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Modeling Real Objects Using
Video See-Through Augmented
Reality

Abstract

This paper presents an interactive “what-you-see-is-what-you-get” (WYSIWYG)
method for creating textured 3-D models of real objects using video see-through
augmented reality. We use a tracked probe to sample the objects’ geometries, and
we acquire video images from the head-mounted cameras to capture textures. Our
system provides visual feedback during modeling by overlaying the model onto the
real object in the user’s field of view. This visual feedback makes the modeling pro-
cess interactive and intuitive.

1 Introduction

Modeling is one of the most time-consuming tasks in computer graphics
applications. Models are sometimes created from scratch, but, in many cases,
the objects to be modeled already exist in the real world. For example, in CAD
applications, designers often want to reverse-engineer real products. When cre-
ating computer animation, it is quite common for artists to model characters
using clay (and sometimes to paint them). The clay models are then digitized
as computer models so that they can be animated. In mixed-reality systems,
models of real-world objects are often required to render real and virtual ob-
jects with correct occlusion relationships. Thus, creating digital copies of real
objects is an important technology, often referred to as 3-D digitizing.

1.1 Related Work

Most (but not all) 3-D digitizing techniques fall into three major categories.

1.1.1. 3-D Reconstruction from 2-D Images. These methods exploit
computer vision techniques such as structure from motion, stereo triangula-
tion, and structure from shading (Zhang, 1998). They try to mimic human
vision by reconstructing 3-D information from 2-D images. Typical strategies
such as structure from motion recover 3-D geometry of objects (and some-
times also camera motion) from images taken from different viewpoints. De-
tecting and matching common features among multiple images is crucial for
such methods (Oliensis & Werman, 2000; Oliensis, 2000). (Some simple
commercial products require manual assistance (www.canoma.com, www.
photomodeler.com). There are no specific requirements for the light sources
that illuminate the objects, but specularity and transparency of the object sur-
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faces pose significant problems for feature detection and
matching. Highly concave objects are also difficult to
handle. For example, if an object has a deep hole, sur-
face points inside the hole can be seen from only a very
narrow angle (that is, not from all camera viewpoints),
making it difficult to recover accurate coordinates for
those points.

1.1.2. Structured Light Projection. Instead of
using natural light sources, one can project light pat-
terns onto the real-world objects (Besl, 1989; Hausler
& Heckel, 1988; Horn & Brooks, 1989; Jarvis, 1983).
In camera images, such patterns can be easier to detect
than natural features. In most cases, the position of pro-
jectors and cameras are known (or determined by cali-
bration techniques), and points on object surfaces can
be determined by triangulation. Widely used commer-
cial systems (Levoy et al., 2000) utilize laser stripes. In
addition to using the camera for acquiring geometric
patterns, a color CCD camera is often used to capture
RGB colors on the objects’ surfaces. The major advan-
tage of these techniques is the high acquisition speed;
some systems can sample nearly one million points per
second. The acquired data is then passed on to a surface
reconstruction algorithm.

Because this method relies on the reflection of light,
it cannot easily digitize specular or transparent objects.
Furthermore, the concavities are even more problematic
for this class of methods. A successfully sampled point
must be visible (unoccluded) not only from the cameras
but also from the light source (projectors).

1.1.3. Point Sampling with Tracked Probes.
Points are sampled by physically touching the surface of
the object with a probe whose position is measured by a
3-D tracking system. (See Martin (1998) for a descrip-
tion of how this is typically done for motion picture vi-
sual effects.) Mechanical, electro magnetic, ultrasonic,
optical, and inertial trackers can be used to measure the
position of the probe. Due to the large number of
points acquired, 3-D reconstruction from 2-D images
and structured light projection typically use a recon-
struction algorithm (Hoppe, DeRose, Duchamp, Mc-
Donald, & Stuetzle, 1992) to build surface models. In

the point sampling method, points are sampled manu-
ally; hence, typically fewer points are collected than in
the other methods. In this case, surface models may be
constructed by manually connecting the sample points
or by using automatic methods.

