Course goals

• exposure to another language
 - C++
 - Object-oriented principles
• knowledge of specific data structures
 - lists, stacks & queues, priority queues, dynamic dictionaries, graphs
• impact of DS design & implementation on program performance
 - asymptotic complexity of algorithms
Course outline
Features of C++, object-oriented programming principles, and features of the Unix programming environment will be introduced concurrently with the study of these topics, as appropriate

Review of C++

Introduction to Unix

Review of program performance
 • time and space complexity
 • asymptotic notation
 -- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists

Stacks and Queues

Binary trees
 • representation
 • traversal

Priority queues
 • Linear lists
 • Heaps

Search trees
 • Binary search trees
 • balanced binary search trees - AVL trees

Graphs
 • representation
 • Traversal
 • Shortest paths
Course outline

Features of C++, object-oriented programming principles, and features of the Unix programming environment will be introduced concurrently with the study of these topics, as appropriate.

Review of C++

Introduction to Unix

Review of program performance
- time and space complexity
- asymptotic notation
 - searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists

Stacks and Queues

Binary trees
- representation
- traversal

Priority queues
- Linear lists
- Heaps

Search trees
- Binary search trees
- balanced binary search trees - AVL trees

Graphs
- representation
- Traversal
- Shortest paths

- objects
- classes - .h and .cpp files
- templates
- access control
 - public/ private/ protected methods
- friend classes
- inheritance
 - public/ private/ protected inheritance
- virtual functions
- abstract classes
Course outline
Features of C++, object-oriented programming principles, and features of the Unix programming environment will be introduced concurrently with the study of these topics, as appropriate.

Review of C++

Introduction to Unix

Review of program performance
- time and space complexity
- asymptotic notation
 - searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists

Stacks and Queues

Binary trees
- representation
- traversal

Priority queues
- Linear lists
- Heaps

Graphs
- representation
- Traversal
- Shortest paths
Course outline
Features of C++, object-oriented programming principles, and features of the Unix programming environment will be introduced concurrently with the study of these topics, as appropriate

Review of C++
Introduction to Unix

Review of program performance
- time and space complexity
- asymptotic notation
 -- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists
Stacks and Queues
Binary trees
 - representation
 - traversal
Priority queues
 - Linear lists
 - Heaps
Search trees
 - Binary search trees
 - balanced binary search trees
Graphs
 - representation
 - Traversal
 - Shortest paths

- bigOh/ bigTheta notation
- asymptotic worst-case complexity of algorithms
- common complexities:
 - log n
 - n
 - n log n
 - n^2, n^3, ...
- determining complexities of algorithms
 - inspection
 - recurrences
- example complexities -- sort/ search
Course outline
Features of C++, object-oriented programming principles, and features of the Unix programming environment will be introduced concurrently with the study of these topics, as appropriate.

Review of C++
Introduction to Unix
Review of program performance
 • time and space complexity
 • asymptotic notation
 -- searching (linear vs binary) & sorting

Data representation and lists
 • data representation:
 • array-based
 • linked/pointer-based
 • lists
 • ADT specification
 • representation using arrays
 • representation using linked lists
 • compare and contrast

Stacks and Queues
Hash tables

class list{//implementation in C++
 public:
 list();
 ~list();
 bool isEmpty();
 bool isFull();
 int length();
 bool Find(x,k);
 int Search(x);
 void delete(k,x);
 void insert(k,x);
 private:
};

adt linearList{
 create()
 destroy()
 isEmpty()
 isFull()
 length()
 Find(x,k)
 Search(x)
 delete(k,x)
 insert(k,x)
};
Course outline
Features of C++, object-oriented programming principles, and features of the Unix programming environment will be introduced concurrently with the study of these topics, as appropriate

- Review of C++
- Introduction to Unix
- Review of program performance
 - time and space complexity
 - asymptotic notation
 -- searching (linear vs binary) & sorting
- Data representation and lists
- Stacks and Queues
- Binary trees
 - representation
 - traversal
- Priority queues
 - Linear lists
 - Heaps
- Search trees
 - Binary search trees
 - balanced binary search trees - AVL trees
- Graphs
 - representation
 - Traversal
 - Shortest paths

- data representation:
 - array-based
 - linked/pointer-based
- lists
 - ADT specification
 - representation using arrays
 - representation using linked lists
 - compare and contrast
Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate

