is not a substring of 01101001.

We can view a k-string over a set S as an element of the Cartesian product Sk

of k-tuples; thus, there are jS jk strings of length k. For example, the number of
binary k-strings is 2k . Intuitively, to construct a k-string over an n-set, we have n
ways to pick the first element; for each of these choices, we have n ways to pick the
second element; and so forth k times. This construction leads to the k-fold product
n ! n ! ! ! n D nk as the number of k-strings.

Permutations
A permutation of a finite set S is an ordered sequence of all the elements of S ,
with each element appearing exactly once. For example, if S D fa; b; cg, then S
has 6 permutations:
abc; acb; bac; bca; cab; cba :

There are nŠ permutations of a set of n elements, since we can choose the first
element of the sequence in n ways, the second in n " 1 ways, the third in n " 2
ways, and so on.

A k-permutation of S is an ordered sequence of k elements of S , with no ele-
ment appearing more than once in the sequence. (Thus, an ordinary permutation is
an n-permutation of an n-set.) The twelve 2-permutations of the set fa; b; c; dg are
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ab; ac; ad; ba; bc; bd; ca; cb; cd; da; db; dc :

The number of k-permutations of an n-set is

n.n " 1/.n " 2/ ! ! ! .n " k C 1/ D
nŠ

.n " k/Š
; (C.1)

since we have n ways to choose the first element, n " 1 ways to choose the second
element, and so on, until we have selected k elements, the last being a selection
from the remaining n " k C 1 elements.

Combinations
A k-combination of an n-set S is simply a k-subset of S . For example, the 4-set
fa; b; c; dg has six 2-combinations:
ab; ac; ad; bc; bd; cd :

(Here we use the shorthand of denoting the 2-subset fa; bg by ab, and so on.)
We can construct a k-combination of an n-set by choosing k distinct (different)
elements from the n-set. The order in which we select the elements does not matter.

We can express the number of k-combinations of an n-set in terms of the number
of k-permutations of an n-set. Every k-combination has exactly kŠ permutations
of its elements, each of which is a distinct k-permutation of the n-set. Thus, the
number of k-combinations of an n-set is the number of k-permutations divided
by kŠ; from equation (C.1), this quantity is

nŠ

kŠ .n " k/Š
: (C.2)

For k D 0, this formula tells us that the number of ways to choose 0 elements from
an n-set is 1 (not 0), since 0Š D 1.

Binomial coefficients
The notation #

n
k

$ (read “n choose k”) denotes the number of k-combinations of
an n-set. From equation (C.2), we have
 

n

k

!

D
nŠ

kŠ .n " k/Š
:

This formula is symmetric in k and n " k:
 

n

k

!

D

 
n

n " k

!

: (C.3)
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These numbers are also known as binomial coefficients, due to their appearance in
the binomial expansion:

.x C y/n D
nX

kD0

 
n

k

!

xkyn!k : (C.4)

A special case of the binomial expansion occurs when x D y D 1:

2n D
nX

kD0

 
n

k

!

:

This formula corresponds to counting the 2n binary n-strings by the number of 1s
they contain: #

n
k

$ binary n-strings contain exactly k 1s, since we have #
n
k

$ ways to
choose k out of the n positions in which to place the 1s.

Many identities involve binomial coefficients. The exercises at the end of this
section give you the opportunity to prove a few.

Binomial bounds
We sometimes need to bound the size of a binomial coefficient. For 1 # k # n,
we have the lower bound
 

n

k

!

D
n.n " 1/ ! ! ! .n " k C 1/

k.k " 1/ ! ! ! 1

D
&n

k

' !
n " 1

k " 1

"
! ! !

!
n " k C 1

1

"

$
&n

k

'k

:

Taking advantage of the inequality kŠ $ .k=e/k derived from Stirling’s approxi-
mation (3.18), we obtain the upper bounds
 

n

k

!

D
n.n " 1/ ! ! ! .n " k C 1/

k.k " 1/ ! ! ! 1

#
nk

kŠ

#
&en

k

'k

: (C.5)

For all integers k such that 0 # k # n, we can use induction (see Exercise C.1-12)
to prove the bound
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n

k

!

#
nn

kk.n " k/n!k
; (C.6)

where for convenience we assume that 00 D 1. For k D %n, where 0 # % # 1, we
can rewrite this bound as
 

n

%n

!

#
nn

.%n/"n..1 " %/n/.1!"/n

D

 !
1

%

"" !
1

1 " %

"1!"
!n

D 2n H."/ ;

where
H.%/ D "% lg % " .1 " %/ lg.1 " %/ (C.7)
is the (binary) entropy function and where, for convenience, we assume that
0 lg 0 D 0, so that H.0/ D H.1/ D 0.

Exercises
C.1-1
How many k-substrings does an n-string have? (Consider identical k-substrings at
different positions to be different.) How many substrings does an n-string have in
total?
C.1-2
An n-input, m-output boolean function is a function from fTRUE; FALSEgn to
fTRUE; FALSEgm. How many n-input, 1-output boolean functions are there? How
many n-input, m-output boolean functions are there?
C.1-3
In how many ways can n professors sit around a circular conference table? Con-
sider two seatings to be the same if one can be rotated to form the other.
C.1-4
In how many ways can we choose three distinct numbers from the set f1; 2; : : : ; 99g
so that their sum is even?
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C.1-5
Prove the identity
 

n

k

!

D
n

k

 
n " 1

k " 1

!

(C.8)

for 0 < k # n.
C.1-6
Prove the identity
 

n

k

!

D
n

n " k

 
n " 1

k

!

for 0 # k < n.
C.1-7
To choose k objects from n, you can make one of the objects distinguished and
consider whether the distinguished object is chosen. Use this approach to prove
that 

n

k

!

D

 
n " 1

k

!

C

 
n " 1

k " 1

!

:

C.1-8
Using the result of Exercise C.1-7, make a table for n D 0; 1; : : : ; 6 and 0 # k # n
of the binomial coefficients #

n
k

$ with #
0
0

$ at the top, #
1
0

$ and #
1
1

$ on the next line, and
so forth. Such a table of binomial coefficients is called Pascal’s triangle.
C.1-9
Prove that

nX

iD1

i D

 
n C 1

2

!

:

C.1-10
Show that for any integers n $ 0 and 0 # k # n, the expression #

n
k

$ achieves its
maximum value when k D bn=2c or k D dn=2e.
C.1-11 ?
Argue that for any integers n $ 0, j $ 0, k $ 0, and j C k # n,
 

n

j C k

!

#

 
n

j

! 
n " j

k

!

: (C.9)
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Provide both an algebraic proof and an argument based on a method for choosing
j C k items out of n. Give an example in which equality does not hold.
C.1-12 ?
Use induction on all integers k such that 0 # k # n=2 to prove inequality (C.6),
and use equation (C.3) to extend it to all integers k such that 0 # k # n.
C.1-13 ?
Use Stirling’s approximation to prove that
 

2n

n

!

D
22n

p
&n

.1 C O.1=n// : (C.10)

C.1-14 ?
By differentiating the entropy function H.%/, show that it achieves its maximum
value at % D 1=2. What is H.1=2/?
C.1-15 ?
Show that for any integer n $ 0,

nX

kD0

 
n

k

!

k D n2n!1 : (C.11)

C.2 Probability

Probability is an essential tool for the design and analysis of probabilistic and ran-
domized algorithms. This section reviews basic probability theory.

We define probability in terms of a sample space S , which is a set whose ele-
ments are called elementary events. We can think of each elementary event as a
possible outcome of an experiment. For the experiment of flipping two distinguish-
able coins, with each individual flip resulting in a head (H) or a tail (T), we can view
the sample space as consisting of the set of all possible 2-strings over fH; Tg:
S D fHH; HT; TH; TTg :
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An event is a subset1 of the sample space S . For example, in the experiment of
flipping two coins, the event of obtaining one head and one tail is fHT; THg. The
event S is called the certain event, and the event ; is called the null event. We say
that two events A and B aremutually exclusive if A \ B D ;. We sometimes treat
an elementary event s 2 S as the event fsg. By definition, all elementary events
are mutually exclusive.

Axioms of probability
A probability distribution Pr fg on a sample space S is a mapping from events of S
to real numbers satisfying the following probability axioms:
1. Pr fAg $ 0 for any event A.
2. Pr fSg D 1.
3. Pr fA [ Bg D Pr fAg C Pr fBg for any two mutually exclusive events A

and B . More generally, for any (finite or countably infinite) sequence of events
A1; A2; : : : that are pairwise mutually exclusive,

Pr
(
[

i

Ai

)

D
X

i

Pr fAig :

We call Pr fAg the probability of the event A. We note here that axiom 2 is a
normalization requirement: there is really nothing fundamental about choosing 1
as the probability of the certain event, except that it is natural and convenient.