Finally, Leibe et al. (2000) describe an interesting AR
system that uses techniques from the first method (3-D
reconstruction from 2-D images) together with com-
puter-controlled infrared (IR) illumination to create
coarse models of real-world objects from IR shadow
contours. The system focuses on quick, automatic, ap-
proximate reconstruction of models that are suitable for
certain forms of interaction in AR environments. Due to
the significant errors inherent in the reconstruction
method, such models are not (yet) adequate for the ap-
plications described in our introduction.

1.2 Motivation and Contribution

The methods involving 3-D reconstruction and
structured light projection work well for objects with
relatively simple geometry and diffuse reflective and
opaque surfaces, and the second method is particularly
efficient and has been used successfully in many areas.
But, as mentioned, neither can handle highly specular
or transparent surfaces. In addition, they both fail to
sample points on highly concave areas.

The third method (point sampling) is immune to
specularity and transparency problems (as far as geome-
try acquisition is concerned) because it does not rely on
image sensors. Furthermore, it is suitable for sampling
concave parts because it is easy to stick a thin probe into
a concave area to sample a point.

However, digitizing with a tracked probe is often
challenging in terms of hand-eye coordination. When
collecting sample points, the user carefully touches a
real object, looking at the probe’s contact point on the
object surface. On the other hand, one would like to see
immediate visual feedback about the exact location of
the sampled point, but such information is usually avail-
able only on a computer screen, which one cannot see
without looking away from the real object. Also, such a
separate display shows the locations of the sampled
points in relation only to each other and not to the ob-
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ject being modeled: after sampling many points, the
user sees clouds of points on the computer screen, and
it is hard to determine where on the real object each
sampled point lies. Thus, even though the object exists
in the user’s real workspace, the user has to deal with
extraneous virtual spaces in which the digitized models
reside. Furthermore, colors or textures cannot be ac-
quired in this way.

To alleviate the hand-eye coordination problem, one
could set up a video camera at a carefully calibrated po-
sition and overlay the digitized models onto the cap-
tured video images of the real objects. The user will
then see the correspondence between real and digitized
models (and the camera imagery could even be used to
acquire textures). However, if the user constructs a
model by looking at the computer screen while manipu-
lating the tracked probe and the real object, the user
still has to mentally fuse two workspaces that differ in
translation, rotation, and scaling; thus, hand-eye coordi-
nation continues to be impaired.

We propose a modeling system that is based on aug-
mented reality (AR) and that removes the mental sepa-
ration between real and virtual workspaces. The model
being created is overlaid directly onto the user’s view of
the real object. Therefore, the user never has to leave
the (one and only) real workspace while modeling an
object.

We use a head-mounted display (HMD) with video
see-through AR technology, which enables virtual ob-
jects and real objects to coexist in the real workspace.
Our user interface allows the user to modify (such as to
scale, or deform), digital copies of real objects. One can
assess the appearance of modified objects in the actual
surroundings. The user can also replicate parts of the
model to efficiently model objects whose shapes are bi-
laterally, rotationally, or cyclically symmetric. In conven-
tional 3-D scanners, the object to be digitized is usually
rigidly mounted on a support. Our system tracks the
rigid body motion of the real object, so the user can
freely move the object that is undergoing modeling.

In video see-through AR systems, video images are
readily available. Our system extracts textures of real
objects from video images. Using the known (tracked)
poses of the head-mounted cameras and the object be-

ing modeled, the system computes visibility parameters
for each polygon of the model. These parameters are
used to prevent acquisition of video textures that are
either distorted or too small.

2 System Overview

Our current AR modeling system (an earlier ver-
sion was described by State, Hirota, Chen, Garrett, and
Livingston (1996)) integrates off-the-shelf components:
a high-resolution HMD, miniature video cameras, an
optical tracking system, a 3-D probe, foot pedals, a
high-end graphics workstation, and several rigs
equipped with IR LEDs for tracking.

The following list provides descriptions of the hard-
ware configuration of our system.