Review of C++
Introduction to Unix
Review of program performance
 • time and space complexity
 • asymptotic notation
 -- searching (linear vs binary) & sorting

Data representation and lists
Stacks and Queues
Binary trees
 • representation
 • traversal
Priority queues
 • Linear lists
 • Heaps
Search trees
 • Binary search trees
 • balanced binary search trees - AVL trees

Graphs
 • representation
 • Traversal
 • Shortest paths

• ADT specification
 • stack - LIFO
 • queue - FIFO
• implementation
 • representation using arrays
 • “circular” for queues
 • representation using linked lists
 • \(\Theta(1) \) time operations
 • min and max operations
Course outline
Features of C++, object-oriented programming principles, and features of the Unix programming environment will be introduced concurrently with the study of these topics, as appropriate

- Review of C++
- Introduction to Unix

Review of program performance
- time and space complexity
- asymptotic notation
 -- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists

- Stacks and Queues
- Binary trees
 - representation
 - traversal
- Priority queues
 - Linear lists
 - Heaps
- Search trees
 - Binary search trees
 - balanced binary search trees - AVL trees

Graphs
- representation
- Traversal
- Shortest paths

- a recursive definition
 - root
 - left [sub]tree
 - right [sub]tree

- implementation
 - representation using arrays
 - inefficient, except for complete trees
 - representation using linked structures
 - O(h) time operations (h: height of the tree)

- tree traversals -- recursively defined
 - preorder/ inorder/ postorder
 - each takes O(n) time (n: # elements)
Course outline
Features of C++, object-oriented programming principles, and features of the
Unix programming environment will be introduced concurrently with the study
of these topics, as appropriate
Review of C++
Introduction to Unix
Review of program performance
 • time and space complexity
 • asymptotic notation
 -- searching (linear vs binary) & sorting (insertion sort vs mergesort)
Data representation and lists
Stacks and Queues
Binary trees
 • representation
 • traversal
Priority queues
 • Linear lists
 • Heaps
Search trees
 • Binary search trees
 • balanced binary search trees
Graphs
 • representation
 • Traversal
 • Shortest paths

• ADT specification
 • create/ destroy/ isEmpty
 • insert
 • min
 • deleteMin
• implementation
 • linear list -- one of the operations is O(n)
 • binary tree -- a complete tree
 • represented using array
 • O(log n) operations
 • fast implementations (bit-manipulation)
• other operations --
 • max
 • decrease/ increase
 • delete
Course outline

Features of C++, object-oriented programming principles, and features of the Unix programming environment will be introduced concurrently with the study of these topics, as appropriate.

- **Review of C++**
- **Introduction to Unix**
- **Review of program performance**
 - time and space complexity
 - asymptotic notation
 - searching (linear vs binary)
- **Data representation and lists**
 - Stacks and Queues
 - Binary trees
 - representation
 - traversal
 - Priority queues
 - Linear lists
 - Heaps
- **Search trees**
 - Binary search trees
 - balanced binary search trees - AVL trees
- **Graphs**
 - representation
 - Traversal
 - Shortest paths

- **Dynamic dictionaries** -- ADT
 - create/ destroy
 - insert
 - delete
 - find

- **Implementation using binary trees**
 - bst’s -- operations are O(h)
 - inorder traversal sorts the elements
 - balanced bst’s -- the AVL tree
 - height is always O(log n)
 - insert/ delete may involve rotations
 - RR/ LL/ RL/ LR
Course outline
Features of C++, object-oriented programming principles, and features of the Unix programming environment will be introduced concurrently with the study of these topics, as appropriate

Review of C++

Introduction to Unix

Review of program performance
- time and space complexity
- asymptotic notation
 -- searching (linear vs binary) & sorting (insertion sort vs mergesort)

Data representation and lists

Stacks and Queues

Binary trees
- representation
- traversal

Priority queues
- Linear lists
- Heaps

Search trees
- Binary search trees
- balanced binary search trees - AVL trees

Graphs
- representation
- Traversal
- Shortest paths

- definition: $G=(V,E)$, $|V|=n$; $|E|=m$;
 - lots of terminology
- representation
 - adjacency matrices
 - adjacency lists
 - compare and contrast
- example operations
 - topological sort of DAG's
 - cycle detection
 - directed and undirected graphs
 - shortest paths
 - the Warshall-Floyd algorithm