Several results follow immediately from these axioms and basic set theory (see
Section B.1). The null event ; has probability Pr f;g D 0. If A & B , then
Pr fAg # Pr fBg. Using A to denote the event S " A (the complement of A),
we have Pr ˚A(

D 1 " Pr fAg. For any two events A and B ,
Pr fA [ Bg D Pr fAg C Pr fBg " Pr fA \ Bg (C.12)

# Pr fAg C Pr fBg : (C.13)

1For a general probability distribution, there may be some subsets of the sample space S that are not
considered to be events. This situation usually arises when the sample space is uncountably infinite.
The main requirement for what subsets are events is that the set of events of a sample space be closed
under the operations of taking the complement of an event, forming the union of a finite or countable
number of events, and taking the intersection of a finite or countable number of events. Most of
the probability distributions we shall see are over finite or countable sample spaces, and we shall
generally consider all subsets of a sample space to be events. A notable exception is the continuous
uniform probability distribution, which we shall see shortly.
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In our coin-flipping example, suppose that each of the four elementary events
has probability 1=4. Then the probability of getting at least one head is
Pr fHH; HT; THg D Pr fHHg C Pr fHTg C Pr fTHg

D 3=4 :

Alternatively, since the probability of getting strictly less than one head is
Pr fTTg D 1=4, the probability of getting at least one head is 1 " 1=4 D 3=4.

Discrete probability distributions
A probability distribution is discrete if it is defined over a finite or countably infinite
sample space. Let S be the sample space. Then for any event A,
Pr fAg D

X

s2A

Pr fsg ;

since elementary events, specifically those in A, are mutually exclusive. If S is
finite and every elementary event s 2 S has probability
Pr fsg D 1= jS j ;

then we have the uniform probability distribution on S . In such a case the experi-
ment is often described as “picking an element of S at random.”

As an example, consider the process of flipping a fair coin, one for which the
probability of obtaining a head is the same as the probability of obtaining a tail, that
is, 1=2. If we flip the coin n times, we have the uniform probability distribution
defined on the sample space S D fH; Tgn, a set of size 2n. We can represent each
elementary event in S as a string of length n over fH; Tg, each string occurring with
probability 1=2n. The event
A D fexactly k heads and exactly n " k tails occurg
is a subset of S of size jAj D

#
n
k

$, since #
n
k

$ strings of length n over fH; Tg contain
exactly k H’s. The probability of event A is thus Pr fAg D

#
n
k

$
=2n.

Continuous uniform probability distribution
The continuous uniform probability distribution is an example of a probability
distribution in which not all subsets of the sample space are considered to be
events. The continuous uniform probability distribution is defined over a closed
interval Œa; b" of the reals, where a < b. Our intuition is that each point in the in-
terval Œa; b" should be “equally likely.” There are an uncountable number of points,
however, so if we give all points the same finite, positive probability, we cannot si-
multaneously satisfy axioms 2 and 3. For this reason, we would like to associate a
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probability only with some of the subsets of S , in such a way that the axioms are
satisfied for these events.

For any closed interval Œc; d ", where a # c # d # b, the continuous uniform
probability distribution defines the probability of the event Œc; d " to be

Pr fŒc; d "g D
d " c

b " a
:

Note that for any point x D Œx; x", the probability of x is 0. If we remove
the endpoints of an interval Œc; d ", we obtain the open interval .c; d/. Since
Œc; d " D Œc; c" [ .c; d/ [ Œd; d ", axiom 3 gives us Pr fŒc; d "g D Pr f.c; d/g. Gen-
erally, the set of events for the continuous uniform probability distribution contains
any subset of the sample space Œa; b" that can be obtained by a finite or countable
union of open and closed intervals, as well as certain more complicated sets.

Conditional probability and independence
Sometimes we have some prior partial knowledge about the outcome of an exper-
iment. For example, suppose that a friend has flipped two fair coins and has told
you that at least one of the coins showed a head. What is the probability that both
coins are heads? The information given eliminates the possibility of two tails. The
three remaining elementary events are equally likely, so we infer that each occurs
with probability 1=3. Since only one of these elementary events shows two heads,
the answer to our question is 1=3.

Conditional probability formalizes the notion of having prior partial knowledge
of the outcome of an experiment. The conditional probability of an event A given
that another event B occurs is defined to be
Pr fA j Bg D

Pr fA \ Bg
Pr fBg

(C.14)

whenever Pr fBg ¤ 0. (We read “Pr fA j Bg” as “the probability of A given B .”)
Intuitively, since we are given that event B occurs, the event that A also occurs
is A \ B . That is, A \ B is the set of outcomes in which both A and B occur.
Because the outcome is one of the elementary events in B , we normalize the prob-
abilities of all the elementary events in B by dividing them by Pr fBg, so that they
sum to 1. The conditional probability of A given B is, therefore, the ratio of the
probability of event A \ B to the probability of event B . In the example above, A
is the event that both coins are heads, and B is the event that at least one coin is a
head. Thus, Pr fA j Bg D .1=4/=.3=4/ D 1=3.

Two events are independent if
Pr fA \ Bg D Pr fAg Pr fBg ; (C.15)
which is equivalent, if Pr fBg ¤ 0, to the condition
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Pr fA j Bg D Pr fAg :

For example, suppose that we flip two fair coins and that the outcomes are inde-
pendent. Then the probability of two heads is .1=2/.1=2/ D 1=4. Now suppose
that one event is that the first coin comes up heads and the other event is that the
coins come up differently. Each of these events occurs with probability 1=2, and
the probability that both events occur is 1=4; thus, according to the definition of
independence, the events are independent—even though you might think that both
events depend on the first coin. Finally, suppose that the coins are welded to-
gether so that they both fall heads or both fall tails and that the two possibilities are
equally likely. Then the probability that each coin comes up heads is 1=2, but the
probability that they both come up heads is 1=2 ¤ .1=2/.1=2/. Consequently, the
event that one comes up heads and the event that the other comes up heads are not
independent.

A collection A1; A2; : : : ; An of events is said to be pairwise independent if
Pr fAi \ Aj g D Pr fAig Pr fAj g

for all 1 # i < j # n. We say that the events of the collection are (mutually)
independent if every k-subset Ai1 ; Ai2 ; : : : ; Aik of the collection, where 2 # k # n
and 1 # i1 < i2 < ! ! ! < ik # n, satisfies
Pr fAi1 \ Ai2 \ ! ! ! \ Aikg D Pr fAi1g Pr fAi2g ! ! ! Pr fAik g :

For example, suppose we flip two fair coins. Let A1 be the event that the first coin
is heads, let A2 be the event that the second coin is heads, and let A3 be the event
that the two coins are different. We have

Pr fA1g D 1=2 ;

Pr fA2g D 1=2 ;

Pr fA3g D 1=2 ;

Pr fA1 \ A2g D 1=4 ;

Pr fA1 \ A3g D 1=4 ;

Pr fA2 \ A3g D 1=4 ;

Pr fA1 \ A2 \ A3g D 0 :

Since for 1 # i < j # 3, we have Pr fAi \ Aj g D Pr fAig Pr fAj g D 1=4, the
events A1, A2, and A3 are pairwise independent. The events are not mutually inde-
pendent, however, because Pr fA1 \ A2 \ A3g D 0 and Pr fA1g Pr fA2g Pr fA3g D
1=8 ¤ 0.
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Bayes’s theorem
From the definition of conditional probability (C.14) and the commutative law
A \ B D B \ A, it follows that for two events A and B , each with nonzero
probability,
Pr fA \ Bg D Pr fBg Pr fA j Bg (C.16)

D Pr fAg Pr fB j Ag :

Solving for Pr fA j Bg, we obtain
Pr fA j Bg D

Pr fAg Pr fB j Ag
Pr fBg

; (C.17)
which is known as Bayes’s theorem. The denominator Pr fBg is a normalizing
constant, which we can reformulate as follows. Since B D .B \ A/ [ .B \ A/,
and since B \ A and B \ A are mutually exclusive events,
Pr fBg D Pr fB \ Ag C Pr ˚B \ A

(

D Pr fAg Pr fB j Ag C Pr ˚A( Pr ˚B j A
(

:

Substituting into equation (C.17), we obtain an equivalent form of Bayes’s theo-
rem:
Pr fA j Bg D

Pr fAg Pr fB j Ag
Pr fAg Pr fB j Ag C Pr ˚A( Pr ˚B j A

( : (C.18)

Bayes’s theorem can simplify the computing of conditional probabilities. For
example, suppose that we have a fair coin and a biased coin that always comes up
heads. We run an experiment consisting of three independent events: we choose
one of the two coins at random, we flip that coin once, and then we flip it again.
Suppose that the coin we have chosen comes up heads both times. What is the
probability that it is biased?