● Video see-through HMD: We mounted two minia-
ture Toshiba IK-SM43H cameras on a stereoscopic
Sony Glasstron LD1-D100B head-mounted display
with SVGA (800�600) resolution (figure 1). The
two cameras are used to provide a stereoscopic view
of the real world. Three IR LEDs are also mounted
on the HMD for optical tracking. (See State, Acker-
man, Hirota, Lee, and Fuchs (2001) for a detailed
description of this device and its operation.)

● Probe: The probe has two IR LEDs to track the po-
sition of the probe tip (figure 1).

Figure 1. User with AR HMD, modeling a teapot with the

handheld probe. Probe, teapot , and HMD are equipped with IR

LEDs for opto-electronic tracking.
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● Object trackers: Three IR LEDs are rigidly affixed to
each of the objects to be modeled (such as the
porcelain teapot in figure 1).

● Optical sensors: All IR LEDs are tracked by an Im-
age Guided Technologies FlashPoint 5000 3-D
Optical Localizer. Its sensor assembly holds three
1-D CCD arrays that triangulate the position of the
LEDs.

● Pedals: We use foot pedal switches to assist with
interactive operations.

● Light: Light is provided by various ambient sources.
● Graphics workstation: We use an SGI Onyx2 Reality

Monster Graphics supercomputer with multiple
DIVO boards for real-time capture of HMD cam-
era video streams. Our system makes use of one
multichannel graphics pipe and two R12000 CPUs.

3 System Operation, Implementation
Details, and Critical Issues

Our modeling process consists of three steps: sam-
pling points, constructing a triangle mesh, and captur-
ing textures. All of these are performed in an AR envi-
ronment by a user wearing an HMD, as shown in
figure 1.

We first describe how points are sampled and how
triangles are created. Then we discuss the use of video
cameras on the HMD to obtain the textures of trian-
gles. Generally, the user follows these three steps in this
order. However, one can freely move back and forth
between the steps. This allows the user to construct a
complete model by incrementally adding small portions
consisting of fully textured and z-buffered triangles.

3.1 Point Sampling

The first step when modeling with our system is to
sample the object geometry, which is quite simple. The
user defines points on the object by physically touching
the surface of the real object with the (optically) tracked
probe and depressing a pedal (figure 2). When a point is
sampled, the point in probe coordinates is transformed
into the object’s coordinate system, using the current

transformations from the LED trackers of probe and
object. Because the object is continually tracked just like
the handheld probe, the newly acquired point can be
rendered on top of the object’s video image and appears
to the HMD user as “attached” to the object’s surface.

Overlaying points on the object helps the user to un-
derstand which points have been added, to determine
which part of the object needs more sampling, and to
sample the exact point desired. Some confusion may
occur if two points happen to be rendered close to each
other on the screen and if one point is on the front of
the object and the other is on the back of the object.
(At this stage in the modeling process, we have only a
collection of points and no polygons that could be used
to occlude the back points via z-buffering.) However,
because points are displayed in stereo as is everything
else, the user can still see which one is in front. Never-
theless, it can be visually confusing if the points on the
back face are not occluded properly by the object. (This
occlusion-depth conflict could be alleviated by using
depth cueing (for example, by varying color) when dis-
playing the collected points.) Our system allows the user
to build a model incrementally, which reduces the possi-
ble confusion. Instead of defining triangles after all
points of the object have been collected, the user can

Figure 2. Sampling the geometry of a Tiffany lamp shade with

the probe. The dark dots represent the acquired points. A dark line

segment is rendered over the tip of the acquisition probe.
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work on a small area at one time. By creating triangles
for part of an object before moving on to other parts,
the system acquires partial information about the object
geometry. Hence, when the system rasterizes triangles
into the z-buffer, points behind the available, already
defined triangles can be occluded. Of course, as long as
the triangle mesh is incomplete, not all points on the
back of the object can be occluded; nevertheless, this
technique provides a better sense of depth to the user
and is therefore helpful when modeling complex ob-
jects.

