
Using Lock-Free Objects in Hard Real-Time Applications�

James H. Anderson and Srikanth Ramamurthy

Department of Computer Science, The University of North Carolina at Chapel Hill

Lock-based approaches to object sharing are the ac-

cepted means of interprocess communication in real-

time systems. The main problem that arises under such

approaches is that of priority inversion, i.e., the situ-

ation in which a given task1 waits on another task of

lower priority to exit a critical section. Mechanisms

such as the priority ceiling protocol (PCP) [3] are used to

solve this problem. The PCP requires the operating sys-

tem to identify those tasks that may lock a semaphore,

which results in additional complexity in operating sys-

tem services. This information is used to ensure that the

priority of a task holding a semaphore is at least that

of the highest-priority task that locks that semaphore.

In [1], we propose using lock-free objects as an alter-

native for object sharing in real-time systems. Lock-free

objects are usually implemented using \retry loops". For

example, in the universal, lock-free implementation pre-

sented in [2], a task performs an operation by repeating

the following steps: �rst, a shared object pointer is load-

linked and a local copy of the object is made; then, the

desired operation is performed on the local copy; �nally,

a store-conditional is performed to attempt to \swing"

the shared object pointer to point to the local copy.

These steps are repeated until the last step succeeds.

The main contribution of [1] is to derive scheduling

conditions for periodic tasks that share lock-free ob-

jects on a uniprocessor. This work pertains to hard

real-time systems,2 and encompasses both static and

dynamic priority schemes. The scheduling conditions

we derive show that for hard real-time applications on

a uniprocessor, lock-free objects often incur less over-

head than either wait-free objects or lock-based objects

implemented using the PCP.

From a real-time perspective, lock-free objects are of

�Work supported by NSF Contract CCR 9216421.
1A task is a sequential program that is invoked in response

to an external stimulus or timer, and that must complete exe-

cution by a speci�ed deadline. Tasks are usually prioritized and

multiprogrammed on a single processor.
2Such systems must guarantee that no deadline is ever missed.

interest because they do not give rise to priority inver-

sions, and can be implemented with minimal operating

system support. Despite these advantages, it may seem

that unbounded retry loops render such objects useless

in hard real-time systems. Nonetheless, we show that

if tasks on a uniprocessor are scheduled appropriately,

then such loops are indeed bounded. We now explain

intuitively why such bounds exist. For the sake of expla-

nation, let us call an iteration of a retry loop a successful

update if it successfully completes, and a failed update

otherwise. Thus, a single invocation of a lock-free oper-

ation consists of any number of failed updates followed

by a successful one.

Consider two tasks Ti and Tj that access a common

lock-free object B. Suppose that Ti causes Tj to expe-

rience a failed update of B. On an uniprocessor, this

can only happen if Ti preempts the access of Tj and

then updates B successfully. However, Ti preempts Tj

only if Ti has higher priority than Tj . Thus, there is a

correlation between failed updates at one priority level

and successful updates at higher levels. The maximum

number of successful updates within a time interval can

be determined from the timing requirements and code

of each task. Using this information, it is possible to de-

termine a bound on the number of failed updates in that

interval. Intuitively, a set of tasks that share lock-free

objects is schedulable if there is enough free processor

time to accommodate the failed updates that can oc-

cur over any interval. This insight is the basis of the

scheduling conditions we derive.

References

[1] J. Anderson, S. Ramamurthy, and K. Je�ay, \Real-

Time Computing with Lock-Free Shared Objects",

Technical Report, Department of Computer Sci-

ence, The University of North Carolina, 1995.

[2] M. Herlihy, \A Methodology for Implementing

Highly Concurrent Data Objects", ACM Trans-

actions on Programming Languages and Systems,

Vol. 15, No. 5, 1993, pp. 745-770.

[3] L. Sha, R. Rajkumar, and J. Lehoczky, \Priority

Inheritance Protocols: An Approach to Real-Time

System Synchronization", IEEE Transactions on

Computers, Vol. 39, No. 9, 1990, pp. 1175-1185.