We solve this problem using Bayes’s theorem. Let A be the event that we choose
the biased coin, and let B be the event that the chosen coin comes up heads both
times. We wish to determine Pr fA j Bg. We have Pr fAg D 1=2, Pr fB j Ag D 1,
Pr ˚A(

D 1=2, and Pr ˚B j A
(

D 1=4; hence,

Pr fA j Bg D
.1=2/ ! 1

.1=2/ ! 1 C .1=2/ ! .1=4/

D 4=5 :

Exercises
C.2-1

Professor Guildenstern flips a fair

?
coin twice. What is the probability that Professor Rosencrantz obtains more heads
Professor Rosencrantz flips a fair coin once.

than Professor Guildenstern
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C.2-2
Prove Boole’s inequality: For any finite or countably infinite sequence of events
A1; A2; : : :,
Pr fA1 [ A2 [ ! ! !g # Pr fA1g C Pr fA2g C ! ! ! : (C.19)

C.2-3
Suppose we shuffle a deck of 10 cards, each bearing a distinct number from 1 to 10,
to mix the cards thoroughly. We then remove three cards, one at a time, from the
deck. What is the probability that we select the three cards in sorted (increasing)
order?
C.2-4
Prove that
Pr fA j Bg C Pr ˚A j B

(
D 1 :

C.2-5
Prove that for any collection of events A1; A2; : : : ; An,
Pr fA1 \ A2 \ ! ! ! \ Ang D Pr fA1g ! Pr fA2 j A1g ! Pr fA3 j A1 \ A2g ! ! !

Pr fAn j A1 \ A2 \ ! ! ! \ An!1g :

C.2-6 ?
Describe a procedure that takes as input two integers a and b such that 0 < a < b
and, using fair coin flips, produces as output heads with probability a=b and tails
with probability .b " a/=b. Give a bound on the expected number of coin flips,
which should be O.1/. (Hint: Represent a=b in binary.)
C.2-7 ?
Show how to construct a set of n events that are pairwise independent but such that
no subset of k > 2 of them is mutually independent.
C.2-8 ?
Two events A and B are conditionally independent, given C , if
Pr fA \ B j C g D Pr fA j C g ! Pr fB j C g :

Give a simple but nontrivial example of two events that are not independent but are
conditionally independent given a third event.
C.2-9 ?
You are a contestant in a game show in which a prize is hidden behind one of
three curtains. You will win the prize if you select the correct curtain. After you
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have picked one curtain but before the curtain is lifted, the emcee lifts one of the
other curtains, knowing that it will reveal an empty stage, and asks if you would
like to switch from your current selection to the remaining curtain. How would
your chances change if you switch? (This question is the celebrated Monty Hall
problem, named after a game-show host who often presented contestants with just
this dilemma.)
C.2-10 ?
A prison warden has randomly picked one prisoner among three to go free. The
other two will be executed. The guard knows which one will go free but is forbid-
den to give any prisoner information regarding his status. Let us call the prisoners
X , Y , and Z. Prisoner X asks the guard privately which of Y or Z will be exe-
cuted, arguing that since he already knows that at least one of them must die, the
guard won’t be revealing any information about his own status. The guard tells X
that Y is to be executed. Prisoner X feels happier now, since he figures that either
he or prisoner Z will go free, which means that his probability of going free is
now 1=2. Is he right, or are his chances still 1=3? Explain.

C.3 Discrete random variables

A (discrete) random variable X is a function from a finite or countably infinite
sample space S to the real numbers. It associates a real number with each possible
outcome of an experiment, which allows us to work with the probability distribu-
tion induced on the resulting set of numbers. Random variables can also be defined
for uncountably infinite sample spaces, but they raise technical issues that are un-
necessary to address for our purposes. Henceforth, we shall assume that random
variables are discrete.

For a random variable X and a real number x, we define the event X D x to be
fs 2 S W X.s/ D xg; thus,
Pr fX D xg D

X

s2S WX.s/Dx

Pr fsg :

The function
f .x/ D Pr fX D xg

is the probability density function of the random variable X . From the probability
axioms, Pr fX D xg $ 0 and Px Pr fX D xg D 1.

As an example, consider the experiment of rolling a pair of ordinary, 6-sided
dice. There are 36 possible elementary events in the sample space. We assume
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that the probability distribution is uniform, so that each elementary event s 2 S is
equally likely: Pr fsg D 1=36. Define the random variable X to be the maximum of
the two values showing on the dice. We have Pr fX D 3g D 5=36, since X assigns
a value of 3 to 5 of the 36 possible elementary events, namely, .1; 3/, .2; 3/, .3; 3/,
.3; 2/, and .3; 1/.

We often define several random variables on the same sample space. If X and Y
are random variables, the function
f .x; y/ D Pr fX D x and Y D yg

is the joint probability density function of X and Y . For a fixed value y,
Pr fY D yg D

X

x

Pr fX D x and Y D yg ;

and similarly, for a fixed value x,
Pr fX D xg D

X

y

Pr fX D x and Y D yg :

Using the definition (C.14) of conditional probability, we have

Pr fX D x j Y D yg D
Pr fX D x and Y D yg

Pr fY D yg
:

We define two random variables X and Y to be independent if for all x and y, the
events X D x and Y D y are independent or, equivalently, if for all x and y, we
have Pr fX D x and Y D yg D Pr fX D xg Pr fY D yg.

Given a set of random variables defined over the same sample space, we can
define new random variables as sums, products, or other functions of the original
variables.

Expected value of a random variable
The simplest and most useful summary of the distribution of a random variable is
the “average” of the values it takes on. The expected value (or, synonymously,
expectation or mean) of a discrete random variable X is
E ŒX " D

X

x

x ! Pr fX D xg ; (C.20)

which is well defined if the sum is finite or converges absolutely. Sometimes the
expectation of X is denoted by 'X or, when the random variable is apparent from
context, simply by '.

Consider a game in which you flip two fair coins. You earn $3 for each head but
lose $2 for each tail. The expected value of the random variable X representing
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your earnings is
E ŒX " D 6 ! Pr f2 H’sg C 1 ! Pr f1 H, 1 Tg " 4 ! Pr f2 T’sg

D 6.1=4/ C 1.1=2/ " 4.1=4/

D 1 :

The expectation of the sum of two random variables is the sum of their expecta-
tions, that is,
E ŒX C Y " D E ŒX " C E ŒY " ; (C.21)
whenever E ŒX " and E ŒY " are defined. We call this property linearity of expecta-
tion, and it holds even if X and Y are not independent. It also extends to finite and
absolutely convergent summations of expectations. Linearity of expectation is the
key property that enables us to perform probabilistic analyses by using indicator
random variables (see Section 5.2).

If X is any random variable, any function g.x/ defines a new random vari-
able g.X/. If the expectation of g.X/ is defined, then
E Œg.X/" D

X

x

g.x/ ! Pr fX D xg :

Letting g.x/ D ax, we have for any constant a,
E ŒaX " D aE ŒX " : (C.22)
Consequently, expectations are linear: for any two random variables X and Y and
any constant a,
E ŒaX C Y " D aE ŒX " C E ŒY " : (C.23)

When two random variables X and Y are independent and each has a defined
expectation,
E ŒXY " D

X

x

X

y

xy ! Pr fX D x and Y D yg

D
X

x

X

y

xy ! Pr fX D xg Pr fY D yg

D

 
X

x

x ! Pr fX D xg

! 
X

y

y ! Pr fY D yg

!

D E ŒX " E ŒY " :

In general, when n random variables X1; X2; : : : ; Xn are mutually independent,
E ŒX1X2 ! ! ! Xn" D E ŒX1" E ŒX2" ! ! ! E ŒXn" : (C.24)
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When a random variable X takes on values from the set of natural numbers
N D f0; 1; 2; : : :g, we have a nice formula for its expectation:

E ŒX " D
1X

iD0

i ! Pr fX D ig

D
1X

iD0

i.Pr fX $ ig " Pr fX $ i C 1g/

D
1X

iD1

Pr fX $ ig ; (C.25)

since each term Pr fX $ ig is added in i times and subtracted out i " 1 times
(except Pr fX $ 0g, which is added in 0 times and not subtracted out at all).

When we apply a convex function f .x/ to a random variable X , Jensen’s in-
equality gives us
E Œf .X/" $ f .E ŒX "/ ; (C.26)
provided that the expectations exist and are finite. (A function f .x/ is convex
if for all x and y and for all 0 # % # 1, we have f .%x C .1 " %/y/ #
%f .x/ C .1 " %/f .y/.)

Variance and standard deviation
The expected value of a random variable does not tell us how “spread out” the
variable’s values are. For example, if we have random variables X and Y for which
Pr fX D 1=4g D Pr fX D 3=4g D 1=2 and Pr fY D 0g D Pr fY D 1g D 1=2,
then both E ŒX " and E ŒY " are 1=2, yet the actual values taken on by Y are farther
from the mean than the actual values taken on by X .