Figure 3 demonstrates that our system can handle
concave objects without difficulty. Because both the real
object and the probe are tracked, the user can rotate the
object and easily reach concave parts of the object’s sur-
face with the probe. However, in our specific implemen-
tation, the user must be aware of the limitations of the
optical tracking system, and not turn the object’s or the
probe’s LEDs away from the optical sensors. The user
also needs to be cautious not to occlude the LEDs from
the optical sensors with body parts such as hands or fin-
gers. Although we cannot eliminate this problem (which
is typical for all opto-electronic trackers), we alleviate it
through visual and audio feedback. The system does not
accept a sample point if either the object or the probe
loses tracking; it then warns the user of the tracking
problem, thus preventing him or her from acquiring
erroneous points.

3.2 Triangle Formation

After collecting points, the user is ready to create
triangles by connecting the sampled points. In “triangle
definition” mode, the point closest to the probe tip is
added to a selection set when the user depresses the
pedal. Once three points are selected, the system auto-
matically adds a triangle to the model. If necessary, the
order of the three points is changed automatically to
force the triangle to be counterclockwise from the user’s
point of view. Keeping every triangle in counterclock-
wise order is required to determine visible triangles for
texture acquisition (see subsection 3.3) and for backface
culling (if desired) when rendering the finished model.

The triangle mesh is overlaid on the real object in
the HMD view in the same fashion as the sampled
points are drawn. (See figure 4.) This interactive feed-
back gives a good idea about how the model is being
formed.

It is also possible to apply an automatic reconstruc-
tion algorithm (Hoppe et al., 1992) rather than manu-
ally constructing the triangle mesh. The user can invoke
such an algorithm offline and then edit it interactively
and/or continue on to the next step (texture acquisi-
tion).

Figure 3. Modeling the concave part (handle) of a teapot. Figure 4. Wireframe model of a 60 deg. segment of the lamp

overlaid on the video image of the lamp.
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3.3 Texture Acquisition

Taking advantage of the video see-through HMD,
we use video images to capture the textures of the mod-
el’s triangles. Accurate registration between real objects
and models in the AR view (which requires precise
tracking of the real object as well as of the user’s head)
is crucial during this process.

To acquire textures for one or more visible triangles,
a video image must be selected from the stream of in-
coming video images. In other words, a decision must
be made as to when to acquire each triangle’s texture.
The user can either specify the image (or, rather, the
moment in time) manually or let the system decide us-
ing its own heuristics (discussed later). It usually is im-
possible for all triangles to receive their textures from a
single image in the HMD camera video stream. There-
fore, the user typically changes viewpoints and angles
(typically by rotating the object in front of the HMD’s
“eyes”) until all textures of the model are acquired.

The triangle textures are also rendered transparently
on top of the model in the HMD view. This allows the
user to determine whether each triangle already has a
texture and to assess the quality of each texture. The
user can control the degree of transparency of the tex-
tures to see the real object through the textured model.
Along with the textured variable-transparency model
superimposed onto the object, a copy of the model with
fully opaque textures is also rendered. This copy is dis-
played floating in space next to the real object. The real
object (with or without the superimposed model) and
the nearby copy of the model move and rotate together.
The copy is useful for examining how much texture data
has already been acquired, and for comparing the over-
all appearance of the real object and the model being
created. (See figure 5.)

3.3.1 Texture Acceptance Criteria. For a
given video image, the system computes image coordi-
nates of triangles that are possibly visible in that image.
The poses of HMD cameras and triangles influence im-
age coordinates of triangle vertices as well as triangle
visibility. As mentioned earlier, the system rearranges
triangle vertices in counterclockwise order.

Even though a triangle is visible in the image, it is not
always a good idea to capture its texture. For instance, if
the normal vector of the triangle is almost orthogonal
to the viewing direction, the texture should not be cap-
tured.

As mentioned, the user can select automatic or man-
ual texture capture. In the automatic capture mode, the
system calculates the visibility and viewing angle of each
triangle at every frame, and captures and assigns textures
to triangles. This mode is computationally expensive
because screen-space data for all triangles must be pro-
cessed. (We are of course taking advantage of the graph-
ics pipeline feedback available on the IR system.) In
manual mode, the system performs these computations
only when the pedal is depressed; the smaller computa-
tional load in manual mode is of course better for inter-
activity.

