Statistics of Shape: Eigen Shapes
“PCA and PGA”

Sarang Joshi
Departments of Radiation Oncology, Biomedical Engineering and Computer Science
University of North Carolina at Chapel Hill
Two approaches to study the shape variation of the hippocampus in populations:

- Statistics of deformation fields using “Principal Components Analysis”

- Statistics of medial descriptions using Lei Groups: “Principal Geodesic Analysis”
Statistics of Deformation Fields
Hippocampal Mapping

Atlas

Patients
Hippocampal Mapping

Atlas

Subjects
Shape of 2-D Sub-Manifolds of the Brain: Hippocampus.

The provisory template hippocampal surface M_0 is carried onto the family of targets:

$$
M_0 \xleftarrow{h_1} M^1, \quad M_0 \xleftarrow{h_2} M^2, \quad \cdots, \quad M_0 \xleftarrow{h_N} M^N.
$$
Shape of 2-D Sub-Manifolds of the Brain: Hippocampus.

- The mean transformation and the template representing the entire population:

$$\bar{h} = \frac{1}{N} \sum_{i=1}^{N} h_i , \quad M_{\text{temp}} = \bar{h} \circ M_0 .$$

The mean hippocampus of the population of thirty subjects.
Shape of 2-D Sub-Manifolds of the Brain: Hippocampus.

- Mean hippocampus representing the control population:
 \[
 \bar{h}_{control} = \frac{1}{N_{control}} \sum_{i=1}^{N_{control}} h_i^{control}, \quad M_{control} = \bar{h}_{control} \circ M_0.
 \]

- Mean hippocampus representing the Schizophrenic population:
 \[
 \bar{h}_{schiz} = \frac{1}{N_{schiz}} \sum_{i=1}^{N_{schiz}} h_i^{schiz}, \quad M_{schiz} = \bar{h}_{schiz} \circ M_0.
 \]
Gaussian Random Vector Fields on 2-D Sub-Manifolds.

- Hippocampi \mathcal{M}^i, $i = 1, \cdots, N$ deformation of the mean $\mathcal{M}_{\text{temp}}$:
 $$\mathcal{M}^i : \{y | y = x + u_i(x), x \in \mathcal{M}_{\text{temp}}\}$$

 $$u_i(x) = h_i(x) - x, x \in \mathcal{M}_{\text{temp}}.$$

 Vector field $u_i(x)$ shown in red.

- Construct Gaussian random vector fields over sub-manifolds.
Gaussian Random Vector Fields on 2-D Sub-Manifolds.

- Let $\mathcal{H}(\mathcal{M})$ be the Hilbert space of square integrable vector fields on \mathcal{M}. Inner product on the Hilbert space $\mathcal{H}(\mathcal{M})$:

$$ \langle f, g \rangle = \sum_{i=1}^{3} \int_{\mathcal{M}} f^i(x) g^i(x) d\nu(x) $$

where $d\nu$ is a measure on the oriented manifold \mathcal{M}.

Definition 1 The random field $\{U(x), x \in \mathcal{M}\}$ is a Gaussian random field on a manifold \mathcal{M} with mean $\mu_u \in \mathcal{H}(\mathcal{M})$ and covariance operator $K_u(x, y)$ if $\forall f \in \mathcal{H}(\mathcal{M})$, $\langle f, \cdot \rangle$ is normally distributed with mean $m_f = \langle \mu_u, f \rangle$ and variance $\sigma_f^2 = \langle K_u f, f \rangle$

- Gaussian field is completely specified by it’s mean μ_u and the covariance operator $K_u(x, y)$.

- Construct Gaussian random fields as a quadratic mean limit using a complete \mathbb{R}^3-valued orthonormal basis

$$ \{ \phi_k, k = 1, 2, \cdots \}, \quad \langle \phi_i, \phi_j \rangle = 0, \quad i \neq j $$
Gaussian Random Vector Fields on 2-D Sub-Manifolds.

Theorem 1 Let \(\{U(x), x \in \mathcal{M}\} \) be a Gaussian random vector field with mean \(m_U \in \mathcal{H} \) and covariance \(K_U \) of finite trace. There exists a sequence of finite dimensional Gaussian random vector fields \(\{U_n(x)\} \) such that

\[
U(x)^{q,m} \xrightarrow{n \to \infty} U_n(x)
\]

where

\[
U_n(x) = \sum_{k=1}^{n} Z_k(\omega) \phi_k(x) ,
\]

\(\{Z_k(\omega), k = 1, \cdots \} \) are independent Gaussian random variables with fixed means \(E\{Z_k\} = \mu_k \) and covariances \(E\{|Z_i|^2\} - E\{Z_i\}^2 = \sigma_i^2 = \lambda_i, \Sigma_i \lambda_i < \infty \) and \((h_k, \lambda_k) \) are the eigen functions and the eigen values of the covariance operator \(K_U \):

\[
\lambda_i \phi_i(x) = \int_{\mathcal{M}} K_U(x, y) \phi_i(y) d\nu(y) ,
\]

where \(d\nu \) is the measure on the manifold \(\mathcal{M} \).

If \(d\nu \), the surface measure on \(\tilde{\mathcal{M}}_{\text{temp}} \) is atomic around the points \(x_k \) then \(\{\phi_i\} \) satisfy the system of linear equations

\[
\lambda_i \phi_i(x_k) = \sum_{j=1}^{M} \hat{K}_U(x_k, y_j) \phi_i(y_j) \nu(y_j) , i = 1, \cdots, N,
\]

where \(\nu(y_j) \) is the surface measure around point \(y_j \).
Eigen Shapes of the Hippocampus.