The notion of variance mathematically expresses how far from the mean a ran-
dom variable’s values are likely to be. The variance of a random variable X with
mean E ŒX " is
Var ŒX " D E )

.X " E ŒX "/2
*

D E )
X2 " 2XE ŒX " C E2 ŒX "

*

D E )
X2

*
" 2E ŒXE ŒX "" C E2 ŒX "

D E )
X2

*
" 2E2 ŒX " C E2 ŒX "

D E )
X2

*
" E2 ŒX " : (C.27)

To justify the equality E ŒE2 ŒX "" D E2 ŒX ", note that because E ŒX " is a real num-
ber and not a random variable, so is E2 ŒX ". The equality E ŒXE ŒX "" D E2 ŒX "
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follows from equation (C.22), with a D E ŒX ". Rewriting equation (C.27) yields
an expression for the expectation of the square of a random variable:
E )

X2
*

D Var ŒX " C E2 ŒX " : (C.28)
The variance of a random variable X and the variance of aX are related (see

Exercise C.3-10):
Var ŒaX " D a2Var ŒX " :

When X and Y are independent random variables,
Var ŒX C Y " D Var ŒX " C Var ŒY " :

In general, if n random variables X1; X2; : : : ; Xn are pairwise independent, then

Var
"

nX

iD1

Xi

#

D
nX

iD1

Var ŒXi " : (C.29)

The standard deviation of a random variable X is the nonnegative square root
of the variance of X . The standard deviation of a random variable X is sometimes
denoted (X or simply ( when the random variable X is understood from context.
With this notation, the variance of X is denoted (2.

Exercises
C.3-1
Suppose we roll two ordinary, 6-sided dice. What is the expectation of the sum
of the two values showing? What is the expectation of the maximum of the two
values showing?
C.3-2
An array AŒ1 : : n" contains n distinct numbers that are randomly ordered, with each
permutation of the n numbers being equally likely. What is the expectation of the
index of the maximum element in the array? What is the expectation of the index
of the minimum element in the array?
C.3-3
A carnival game consists of three dice in a cage. A player can bet a dollar on any
of the numbers 1 through 6. The cage is shaken, and the payoff is as follows. If the
player’s number doesn’t appear on any of the dice, he loses his dollar. Otherwise,
if his number appears on exactly k of the three dice, for k D 1; 2; 3, he keeps his
dollar and wins k more dollars. What is his expected gain from playing the carnival
game once?
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C.3-4
Argue that if X and Y are nonnegative random variables, then
E Œmax.X; Y /" # E ŒX " C E ŒY " :

C.3-5 ?
Let X and Y be independent random variables. Prove that f .X/ and g.Y / are
independent for any choice of functions f and g.
C.3-6 ?
Let X be a nonnegative random variable, and suppose that E ŒX " is well defined.
ProveMarkov’s inequality:
Pr fX $ tg # E ŒX " =t (C.30)
for all t > 0.
C.3-7 ?
Let S be a sample space, and let X and X 0 be random variables such that
X.s/ $ X 0.s/ for all s 2 S . Prove that for any real constant t ,
Pr fX $ tg $ Pr fX 0 $ tg :

C.3-8
Which is larger: the expectation of the square of a random variable, or the square
of its expectation?
C.3-9
Show that for any random variable X that takes on only the values 0 and 1, we have
Var ŒX " D E ŒX " E Œ1 " X ".
C.3-10
Prove that Var ŒaX " D a2Var ŒX " from the definition (C.27) of variance.

C.4 The geometric and binomial distributions

We can think of a coin flip as an instance of a Bernoulli trial, which is an experi-
ment with only two possible outcomes: success, which occurs with probability p,
and failure, which occurs with probability q D 1"p. When we speak of Bernoulli
trials collectively, we mean that the trials are mutually independent and, unless we
specifically say otherwise, that each has the same probability p for success. Two
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Figure C.1 A geometric distribution with probability p D 1=3 of success and a probability
q D 1 " p of failure. The expectation of the distribution is 1=p D 3.

important distributions arise from Bernoulli trials: the geometric distribution and
the binomial distribution.

The geometric distribution
Suppose we have a sequence of Bernoulli trials, each with a probability p of suc-
cess and a probability q D 1"p of failure. How many trials occur before we obtain
a success? Let us define the random variable X be the number of trials needed to
obtain a success. Then X has values in the range f1; 2; : : :g, and for k $ 1,
Pr fX D kg D qk!1p ; (C.31)
since we have k " 1 failures before the one success. A probability distribution sat-
isfying equation (C.31) is said to be a geometric distribution. Figure C.1 illustrates
such a distribution.
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Assuming that q < 1, we can calculate the expectation of a geometric distribu-
tion using identity (A.8):

E ŒX " D
1X

kD1

kqk!1p

D
p

q

1X

kD0

kqk

D
p

q
!

q

.1 " q/2

D
p

q
!

q

p2

D 1=p : (C.32)
Thus, on average, it takes 1=p trials before we obtain a success, an intuitive result.
The variance, which can be calculated similarly, but using Exercise A.1-3, is
Var ŒX " D q=p2 : (C.33)

As an example, suppose we repeatedly roll two dice until we obtain either a
seven or an eleven. Of the 36 possible outcomes, 6 yield a seven and 2 yield an
eleven. Thus, the probability of success is p D 8=36 D 2=9, and we must roll
1=p D 9=2 D 4:5 times on average to obtain a seven or eleven.

The binomial distribution
How many successes occur during n Bernoulli trials, where a success occurs with
probability p and a failure with probability q D 1 " p? Define the random vari-
able X to be the number of successes in n trials. Then X has values in the range
f0; 1; : : : ; ng, and for k D 0; 1; : : : ; n,

Pr fX D kg D

 
n

k

!

pkqn!k ; (C.34)

since there are #
n
k

$ ways to pick which k of the n trials are successes, and the
probability that each occurs is pkqn!k . A probability distribution satisfying equa-
tion (C.34) is said to be a binomial distribution. For convenience, we define the
family of binomial distributions using the notation

b.kI n; p/ D

 
n

k

!

pk.1 " p/n!k : (C.35)

Figure C.2 illustrates a binomial distribution. The name “binomial” comes from the
right-hand side of equation (C.34) being the kth term of the expansion of .p Cq/n.
Consequently, since p C q D 1,
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k0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

b (k; 15, 1/3)

Figure C.2 The binomial distribution b.kI 15; 1=3/ resulting from n D 15 Bernoulli trials, each
with probability p D 1=3 of success. The expectation of the distribution is np D 5.

nX

kD0

b.kI n; p/ D 1 ; (C.36)

as axiom 2 of the probability axioms requires.
We can compute the expectation of a random variable having a binomial distri-

bution from equations (C.8) and (C.36). Let X be a random variable that follows
the binomial distribution b.kI n; p/, and let q D 1 " p. By the definition of expec-
tation, we have

E ŒX " D
nX

kD0

k ! Pr fX D kg

D
nX

kD0

k ! b.kI n; p/

D
nX

kD1

k

 
n

k

!

pkqn!k

D np

nX

kD1

 
n " 1

k " 1

!

pk!1qn!k (by equation (C.8))

D np

n!1X

kD0

 
n " 1

k

!

pkq.n!1/!k
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D np

n!1X

kD0

b.kI n " 1; p/

D np (by equation (C.36)) . (C.37)
By using the linearity of expectation, we can obtain the same result with sub-

stantially less algebra. Let Xi be the random variable describing the number of
successes in the i th trial. Then E ŒXi " D p ! 1 C q ! 0 D p, and by linearity of
expectation (equation (C.21)), the expected number of successes for n trials is

E ŒX " D E
"

nX

iD1

Xi

#

D
nX

iD1

E ŒXi "

D
nX

iD1

p

D np : (C.38)
We can use the same approach to calculate the variance of the distribution. Using

equation (C.27), we have Var ŒXi " D E ŒX2
i " " E2 ŒXi ". Since Xi only takes on the

values 0 and 1, we have X2
i D Xi , which implies E ŒX2

i " D E ŒXi " D p. Hence,
Var ŒXi " D p " p2 D p.1 " p/ D pq : (C.39)

To compute the variance of X , we take advantage of the independence of the n
trials; thus, by equation (C.29),

Var ŒX " D Var
"

nX

iD1

Xi

#

D
nX

iD1

Var ŒXi "

D
nX

iD1

pq

D npq : (C.40)
As Figure C.2 shows, the binomial distribution b.kI n; p/ increases with k until

it reaches the mean np, and then it decreases. We can prove that the distribution
always behaves in this manner by looking at the ratio of successive terms:
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b.kI n; p/

b.k " 1I n; p/
D

#
n
k

$
pkqn!k

#
n

k!1

$
pk!1qn!kC1

D
nŠ.k " 1/Š.n " k C 1/Šp

kŠ.n " k/ŠnŠq

D
.n " k C 1/p

kq
(C.41)

D 1 C
.n C 1/p " k

kq
:

This ratio is greater than 1 precisely when .n C 1/p " k is positive. Conse-
quently, b.kI n; p/ > b.k " 1I n; p/ for k < .n C 1/p (the distribution increases),
and b.kI n; p/ < b.k " 1I n; p/ for k > .n C 1/p (the distribution decreases).
If k D .n C 1/p is an integer, then b.kI n; p/ D b.k " 1I n; p/, and so the distri-
bution then has two maxima: at k D .nC1/p and at k"1 D .nC1/p"1 D np " q.
Otherwise, it attains a maximum at the unique integer k that lies in the range
np " q < k < .n C 1/p.