It is also possible to select a group of triangles (an
active group) and restrict the system to capture textures
for those triangles only. Together, manual mode and
active group selection give the user better control when
dealing with occlusion and inconsistent lighting condi-
tions. These issues are discussed in detail in the next two
subsections.

3.3.2 Occlusion. There are two kinds of occlu-
sions. The first is caused by the very object that the user

Figure 5. Model with texture. The textured model is overlaid onto

the real lamp on the left. A copy of the model is visible on the

right.
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is modeling. If this object is concave, parts of it may
occlude other parts as seen through the HMD cameras.
No textures should be acquired for triangles that are
either fully or partially occluded. Occlusion could be
automatically detected by comparing depth values of
triangles in the z-buffer. However, if the user does not
first complete triangle definition before going on to
capture textures, this technique does not work. We
therefore adopted a heuristic method that relies on hu-
man intervention (or rather, operator awareness). As
described in the previous subsection, the user can select
a group of triangles, thus preventing all other triangles
from taking any texture. It is easier to avoid this kind of
occlusion if the selection group is small. Thus, by ear-
marking only a few triangles at a time for texture acqui-
sition, concave objects can be easily managed.

The second type of occlusion is caused by the pres-
ence of physical objects whose geometry is unknown.
The user’s hand is a typical example. It is inevitable to
hold or touch an object while capturing the texture,
because one needs to acquire several different video im-
ages to get all textures, in particular for highly concave
objects. The user should therefore also pay attention to
the position of his or her hands. Other researchers have
investigated this issue (Inami, Kawakami, Sekiguchi, &
Yanagida, 2000; Kanbara, Okuma, Takemura, &
Yokoya, 2000; Yokoya, Takemura, Okuma, & Kanbara,
1999).

3.3.3 Lighting Conditions and Inconsistent
Color. Adjacent triangles do not necessarily receive
their textures at the same time from a video image. For
example, only a specific set of triangles may be included
in the active group, or the textures for the one set of
triangles may be accepted by the system whereas adja-
cent triangles may receive their textures at different
times—when the acceptance criteria previously de-
scribed are met. In such cases, adjacent triangles will
receive textures from two different video images. If the
lighting conditions are different for the two images, the
border between the adjacent triangles will be clearly
visible, as shown in figure 6.

The lighting conditions include the position and
brightness of the light and the orientation of the trian-

gle. After failed experiments with an HMD-mounted
light source (too much variation depending on the dis-
tance between HMD and the object being modeled),
we switched to several light sources positioned around
the working area to make the lighting as uniform as
possible. It also helps if the user looks for consistent
lighting for all (active) triangles when selecting the
video images to be used for texturing in the manual tex-
ture capture mode.

Specular objects require more attention due to the
view-dependent effects. In our prototype, texture pro-
vides only view-independent colors. Hence, the user
should choose a viewing direction that minimizes high-
lights. If a triangle uses an image with a highlight and
an adjacent triangle uses an image without a highlight
from a different viewing direction, the discontinuity in
brightness also reveals the border between the two tri-
angles. Such cases should be avoided.

3.3.4 Video Interlacing. The video camera cap-
tures odd and even fields at different moments in time.
However, the digital video capture uses noninterlaced
frames. Therefore, when the user or the modeled object
move, the digitally captured video image exhibits stag-
gered artifacts as shown in figure 7. In our system, it is
inevitable to move the object or the camera to acquire

Figure 6. The effect of different lighting conditions during texture

acquisition. The lower right triangle in the front is darker than most

other triangles.
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textures for all triangles in the model. It is also hard for
the user to keep both object and head absolutely still
when capturing textures. Beyond that, tracker jitter—
which is present to some extent in all commercial and
experimental trackers we know of (except maybe the
very best mechanically tethered ones)—also plays a role.
Hence, using interlaced images degrades the quality of
the acquired textures.