- Eigen shapes $\mathcal{E}^i, i = 1, \cdots, N$ defined as:
 \[
 \mathcal{E}^i = \{x + (\lambda_i)\phi_i(x) : x \in \tilde{M}_{temp}\}.
 \]

- Eigen shapes completely characterize the variation of the sub-manifold in the population.
Statistical Significance of Shape Difference Between Populations.

- Assume that \{u_j^{schiz}, u_j^{control}\}, \(j = 1, \ldots, 15\) are realizations from a Gaussian process with mean \(\bar{u}_{schiz}\) and \(\bar{u}_{control}\) and common covariance \(K_U\).

 Statistical hypothesis test on shape difference:

 \[H_0 : \bar{u}_{norm} = \bar{u}_{schiz} \]
 \[H_1 : \bar{u}_{norm} \neq \bar{u}_{schiz} \]

- Expand the deformation fields in the eigen functions \(\phi_i\):

 \[u_N^{schiz}(j)(x) = \sum_{i=1}^{N} Z_i^{schiz}(j) \phi_i(x) \]
 \[u_N^{control}(j)(x) = \sum_{i=1}^{N} Z_i^{control}(j) \phi_i(x) \]

- \(\{Z_j^{schiz}, Z_j^{control}, j = 1, \ldots, 15\}\) Gaussian random vectors with means \(\bar{Z}_{schiz}\) and \(\bar{Z}_{control}\) and covariance \(\Sigma\).

 Hotelling’s \(T^2\) test:

 \[T_N^2 = \frac{M}{2}(\hat{Z}_{norm} - \hat{Z}_{schiz})^T \Sigma^{-1}(\hat{Z}_{norm} - \hat{Z}_{schiz}). \]

<table>
<thead>
<tr>
<th>N</th>
<th>(T_N^2)</th>
<th>p-value : (P_N(H_0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9.8042</td>
<td>0.0471</td>
</tr>
<tr>
<td>4</td>
<td>14.3086</td>
<td>0.0300</td>
</tr>
<tr>
<td>5</td>
<td>14.4012</td>
<td>0.0612</td>
</tr>
<tr>
<td>6</td>
<td>19.6038</td>
<td>0.0401</td>
</tr>
</tbody>
</table>

\(N\): number of eigen functions.
Bayesian Classification on Hippocampus Shape Between Population.

- Bayesian log-likelihood ratio test: H_0: normal hippocampus, H_1: schizophrenic hippocampus.

$$\Lambda_N = -(Z - \hat{Z}_{schiz})^\dagger \hat{\Sigma}^{-1}(Z - \hat{Z}_{schiz})$$

$$+ (Z - \hat{Z}_{norm})^\dagger \hat{\Sigma}^{-1}(Z - \hat{Z}_{norm}) \begin{cases} H_0 \leq 0 \\ H_1 > 0 \end{cases}$$

- Use Jack Knife for estimating probability of classification:
Statistics of Medial descriptions

- Each figure a quad mesh of medial atoms:

\[\{m_{i,j}^0 : i = 1 \cdots N, j = 1 \cdots M \} \]

\[m_{i,j}^0 = (x_{i,j}, r, F, \theta) \]

- Medial atom parameters include angles and rotations.
- Medial atoms do not form a Hilbert Space
 – Cannot use “Eigen Shape” for statistical characterization!!
Statistics of Medial descriptions

- Set of all Medial Atoms forms Lie-Group

\[m = (x_{i,j}, r, F, \theta) \]
\[m \in \mathbb{R}^3 \times \mathbb{R}^+ \times SO(3) \times SO(2) \]

- \(\mathbb{R}^3 \): Position \(x \)
- \(\mathbb{R}^+ \): Radius \(r \)
- \(SO(3) \): Frame
- \(SO(2) \): Object angle
A Lie group is a group G which is also a differential manifold where the group operations are differential maps.

- Both composition and the inverse are differential maps

$\mu : (x, y) \mapsto xy : G \times G \mapsto G$

$\iota : x \mapsto x^{-1} : G \mapsto G$

$\mathbb{R}^3 : \mu(x, y) = x + y, x^{-1} = -x$

$\mathbb{R}^+ : \text{Multiplicative reals} \quad \mu(x, y) = xy, x^{-1} = \frac{1}{x}$

$SO(3) : 3 \times 3 \text{ Orthogonal Matrix Group}$

$SO(2) : 2 \times 2 \text{ Orthogonal Matrix Group}$
Lie Group Means

- Algebraic mean not defined on Lie Groups
- Use geometric definition:
 - Remanian Distance well defined on a Manifold.
- Given N medial atoms \(\{m_i : i = 1 \ldots N\} \)
 the mean \(\bar{m} \) is defined as the group element that minimizes the average squared distance to the data.

\[
\bar{m} = \arg \min_{m} \frac{1}{N} \sum_{i=1}^{N} \left| d(m, m_i) \right|^2
\]

- No closed form solution need to use Lie-Group optimization techniques.
Geodesic Curves

- Medial manifold is curved and hence no straight lines.
- Distance minimizing **Geodesic** curves are analogous to straight lines in Euclidean Space.
- Geodesics in Lie Groups are given by the exponent map:

\[g(t) = \exp(tA) \]

- Geodesics are one parameter sub-groups analogous to 1-dimensional subspaces in \(\mathbb{R}^N \)
Principal Geodesics

- Since the set of all medial atoms is a curved manifold, linear PCA is not defined as well.

- Principal Geodesics are defined as the geodesics that minimize residual distance.
 - No closed form solution: Needs non-linear optimization.