The following lemma provides an upper bound on the binomial distribution.

Lemma C.1
Let n $ 0, let 0 < p < 1, let q D 1 " p, and let 0 # k # n. Then

b.kI n; p/ #
&np

k

'k & nq

n " k

'n!k

:

Proof Using equation (C.6), we have

b.kI n; p/ D

 
n

k

!

pkqn!k

#
&n

k

'k & n

n " k

'n!k

pkqn!k

D
&np

k

'k & nq

n " k

'n!k

:

Exercises
C.4-1
Verify axiom 2 of the probability axioms for the geometric distribution.
C.4-2
How many times on average must we flip 6 fair coins before we obtain 3 heads
and 3 tails?
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C.4-3
Show that b.kI n; p/ D b.n " kI n; q/, where q D 1 " p.
C.4-4
Show that value of the maximum of the binomial distribution b.kI n; p/ is approx-
imately 1=

p
2&npq, where q D 1 " p.

C.4-5 ?
Show that the probability of no successes in n Bernoulli trials, each with probability
p D 1=n, is approximately 1=e. Show that the probability of exactly one success
is also approximately 1=e.
C.4-6 ?
Professor Rosencrantz flips a fair coin n times, and so does Professor Guildenstern.
Show that the probability that they get the same number of heads is #

2n
n

$
=4n. (Hint:

For Professor Rosencrantz, call a head a success; for Professor Guildenstern, call
a tail a success.) Use your argument to verify the identity

nX

kD0

 
n

k

!2

D

 
2n

n

!

:

C.4-7 ?
Show that for 0 # k # n,
b.kI n; 1=2/ # 2n H.k=n/!n ;

where H.x/ is the entropy function (C.7).
C.4-8 ?
Consider n Bernoulli trials, where for i D 1; 2; : : : ; n, the i th trial has probabil-
ity pi of success, and let X be the random variable denoting the total number of
successes. Let p $ pi for all i D 1; 2; : : : ; n. Prove that for 1 # k # n,

Pr fX < kg $
k!1X

iD0

b.i I n; p/ :

C.4-9 ?
Let X be the random variable for the total number of successes in a set A of n
Bernoulli trials, where the i th trial has a probability pi of success, and let X 0

be the random variable for the total number of successes in a second set A0 of n
Bernoulli trials, where the i th trial has a probability p0

i $ pi of success. Prove that
for 0 # k # n,



1208 Appendix C Counting and Probability

Pr fX 0 $ kg $ Pr fX $ kg :

(Hint: Show how to obtain the Bernoulli trials in A0 by an experiment involving
the trials of A, and use the result of Exercise C.3-7.)

? C.5 The tails of the binomial distribution

The probability of having at least, or at most, k successes in n Bernoulli trials,
each with probability p of success, is often of more interest than the probability of
having exactly k successes. In this section, we investigate the tails of the binomial
distribution: the two regions of the distribution b.kI n; p/ that are far from the
mean np. We shall prove several important bounds on (the sum of all terms in) a
tail.

We first provide a bound on the right tail of the distribution b.kI n; p/. We can
determine bounds on the left tail by inverting the roles of successes and failures.

Theorem C.2
Consider a sequence of n Bernoulli trials, where success occurs with probability p.
Let X be the random variable denoting the total number of successes. Then for
0 # k # n, the probability of at least k successes is

Pr fX $ kg D
nX

iDk

b.i I n; p/

#

 
n

k

!

pk :

Proof For S & f1; 2; : : : ; ng, we let AS denote the event that the i th trial is a
success for every i 2 S . Clearly Pr fAS g D pk if jS j D k. We have
Pr fX $ kg D Pr fthere exists S & f1; 2; : : : ; ng W jS j D k and ASg

D Pr
+ [

S#f1;2;:::;ngWjS jDk

AS

,

#
X

S#f1;2;:::;ngWjS jDk

Pr fASg (by inequality (C.19))

D

 
n

k

!

pk :
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The following corollary restates the theorem for the left tail of the binomial
distribution. In general, we shall leave it to you to adapt the proofs from one tail to
the other.

Corollary C.3
Consider a sequence of n Bernoulli trials, where success occurs with probabil-
ity p. If X is the random variable denoting the total number of successes, then for
0 # k # n, the probability of at most k successes is

Pr fX # kg D
kX

iD0

b.i I n; p/

#

 
n

n " k

!

.1 " p/n!k

D

 
n

k

!

.1 " p/n!k :

Our next bound concerns the left tail of the binomial distribution. Its corollary
shows that, far from the mean, the left tail diminishes exponentially.

Theorem C.4
Consider a sequence of n Bernoulli trials, where success occurs with probability p
and failure with probability q D 1 " p. Let X be the random variable denoting the
total number of successes. Then for 0 < k < np, the probability of fewer than k
successes is

Pr fX < kg D
k!1X

iD0

b.i I n; p/

<
kq

np " k
b.kI n; p/ :

Proof We bound the series Pk!1
iD0 b.i I n; p/ by a geometric series using the tech-

nique from Section A.2, page 1151. For i D 1; 2; : : : ; k, we have from equa-
tion (C.41),
b.i " 1I n; p/

b.i I n; p/
D

iq

.n " i C 1/p

<
iq

.n " i/p

#
kq

.n " k/p
:
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If we let

x D
kq

.n " k/p

<
kq

.n " np/p

D
kq

nqp

D
k

np

< 1 ;

it follows that
b.i " 1I n; p/ < x b.i I n; p/

for 0 < i # k. Iteratively applying this inequality k " i times, we obtain
b.i I n; p/ < xk!i b.kI n; p/

for 0 # i < k, and hence
k!1X

iD0

b.i I n; p/ <

k!1X

iD0

xk!ib.kI n; p/

< b.kI n; p/

1X

iD0

xi

D
x

1 " x
b.kI n; p/

D
kq

np " k
b.kI n; p/ :

Corollary C.5
Consider a sequence of n Bernoulli trials, where success occurs with probability p
and failure with probability q D 1 " p. Then for 0 < k # np=2, the probability of
fewer than k successes is less than one half of the probability of fewer than k C 1
successes.

Proof Because k # np=2, we have
kq

np " k
#

.np=2/q

np " .np=2/
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D
.np=2/q

np=2

# 1 ; (C.42)
since q # 1. Letting X be the random variable denoting the number of successes,
Theorem C.4 and inequality (C.42) imply that the probability of fewer than k suc-
cesses is

Pr fX < kg D
k!1X

iD0

b.i I n; p/ < b.kI n; p/ :

Thus we have
Pr fX < kg

Pr fX < k C 1g
D

Pk!1
iD0 b.i I n; p/

Pk
iD0 b.i I n; p/

D
Pk!1

iD0 b.i I n; p/
Pk!1

iD0 b.i I n; p/ C b.kI n; p/

< 1=2 ;

since Pk!1
iD0 b.i I n; p/ < b.kI n; p/.

Bounds on the right tail follow similarly. Exercise C.5-2 asks you to prove them.

Corollary C.6
Consider a sequence of n Bernoulli trials, where success occurs with probability p.
Let X be the random variable denoting the total number of successes. Then for
np < k < n, the probability of more than k successes is

Pr fX > kg D
nX

iDkC1

b.i I n; p/

<
.n " k/p

k " np
b.kI n; p/ :

Corollary C.7
Consider a sequence of n Bernoulli trials, where success occurs with probability p
and failure with probability q D 1 " p. Then for .np C n/=2 < k < n, the
probability of more than k successes is less than one half of the probability of
more than k " 1 successes.

The next theorem considers n Bernoulli trials, each with a probability pi of
success, for i D 1; 2; : : : ; n. As the subsequent corollary shows, we can use the
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theorem to provide a bound on the right tail of the binomial distribution by setting
pi D p for each trial.