This problem can be addressed by using only one
video field in the texture acquisition phase. The half-
resolution image is vertically doubled in size by dupli-
cating all scan lines. To keep latency at a minimum, we
use the latest field available, which is either even or odd.
We shift the image half a scan line up or down depend-
ing on which field is used. This shifting operation com-
pensates for vertical translation due to the scan line du-
plication, and reduces the slight texture discontinuity at
the border between any two triangles that receive their
textures from different fields.

3.3.5 Storing Textures. Numerous techniques
can be used to store textures of arbitrarily shaped trian-
gles (Carr, Hart, & Maillot, 2000; Stalling, 1997). Our
system uses a very simple method: we find the bounding
boxes of the triangles in the image, and copy the pixels
within the bounding boxes into a large texture array.
(The texture array is an aggregate of texture tiles with

the same dimension. See figure 8.) When copying a tex-
ture from the image, we enlarge their bounding boxes
by one pixel in every direction so that, during render-
ing, bilinear texture interpolation will not sample texels
outside a texture. (A texel is a pixel in a texture image.)

3.4 Interactive User Interface

Many 3-D modeling applications have compli-
cated interfaces because they deal with 3-D models in
2-D displays. Using the tracked AR video see-through
HMD, we overlay the model onto the real object. This
allows the user to manipulate the model in 3-D to-
gether with the real object to be modeled, thus making
the modeling process highly intuitive and greatly simpli-
fying the user interface.

Using direct 3-D manipulation (via the tracked probe
and the two foot pedals), the user can select, copy (to a
clipboard), paste (from the clipboard), translate, and
rotate a point or a group of points. These operations
can also be performed on triangles. To define the cur-

Figure 7. Two staggered fields in an interlaced video image

(enlargement).

Figure 8. Stored texture array. These are some of the textures

that are used to render the teapot model interactively. Each

rectangular texture corresponds to the bounding box of a triangle.
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rent axis for the rotation operator, the user first selects
three points defining a triangle. The rotation axis is then
calculated to be perpendicular to the plane of the trian-
gle and to pass through the center of the triangle’s cir-
cumscribing circle. Figures 9 and 10 show two HMD
view snapshots during a select paste-rotate operation on
triangles.

When moving triangles to a new position, our system

automatically merges two vertices if they are in close
proximity to each other. If the copied triangles already
have textures, the texture ID as well as the texture coor-
dinates are also copied to the new triangles so that they
use the same texture as the original ones. The user can
of course reassign the textures of copied triangles (using
the active group method previously described). Finally,
the user can also deform the object by selecting and
moving individual vertices. (See figure 11.)

Figure 12 shows an interactive menu. The user can
choose one of the modeling modes—sampling points,
constructing a triangle mesh, acquiring textures, and
deforming or copying the model—by pointing at the
menu with the probe and depressing the pedal. The
menu is placed on the desktop working surface (table),
which provides free “static” haptic feedback. (It also
avoids hand/arm fatigue caused by holding the probe
still in the air in menu selections, as is the case with float-
ing toolboxes.) The user simply touches the table with the
probe tip when picking an item from the menu.

4 Accuracy of Acquired Models

Two separate issues must be considered with re-
spect to the accuracy of the models created with such a

Figure 9. Selecting a number of triangles (darker color) with the

probe.

Figure 10. Copied and pasted triangles for a segment of the

lamp shade (darker color) are being rotated with the probe. Some

of the copies overlap and intersect the original triangles (shaded

strip in the middle).