Theorem C.8
Consider a sequence of n Bernoulli trials, where in the i th trial, for i D 1; 2; : : : ; n,
success occurs with probability pi and failure occurs with probability qi D 1 " pi .
Let X be the random variable describing the total number of successes, and let
' D E ŒX ". Then for r > ',
Pr fX " ' $ rg #

&'e

r

'r

:

Proof Since for any ˛ > 0, the function e˛x is strictly increasing in x,
Pr fX " ' $ rg D Pr ˚e˛.X!#/ $ e˛r

(
; (C.43)

where we will determine ˛ later. Using Markov’s inequality (C.30), we obtain
Pr ˚e˛.X!#/ $ e˛r

(
# E )

e˛.X!#/
*

e!˛r : (C.44)
The bulk of the proof consists of bounding E )

e˛.X!#/
* and substituting a suit-

able value for ˛ in inequality (C.44). First, we evaluate E )
e˛.X!#/

*. Using the
technique of indicator random variables (see Section 5.2), let Xi D I fthe i th
Bernoulli trial is a successg for i D 1; 2; : : : ; n; that is, Xi is the random vari-
able that is 1 if the i th Bernoulli trial is a success and 0 if it is a failure. Thus,

X D
nX

iD1

Xi ;

and by linearity of expectation,

' D E ŒX " D E
"

nX

iD1

Xi

#

D
nX

iD1

E ŒXi " D
nX

iD1

pi ;

which implies

X " ' D
nX

iD1

.Xi " pi / :

To evaluate E )
e˛.X!#/

*, we substitute for X " ', obtaining
E )

e˛.X!#/
*

D E )
e˛

Pn
iD1.Xi !pi /

*

D E
"

nY

iD1

e˛.Xi !pi /

#

D
nY

iD1

E )
e˛.Xi !pi /

*
;
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which follows from (C.24), since the mutual independence of the random vari-
ables Xi implies the mutual independence of the random variables e˛.Xi !pi / (see
Exercise C.3-5). By the definition of expectation,
E )

e˛.Xi !pi /
*

D e˛.1!pi /pi C e˛.0!pi /qi

D pie
˛qi C qie

!˛pi

# pie
˛ C 1 (C.45)

# exp.pie
˛/ ;

where exp.x/ denotes the exponential function: exp.x/ D ex . (Inequality (C.45)
follows from the inequalities ˛ > 0, qi # 1, e˛qi # e˛, and e!˛pi # 1, and the last
line follows from inequality (3.12).) Consequently,

E )
e˛.X!#/

*
D

nY

iD1

E )
e˛.Xi !pi /

*

#
nY

iD1

exp.pie
˛/

D exp
 

nX

iD1

pie
˛

!

D exp.'e˛/ ; (C.46)
since ' D

Pn
iD1 pi . Therefore, from equation (C.43) and inequalities (C.44)

and (C.46), it follows that
Pr fX " ' $ rg # exp.'e˛ " ˛r/ : (C.47)
Choosing ˛ D ln.r='/ (see Exercise C.5-7), we obtain
Pr fX " ' $ rg # exp.'eln.r=#/ " r ln.r='//

D exp.r " r ln.r='//

D
er

.r='/r

D
&'e

r

'r

:

When applied to Bernoulli trials in which each trial has the same probability of
success, Theorem C.8 yields the following corollary bounding the right tail of a
binomial distribution.
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Corollary C.9
Consider a sequence of n Bernoulli trials, where in each trial success occurs with
probability p and failure occurs with probability q D 1 " p. Then for r > np,

Pr fX " np $ rg D
nX

kDdnpCre

b.kI n; p/

#
&npe

r

'r

:

Proof By equation (C.37), we have ' D E ŒX " D np.

Exercises
C.5-1 ?
Which is less likely: obtaining no heads when you flip a fair coin n times, or
obtaining fewer than n heads when you flip the coin 4n times?
C.5-2 ?
Prove Corollaries C.6 and C.7.
C.5-3 ?
Show that
k!1X

iD0

 
n

i

!

ai < .a C 1/n k

na " k.a C 1/
b.kI n; a=.a C 1//

for all a > 0 and all k such that 0 < k < na=.a C 1/.
C.5-4 ?
Prove that if 0 < k < np, where 0 < p < 1 and q D 1 " p, then
k!1X

iD0

piqn!i <
kq

np " k

&np

k

'k & nq

n " k

'n!k

:

C.5-5 ?
Show that the conditions of Theorem C.8 imply that

Pr f' " X $ rg #
!

.n " '/e

r

"r

:

Similarly, show that the conditions of Corollary C.9 imply that
Pr fnp " X $ rg #

&nqe

r

'r

:
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C.5-6 ?
Consider a sequence of n Bernoulli trials, where in the i th trial, for i D 1; 2; : : : ; n,
success occurs with probability pi and failure occurs with probability qi D 1 " pi .
Let X be the random variable describing the total number of successes, and let
' D E ŒX ". Show that for r $ 0,
Pr fX " ' $ rg # e!r2=2n :

(Hint: Prove that pie
˛qi C qie

!˛pi # e˛2=2. Then follow the outline of the proof
of Theorem C.8, using this inequality in place of inequality (C.45).)
C.5-7 ?
Show that choosing ˛ D ln.r='/ minimizes the right-hand side of inequal-
ity (C.47).

Problems

C-1 Balls and bins
In this problem, we investigate the effect of various assumptions on the number of
ways of placing n balls into b distinct bins.
a. Suppose that the n balls are distinct and that their order within a bin does not

matter. Argue that the number of ways of placing the balls in the bins is bn.
b. Suppose that the balls are distinct and that the balls in each bin are ordered.

Prove that there are exactly .b C n " 1/Š=.b " 1/Š ways to place the balls in the
bins. (Hint: Consider the number of ways of arranging n distinct balls and b "1
indistinguishable sticks in a row.)

c. Suppose that the balls are identical, and hence their order within a bin does not
matter. Show that the number of ways of placing the balls in the bins is #

bCn!1
n

$.
(Hint: Of the arrangements in part (b), how many are repeated if the balls are
made identical?)

d. Suppose that the balls are identical and that no bin may contain more than one
ball, so that n # b. Show that the number of ways of placing the balls is #

b
n

$.
e. Suppose that the balls are identical and that no bin may be left empty. Assuming

that n $ b, show that the number of ways of placing the balls is #
n!1
b!1

$.
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Appendix notes

The first general methods for solving probability problems were discussed in a
famous correspondence between B. Pascal and P. de Fermat, which began in 1654,
and in a book by C. Huygens in 1657. Rigorous probability theory began with the
work of J. Bernoulli in 1713 and A. De Moivre in 1730. Further developments of
the theory were provided by P.-S. Laplace, S.-D. Poisson, and C. F. Gauss.

Sums of random variables were originally studied by P. L. Chebyshev and A. A.
Markov. A. N. Kolmogorov axiomatized probability theory in 1933. Chernoff [66]
and Hoeffding [173] provided bounds on the tails of distributions. Seminal work
in random combinatorial structures was done by P. Erdös.

Knuth [209] and Liu [237] are good references for elementary combinatorics
and counting. Standard textbooks such as Billingsley [46], Chung [67], Drake [95],
Feller [104], and Rozanov [300] offer comprehensive introductions to probability.



D Matrices

Matrices arise in numerous applications, including, but by no means limited to,
scientific computing. If you have seen matrices before, much of the material in this
appendix will be familiar to you, but some of it might be new. Section D.1 covers
basic matrix definitions and operations, and Section D.2 presents some basic matrix
properties.

D.1 Matrices and matrix operations

In this section, we review some basic concepts of matrix theory and some funda-
mental properties of matrices.

Matrices and vectors
A matrix is a rectangular array of numbers. For example,

A D
!

a11 a12 a13

a21 a22 a23

"

D
!

1 2 3
4 5 6

"
(D.1)

is a 2 ( 3 matrix A D .aij /, where for i D 1; 2 and j D 1; 2; 3, we denote the
element of the matrix in row i and column j by aij . We use uppercase letters
to denote matrices and corresponding subscripted lowercase letters to denote their
elements. We denote the set of all m ( n matrices with real-valued entries by Rm$n

and, in general, the set of m ( n matrices with entries drawn from a set S by Sm$n.
The transpose of a matrix A is the matrix AT obtained by exchanging the rows

and columns of A. For the matrix A of equation (D.1),
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AT D

!
1 4
2 5
3 6

"
:

A vector is a one-dimensional array of numbers. For example,

x D

!
2
3
5

"
is a vector of size 3. We sometimes call a vector of length n an n-vector. We
use lowercase letters to denote vectors, and we denote the i th element of a size-n
vector x by xi , for i D 1; 2; : : : ; n. We take the standard form of a vector to be
as a column vector equivalent to an n ( 1 matrix; the corresponding row vector is
obtained by taking the transpose:
xT D . 2 3 5 / :

The unit vector ei is the vector whose i th element is 1 and all of whose other
elements are 0. Usually, the size of a unit vector is clear from the context.

A zero matrix is a matrix all of whose entries are 0. Such a matrix is often
denoted 0, since the ambiguity between the number 0 and a matrix of 0s is usually
easily resolved from context. If a matrix of 0s is intended, then the size of the
matrix also needs to be derived from the context.

Square matrices
Square n ( n matrices arise frequently. Several special cases of square matrices
are of particular interest:
1. A diagonal matrix has aij D 0 whenever i ¤ j . Because all of the off-diagonal

elements are zero, we can specify the matrix by listing the elements along the
diagonal:

diag.a11; a22; : : : ; ann/ D

˙
a11 0 : : : 0
0 a22 : : : 0
:::

:::
: : :

:::
0 0 : : : ann

#
:

2. The n ( n identity matrix In is a diagonal matrix with 1s along the diagonal:
In D diag.1; 1; : : : ; 1/

D

˙
1 0 : : : 0
0 1 : : : 0
:::

:::
: : :

:::
0 0 : : : 1

#
:
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When I appears without a subscript, we derive its size from the context. The i th
column of an identity matrix is the unit vector ei .

3. A tridiagonal matrix T is one for which tij D 0 if ji " j j > 1. Nonzero entries
appear only on the main diagonal, immediately above the main diagonal (ti;iC1

for i D 1; 2; : : : ; n " 1), or immediately below the main diagonal (tiC1;i for
i D 1; 2; : : : ; n " 1):

T D

!
t11 t12 0 0 : : : 0 0 0
t21 t22 t23 0 : : : 0 0 0
0 t32 t33 t34 : : : 0 0 0
:::

:::
:::

:::
: : :

:::
:::

:::
0 0 0 0 : : : tn!2;n!2 tn!2;n!1 0
0 0 0 0 : : : tn!1;n!2 tn!1;n!1 tn!1;n

0 0 0 0 : : : 0 tn;n!1 tnn

˘
:

4. An upper-triangular matrix U is one for which uij D 0 if i > j . All entries
below the diagonal are zero:

U D

˙
u11 u12 : : : u1n

0 u22 : : : u2n

:::
:::

: : :
:::

0 0 : : : unn

#
:

An upper-triangular matrix is unit upper-triangular if it has all 1s along the
diagonal.

5. A lower-triangular matrix L is one for which lij D 0 if i < j . All entries
above the diagonal are zero:

L D

˙
l11 0 : : : 0
l21 l22 : : : 0
:::

:::
: : :

:::
ln1 ln2 : : : lnn

#
:

A lower-triangular matrix is unit lower-triangular if it has all 1s along the
diagonal.
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6. A permutation matrix P has exactly one 1 in each row or column, and 0s
elsewhere. An example of a permutation matrix is

P D

ˇ
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 0 1 0 0

$
:

Such a matrix is called a permutation matrix because multiplying a vector x
by a permutation matrix has the effect of permuting (rearranging) the elements
of x. Exercise D.1-4 explores additional properties of permutation matrices.

7. A symmetric matrix A satisfies the condition A D AT. For example,!
1 2 3
2 6 4
3 4 5

"
is a symmetric matrix.

Basic matrix operations
The elements of a matrix or vector are numbers from a number system, such as
the real numbers, the complex numbers, or integers modulo a prime. The number
system defines how to add and multiply numbers. We can extend these definitions
to encompass addition and multiplication of matrices.

We define matrix addition as follows. If A D .aij / and B D .bij / are m ( n
matrices, then their matrix sum C D .cij / D A C B is the m ( n matrix defined by
cij D aij C bij

for i D 1; 2; : : : ; m and j D 1; 2; : : : ; n. That is, matrix addition is performed
componentwise. A zero matrix is the identity for matrix addition:
A C 0 D A D 0 C A :

If % is a number and A D .aij / is a matrix, then %A D .%aij / is the scalar
multiple of A obtained by multiplying each of its elements by %. As a special case,
we define the negative of a matrix A D .aij / to be "1 ! A D "A, so that the ij th
entry of "A is "aij . Thus,
A C ."A/ D 0 D ."A/ C A :
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We use the negative of a matrix to define matrix subtraction: A " B D A C ."B/.
We definematrix multiplication as follows. We start with two matrices A and B

that are compatible in the sense that the number of columns of A equals the number
of rows of B . (In general, an expression containing a matrix product AB is always
assumed to imply that matrices A and B are compatible.) If A D .aik/ is an m ( n
matrix and B D .bkj / is an n ( p matrix, then their matrix product C D AB is the
m ( p matrix C D .cij /, where

cij D
nX

kD1

aikbkj (D.2)

for i D 1; 2; : : : ; m and j D 1; 2; : : : ; p. The procedure SQUARE-MATRIX-
MULTIPLY in Section 4.2 implements matrix multiplication in the straightfor-
ward manner based on equation (D.2), assuming that the matrices are square:
m D n D p. To multiply n ( n matrices, SQUARE-MATRIX-MULTIPLY per-
forms n3 multiplications and n2.n " 1/ additions, and so its running time is ‚.n3/.

Matrices have many (but not all) of the algebraic properties typical of numbers.
Identity matrices are identities for matrix multiplication:
ImA D AIn D A

for any m ( n matrix A. Multiplying by a zero matrix gives a zero matrix:
A 0 D 0 :

Matrix multiplication is associative:
A.BC / D .AB/C

for compatible matrices A, B , and C . Matrix multiplication distributes over addi-
tion:
A.B C C / D AB C AC ;

.B C C /D D BD C CD :

For n > 1, multiplication of n ( n matrices is not commutative. For example, if
A D

!
0 1
0 0

"
and B D

!
0 0
1 0

"
, then

AB D
!

1 0
0 0

"

and

BA D
!

0 0
0 1

"
:
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We define matrix-vector products or vector-vector products as if the vector were
the equivalent n ( 1 matrix (or a 1 ( n matrix, in the case of a row vector). Thus,
if A is an m ( n matrix and x is an n-vector, then Ax is an m-vector. If x and y
are n-vectors, then

xTy D
nX

iD1

xiyi

is a number (actually a 1 ( 1 matrix) called the inner product of x and y. The ma-
trix xyT is an n ( n matrix Z called the outer product of x and y, with ´ij D xiyj .
The (euclidean) norm kxk of an n-vector x is defined by
kxk D .x2

1 C x2
2 C ! ! ! C x2

n/1=2

D .xTx/1=2 :

Thus, the norm of x is its length in n-dimensional euclidean space.

Exercises
D.1-1
Show that if A and B are symmetric n ( n matrices, then so are A C B and A " B .
D.1-2
Prove that .AB/T D BTAT and that ATA is always a symmetric matrix.
D.1-3
Prove that the product of two lower-triangular matrices is lower-triangular.
D.1-4
Prove that if P is an n ( n permutation matrix and A is an n ( n matrix, then the
matrix product PA is A with its rows permuted, and the matrix product AP is A
with its columns permuted. Prove that the product of two permutation matrices is
a permutation matrix.

D.2 Basic matrix properties

In this section, we define some basic properties pertaining to matrices: inverses,
linear dependence and independence, rank, and determinants. We also define the
class of positive-definite matrices.
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Matrix inverses, ranks, and determinants
We define the inverse of an n ( n matrix A to be the n ( n matrix, denoted A!1 (if
it exists), such that AA!1 D In D A!1A. For example,
!

1 1
1 0

"!1

D
!

0 1
1 "1

"
:

Many nonzero n ( n matrices do not have inverses. A matrix without an inverse is
called noninvertible, or singular. An example of a nonzero singular matrix is
!

1 0
1 0

"
:

If a matrix has an inverse, it is called invertible, or nonsingular. Matrix inverses,
when they exist, are unique. (See Exercise D.2-1.) If A and B are nonsingular
n ( n matrices, then
.BA/!1 D A!1B!1 :

The inverse operation commutes with the transpose operation:
.A!1/T D .AT/!1 :

The vectors x1; x2; : : : ; xn are linearly dependent if there exist coefficients
c1; c2; : : : ; cn, not all of which are zero, such that c1x1 C c2x2 C ! ! ! C cnxn D 0.
The row vectors x1 D . 1 2 3 /, x2 D . 2 6 4 /, and x3 D . 4 11 9 / are
linearly dependent, for example, since 2x1 C 3x2 " 2x3 D 0. If vectors are not
linearly dependent, they are linearly independent. For example, the columns of an
identity matrix are linearly independent.

The column rank of a nonzero m ( n matrix A is the size of the largest set
of linearly independent columns of A. Similarly, the row rank of A is the size
of the largest set of linearly independent rows of A. A fundamental property of
any matrix A is that its row rank always equals its column rank, so that we can
simply refer to the rank of A. The rank of an m ( n matrix is an integer between 0
and min.m; n/, inclusive. (The rank of a zero matrix is 0, and the rank of an n ( n
identity matrix is n.) An alternate, but equivalent and often more useful, definition
is that the rank of a nonzero m ( n matrix A is the smallest number r such that
there exist matrices B and C of respective sizes m ( r and r ( n such that
A D BC :

A square n ( n matrix has full rank if its rank is n. An m ( n matrix has full
column rank if its rank is n. The following theorem gives a fundamental property
of ranks.
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Theorem D.1
A square matrix has full rank if and only if it is nonsingular.

A null vector for a matrix A is a nonzero vector x such that Ax D 0. The
following theorem (whose proof is left as Exercise D.2-7) and its corollary relate
the notions of column rank and singularity to null vectors.

Theorem D.2
A matrix A has full column rank if and only if it does not have a null vector.