Figure 11. Deforming the model by translating selected vertices

(marked by gray blobs).
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system. The first of them is the accuracy of the point
coordinates; it depends on the accuracy of the tracking
system. The FlashPoint 5000 specifications mention an
average error for LED position readings of approxi-
mately 0.5 mm over the entire tracking volume. Con-
sidering the construction of the handheld probe (the
measurement tip and two LEDs are collinear, mounted
approximately 100 mm apart), the average error at the
collected points is of course higher (at least 1 mm,
which is twice the individual LED value). This error
directly affects the accuracy of collected points. In addi-
tion, the error in tracking the object being modeled also
enters the equation, given that the two transformations
(object and probe) must be concatenated to obtain ob-
ject coordinates. (If one were to implement such a sys-
tem with separate trackers for object and probe, the cali-
bration transformation between the two trackers would
be a source of additional errors.) The object tracker is a
three-LED, six-degree-of-freedom tracker. Hence, it has
not only position error (order of magnitude 0.5 mm)
but also orientation error, thus reducing the accuracy of
points sampled far away from the object tracker LED
locations. The actual angular error is obviously depen-
dent on the size of the LED triangle used to track each
object. This is the reason we mount larger LED trian-
gles on the larger objects. The LED triangle for the tea-
pot in figure 1 is approximately 100 mm on the side,
whereas the Tiffany lamp in figure 4 has a 240 mm LED
triangle. In both cases, the LED triangles are roughly as
large as the objects, keeping the orientation component

of the error at the same order of magnitude as the posi-
tion error (approximately 1 mm). In conclusion, we can
assume average total point sampling errors of about 3
mm. These could be reduced by using more accurate
trackers (for example, tethered mechanical arms) or by
modeling fixed objects instead of tracked ones. Also, as
it turns out, our FlashPoint tracker has better accuracy
in the central area of its tracking volume (down to 0.23
mm), where we constructed most of our models.

The second accuracy issue relates to the captured tex-
tures. If point position error depends on the combined
error in object and probe trackers, texture alignment
error depends on the combined errors of these two
trackers and of the HMD tracker (because the textures
are acquired via HMD-mounted cameras). In addition,
HMD camera calibration errors can also lead to texture
alignment problems, which are potentially visible as
seams. (Details regarding our HMD hardware and soft-
ware techniques for HMD calibration are given in State
et al. (2001).) Texture resolution is a direct function of
camera resolution (low-end NTSC only, given the state
of the art for miniaturized devices suitable for HMD
mounting). Both resolution errors and additional dis-
tance-dependent texture alignment errors (resulting
from angular errors in the HMD tracker) can be allevi-
ated by holding the object being modeled close to the
HMD at texture capture time. Another possibility
(which we have not investigated) would be to use a rig-
idly mounted and very accurately calibrated high-
resolution camera (it can be bulky and heavy as opposed
to the HMD cameras) for texture acquisition. Its frus-
tum and depth of field could be displayed as wireframe
elements to the AR user, who would have to hold the
model inside it (and not in front of the HMD) to ac-
quire textures. This would have the added benefit of
easily controlled uniform lighting within the camera’s
acquisition area. Finally, the specific problems resulting
from video interlacing, another
camera-related error, were previously discussed.

Both point position and texture alignment accuracy
can be severely affected by the relative lag between
tracking devices if different kinds of trackers are used for
the three tracked components: HMD, object, and
probe. This is not the case in our implementation, how-

Figure 12. Selecting a menu item with the probe. (The grid on

the left is used to calibrate our system.)
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ever. Also, relative lag between HMD camera image
capture and tracker readings will affect texture align-
ment. In recent work not yet submitted for publication,
the relative lag between these two input streams to our
system was measured to be approximately 20–30 msec,
a fairly low value that can nevertheless lead to visible
errors if the user moves the object or the HMD quickly
during texture acquisition.

5 Results

Figure 13 shows a complete model of the Tiffany
lamp shade. The lamp is illuminated by its own light
bulb. Because the lamp is rotationally symmetric, we
made a polygonal model of a 1/6 segment of the lamp
and acquired texture for that part. After defining the
rotation axis to coincide with the axis of the lamp, we
copied and pasted the segment five times (see figure
10), each time with a 360°/6 rotation, to make a com-
plete model. Because the lamp is not exactly symmetric,
the texture shows a subtle seam between the original
and the copied triangles. (There are no cracks in the
geometry, however.) This model contains 96 vertices
and 156 triangles and was created in approximately 5
min.