Corollary D.3
A square matrix A is singular if and only if it has a null vector.

The ij thminor of an n(n matrix A, for n > 1, is the .n"1/(.n"1/ matrix AŒij $

obtained by deleting the i th row and j th column of A. We define the determinant
of an n ( n matrix A recursively in terms of its minors by

det.A/ D

‚
a11 if n D 1 ;

nX

j D1

."1/1Cj a1j det.AŒ1j $/ if n > 1 :

The term ."1/iCj det.AŒij $/ is known as the cofactor of the element aij .
The following theorems, whose proofs are omitted here, express fundamental

properties of the determinant.

Theorem D.4 (Determinant properties)
The determinant of a square matrix A has the following properties:
! If any row or any column of A is zero, then det.A/ D 0.
! The determinant of A is multiplied by % if the entries of any one row (or any

one column) of A are all multiplied by %.
! The determinant of A is unchanged if the entries in one row (respectively, col-

umn) are added to those in another row (respectively, column).
! The determinant of A equals the determinant of AT.
! The determinant of A is multiplied by "1 if any two rows (or any two columns)

are exchanged.
Also, for any square matrices A and B , we have det.AB/ D det.A/ det.B/.
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Theorem D.5
An n ( n matrix A is singular if and only if det.A/ D 0.

Positive-definite matrices
Positive-definite matrices play an important role in many applications. An n ( n
matrix A is positive-definite if xTAx > 0 for all n-vectors x ¤ 0. For
example, the identity matrix is positive-definite, since for any nonzero vector
x D . x1 x2 ! ! ! xn /T,
xTInx D xTx

D
nX

iD1

x2
i

> 0 :

Matrices that arise in applications are often positive-definite due to the following
theorem.

Theorem D.6
For any matrix A with full column rank, the matrix ATA is positive-definite.

Proof We must show that xT.ATA/x > 0 for any nonzero vector x. For any
vector x,
xT.ATA/x D .Ax/T.Ax/ (by Exercise D.1-2)

D kAxk2 :

Note that kAxk2 is just the sum of the squares of the elements of the vector Ax.
Therefore, kAxk2 $ 0. If kAxk2 D 0, every element of Ax is 0, which is to say
Ax D 0. Since A has full column rank, Ax D 0 implies x D 0, by Theorem D.2.
Hence, ATA is positive-definite.

Section 28.3 explores other properties of positive-definite matrices.

Exercises
D.2-1
Prove that matrix inverses are unique, that is, if B and C are inverses of A, then
B D C .
D.2-2
Prove that the determinant of a lower-triangular or upper-triangular matrix is equal
to the product of its diagonal elements. Prove that the inverse of a lower-triangular
matrix, if it exists, is lower-triangular.
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D.2-3
Prove that if P is a permutation matrix, then P is invertible, its inverse is P T,
and P T is a permutation matrix.
D.2-4
Let A and B be n ( n matrices such that AB D I . Prove that if A0 is obtained
from A by adding row j into row i , then subtracting column i from column j of B
yields the inverse B 0 of A0.
D.2-5
Let A be a nonsingular n ( n matrix with complex entries. Show that every entry
of A!1 is real if and only if every entry of A is real.
D.2-6
Show that if A is a nonsingular, symmetric, n ( n matrix, then A!1 is symmetric.
Show that if B is an arbitrary m ( n matrix, then the m ( m matrix given by the
product BABT is symmetric.
D.2-7
Prove Theorem D.2. That is, show that a matrix A has full column rank if and only
if Ax D 0 implies x D 0. (Hint: Express the linear dependence of one column on
the others as a matrix-vector equation.)
D.2-8
Prove that for any two compatible matrices A and B ,
rank.AB/ # min.rank.A/; rank.B// ;

where equality holds if either A or B is a nonsingular square matrix. (Hint: Use
the alternate definition of the rank of a matrix.)

Problems

D-1 Vandermonde matrix
Given numbers x0; x1; : : : ; xn!1, prove that the determinant of the Vandermonde
matrix

V.x0; x1; : : : ; xn!1/ D

˙
1 x0 x2

0 ! ! ! xn!1
0

1 x1 x2
1 ! ! ! xn!1

1
:::

:::
:::

: : :
:::

1 xn!1 x2
n!1 ! ! ! xn!1

n!1

#
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is
det.V .x0; x1; : : : ; xn!1// D

Y

0"j <k"n!1

.xk " xj / :

(Hint: Multiply column i by "x0 and add it to column i C 1 for i D n " 1;
n " 2; : : : ; 1, and then use induction.)

D-2 Permutations defined by matrix-vector multiplication over GF.2/
One class of permutations of the integers in the set Sn D f0; 1; 2; : : : ; 2n " 1g is
defined by matrix multiplication over GF.2/. For each integer x in Sn, we view its
binary representation as an n-bit vector"

x0

x1

x2

:::
xn!1

#
;

where x D
Pn!1

iD0 xi2
i . If A is an n ( n matrix in which each entry is either 0

or 1, then we can define a permutation mapping each value x in Sn to the number
whose binary representation is the matrix-vector product Ax. Here, we perform
all arithmetic over GF.2/: all values are either 0 or 1, and with one exception the
usual rules of addition and multiplication apply. The exception is that 1 C 1 D 0.
You can think of arithmetic over GF.2/ as being just like regular integer arithmetic,
except that you use only the least significant bit.

As an example, for S2 D f0; 1; 2; 3g, the matrix

A D
!

1 0
1 1

"

defines the following permutation &A: &A.0/ D 0, &A.1/ D 3, &A.2/ D 2,
&A.3/ D 1. To see why &A.3/ D 1, observe that, working in GF.2/,

&A.3/ D
!

1 0
1 1

"!
1
1

"

D
!

1 ! 1 C 0 ! 1
1 ! 1 C 1 ! 1

"

D
!

1
0

"
;

which is the binary representation of 1.
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For the remainder of this problem, we work over GF.2/, and all matrix and
vector entries are 0 or 1. We define the rank of a 0-1 matrix (a matrix for which
each entry is either 0 or 1) over GF.2/ the same as for a regular matrix, but with all
arithmetic that determines linear independence performed over GF.2/. We define
the range of an n ( n 0-1 matrix A by
R.A/ D fy W y D Ax for some x 2 Sng ;

so that R.A/ is the set of numbers in Sn that we can produce by multiplying each
value x in Sn by A.
a. If r is the rank of matrix A, prove that jR.A/j D 2r . Conclude that A defines a

permutation on Sn only if A has full rank.
For a given n ( n matrix A and a given value y 2 R.A/, we define the preimage

of y by
P .A; y/ D fx W Ax D yg ;

so that P .A; y/ is the set of values in Sn that map to y when multiplied by A.
b. If r is the rank of n ( n matrix A and y 2 R.A/, prove that jP .A; y/j D 2n!r .

Let 0 # m # n, and suppose we partition the set Sn into blocks of consec-
utive numbers, where the i th block consists of the 2m numbers i2m; i2m C 1;
i2m C 2; : : : ; .i C 1/2m " 1. For any subset S & Sn, define B.S; m/ to be the
set of size-2m blocks of Sn containing some element of S . As an example, when
n D 3, m D 1, and S D f1; 4; 5g, then B.S; m/ consists of blocks 0 (since 1 is in
the 0th block) and 2 (since both 4 and 5 are in block 2).
c. Let r be the rank of the lower left .n " m/ ( m submatrix of A, that is, the

matrix formed by taking the intersection of the bottom n " m rows and the
leftmost m columns of A. Let S be any size-2m block of Sn, and let S 0 D
fy W y D Ax for some x 2 Sg. Prove that jB.S 0; m/j D 2r and that for each
block in B.S 0; m/, exactly 2m!r numbers in S map to that block.

Because multiplying the zero vector by any matrix yields a zero vector, the set
of permutations of Sn defined by multiplying by n ( n 0-1 matrices with full rank
over GF.2/ cannot include all permutations of Sn. Let us extend the class of per-
mutations defined by matrix-vector multiplication to include an additive term, so
that x 2 Sn maps to Ax C c, where c is an n-bit vector and addition is performed
over GF.2/. For example, when

A D
!

1 0
1 1

"
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and

c D
!

0
1

"
;

we get the following permutation &A;c: &A;c.0/ D 2, &A;c.1/ D 1, &A;c.2/ D 0,
&A;c.3/ D 3. We call any permutation that maps x 2 Sn to Ax C c, for some n ( n
0-1 matrix A with full rank and some n-bit vector c, a linear permutation.
d. Use a counting argument to show that the number of linear permutations of Sn

is much less than the number of permutations of Sn.
e. Give an example of a value of n and a permutation of Sn that cannot be achieved

by any linear permutation. (Hint: For a given permutation, think about how
multiplying a matrix by a unit vector relates to the columns of the matrix.)

Appendix notes

Linear-algebra textbooks provide plenty of background information on matrices.
The books by Strang [323, 324] are particularly good.