Figure 14 shows a model of a shiny teapot. The han-

dle and the spout demonstrate our system’s ability to
deal with concave objects. Because these parts can be
easily occluded or can themselves occlude other parts of
the model, we worked with small parts of the object and
added them to the model one at a time. Taking advan-
tage of the symmetry of the teapot, only one side of the
model was modeled manually and then mirrored to cre-
ate the other. The color of the (physical) teapot is sensi-
tive to lighting conditions because it is made of shiny
china. We tried to keep the lighting conditions similar
for every triangle, with some (limited) success. Figure
14 shows some visible seams between triangle textures.

The teapot model consists of 111 vertices and 206
triangles. It took 30 min. to create this model including
texture, longer than for the lamp because the teapot
requires special attention for the handle and spout and
because of sensitivity to variations in lighting condi-
tions. Nevertheless, these results show that a trained
user can create good phototextured models of real ob-
jects in a short amount of time.

The frame rate was twenty frames per second during
point sampling and triangle construction. During tex-
ture capture, the frame rate slows significantly, depend-
ing on the number of triangles, especially in the auto-
matic texture capture mode (down to two frames per
second). In manual mode, there is only a momentary
slowdown (glitch) when the capture is activated.

Figure 15 shows the (untextured) model of a hand-

Figure 13. Complete Tiffany lamp shade model.

Figure 14. Complete teapot model.
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held ultrasound transducer (used for medical ultrasound
scans), also equipped with infrared LEDs. This model is
used in an experimental AR system for ultrasound-
guided needle biopsy (Rosenthal et al., 2001), as is the
biopsy needle (also attached to an LED tracker) shown
in figure 16. Figure 17 shows a still frame from the
video see-through HMD (the same one used for this
work) of the medical AR system; the two objects (trans-
ducer and needle) are visible in the foreground. Behind
them is a virtual ultrasound monitor. The occlusion re-
lationship between the two objects and virtual imagery
(such as the ultrasound monitor) can only be estab-
lished if the video images of the tracked, handheld
transducer and needle also have appropriate depth val-
ues in the z-buffer. In our medical AR system, this is

accomplished via z-buffer-only rasterization of the mod-
els created with the AR modeler described here.

6 Conclusions and Future Work

We have presented an interactive, video see-
through, augmented-reality system for modeling real
objects in a WYSIWYG manner. Our system allows the
designer to work in the same space as the real object,
providing an intuitive and user-friendly interface.

By using a 3-D probe, the user samples points on the
surface of a real object and constructs triangles using
these points. Textures are then extracted from video
images in an interactive manner. We also provide inter-

Figure 15. Left : tracked, handheld ultrasound probe used in medical AR system. Center : probe model

created in about one hour with the AR modeling system (65 vertices, 105 triangles). Right : probe with

registered model, as seen in the HMD by a user of the medical AR system.

Figure 16. Left : tracked biopsy needle used in medical AR system. Center : model (one hour, 48

vertices, 88 triangles). Right : needle with registered model, as seen in the HMD by a user of the medical

AR system.

Lee et al. 155



active methods to manipulate the model, to create new
models, or to deform existing ones. Methods to handle
potential problems such as occlusion, inconsistent light-
ing, and interlaced video capture were also discussed.

Possible future enhancements include the interactive
editing of surface normals, use of progressive scan cam-
eras to avoid resolution loss from interlaced video, bet-
ter texture storage management, and texture postpro-
cessing algorithms to even out lighting and color
inconsistencies, to improve alignment (for example,
through texture coordinate error distribution), and to
improve texture quality (the use of super-resolution
techniques may be possible with jitter-free trackers).

The models we create are only as good as the tracking
system used; their texture quality depends heavily on
HMD camera resolution and calibration accuracy. The
latter is directly affected by tracking accuracy. Thus,
most limitations of our specific implementation stem
from today’s low-accuracy 3-D tracking technology,
which remains the principal inhibiting factor for the
widespread use of AR, including systems such as the one
described here. The remaining problems should be
overcome by future low-lag video capture and rendering
engines and high-resolution, noninterlaced digital video
cameras.

Finally, combining our technique—which is robust
but only moderately accurate (depending on the
tracker)—with shape from shading and stereo correla-
tion algorithms—which are accurate but not particularly
robust)—may lead to a vastly superior hybrid technique
that could be both robust and accurate.
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