
Compressing Hexahedral Volume Meshes

Martin Isenburg∗ Pierre Alliez†

University of North Carolina INRIA
at Chapel Hill Sophia-Antipolis

Abstract

Unstructured hexahedral volume meshes are of partic-
ular interest for visualization and simulation applications.
They allow regular tiling of the three-dimensional space and
show good numerical behaviour in finite element compu-
tations. Beside such appealing properties, volume meshes
take huge amount of space when stored in a raw format. In
this paper we present a technique for encoding connectivity
and geometry of unstructured hexahedral volume meshes.

For connectivity compression, we extend the idea of cod-
ing with degrees as pioneered by Touma and Gotsman [30]
to volume meshes. Hexahedral connectivity is coded as a
sequence of edge degrees. This naturally exploits the reg-
ularity of typical hexahedral meshes. We achieve compres-
sion rates of around 1.5 bits per hexahedron (bph) that go
down to 0.18 bph for regular meshes. On our test meshes
the average connectivity compression ratio is 1 : 162.7.

For geometry compression, we perform simple parallel-
ogram prediction on uniformly quantized vertices within the
side of a hexahedron. Tests show an average geometry com-
pression ratio of 1 : 3.7 at a quantization level of 16 bits.

1. Introduction

Unstructured volume meshes can be found in a broad
spectrum of scientific and industrial applications including
fluid mechanics, thermodynamics and structural mechan-
ics, where such volumetric data is used for both, compu-
tation and visualization. Traditionally unstructured volume

∗isenburg@cs.unc.edu
†pierre.alliez@sophia.inria.fr

meshes were composed of tetrahedral elements, but recently
also other polyhedra have become popular. Especially hex-
ahedral volume meshes are often used, because of their nu-
merical advantages in finite element computations.

The generation of hexahedral meshes turned out to be
much more complex than that of tetrahedral meshes, but the
research efforts of the last years have produced several ef-
ficient techniques [29, 24, 25, 5, 21] (see [19] for a more
complete list). At the same time researchers have proposed
strategies for efficient visualization of unstructured volume
meshes using screen-based ray-casting [8, 3, 34] or object-
based sweeping [32, 6, 18] (see [7] for a survey about ren-
dering unstructured volume grids).

The basic ingredients of unstructured hexahedral volume
meshes can be classified into three things: mesh connectiv-
ity, that is the incidence relation among the vertices, edges,
faces, and hexahedra, mesh geometry, that is the 3D po-
sition associated with each vertex, and application-specific
mesh properties such as density or pressure values that are
typically attached to the vertices.

The standard representation for hexahedral meshes uses
three floating-point coordinates per vertex to store geometry
and eight integer indices per hexahedron to store connectiv-
ity. For hexahedral meshes of v vertices and h hexahedra,
this requires 96v bits for the geometry and 256h bits for
the connectivity, if standard 4 byte data types are used. The
mesh c1 from our test set has 78618 vertices and 71572 hex-
ahedra. The storage requirements for geometry and connec-
tivity of this mesh can be estimated as 3.23 mega-bytes.

For archival and fast transmission of the data more com-
pact representations are beneficial. In order represent mesh
geometry more compactly, each coordinate can be quan-

1

tized with, for example, 16 bits. For data sets destined to be
used in exact computations a loss in precision is sometimes
not acceptable. However, for the purpose of volume mesh
visualization this is usually not a problem as long as visual
artifacts are avoided. In order represent mesh connectivity
more compactly, each index can be specified with �log2 v�
bits by crossing the byte boundaries. For the mesh c1 this
more compact representation still requires 1.69 mega-bytes.
Using the compression technique proposed here, this mesh
can be represented at the same quality with less than 84 kilo-
bytes—a compression by a factor of twenty.

Although we only focus on compression of connectivity
and geometry, the same technique used to compress vertex
positions can be adapted to also compress the properties.
There have been several publications concerning the com-
pression of tetrahedral volume meshes [27, 9, 22, 34], but
we are not aware of a compression scheme that can handle
hexahedral volume meshes.

We code the connectivity of a hexahedral mesh mainly
as a sequence of its edge degrees that is subsequently com-
pressed with an arithmetic coder [33]. Degree-based con-
nectivity coding has already been successfully used for sur-
face meshes. It was first proposed for purely triangular
meshes [30] and was later generalized to the polygonal
case [11, 15]. In this paper we extend this approach to vol-
ume meshes. We code the geometry of a hexahedral mesh
as a sequence of corrective vectors that are also compressed
with arithmetic coding. Whenever possible, a vertex posi-
tion is predicted within the side of a hexahedron using a
single parallelogram prediction [30].

2. Related Work

Compared to the number of publications on compression
of polygonal surface meshes [4, 28, 30, 10, 20, 23, 2, 13, 14,
1, 11, 15, 16, 17] there are relatively few on compression of
polyhedral volume meshes [27, 9, 22, 34]. Reason for this is
probably the fact that volume meshes are not as widespread
as surface meshes. Volumetric data sets are mostly found in
scientific and industrial applications.

The immense amount of data required to represent
polyhedral volume meshes makes compression even more
worthwhile than in the surface case. This is especially true
for the connectivity: The standard indexed representation
uses 6/4 indices per vertex for triangular/quadrilateral sur-
face meshes, but approximately 12/8 indices per vertex for
typical tetrahedral/hexahedral volume meshes.

The challenge to compress the connectivity of tetrahe-
dral volume meshes has first been approached by Szymczak
and Rossignac [27]. Their “Grow&Fold” technique codes
tetrahedral connectivity using only slightly more than 7 bits
per tetrahedron for meshes with a manifold border surface.
The encoding process builds a tetrahedral spanning tree that
is rooted in an arbitrary border triangle. This tree is en-

coded with 3 bits per tetrahedron that indicate for all faces
but the entry face whether the spanning tree will continue
growing. The boundary of the tetrahedron spanning tree, a
triangular surface mesh, has an associated a folding string
that is represented with 4 bits per tetrahedron. This string
describes how to “fold” and occasionally “glue” the bound-
ary triangles of the spanning tree to reconstruct the original
connectivity. The indices associated with the “glue” opera-
tions lift the bit-rate above 7 bits per tetrahedron, but their
rare occurrence introduces only a small overhead.

Gumhold et al. have extended their connectivity coder
for triangular surface meshes [10] to tetrahedral volume
meshes [9]. Their algorithm performs a space growing pro-
cess that maintains a cut-border, a (possibly non-manifold)
triangle surface mesh, that separates at any time the pro-
cessed tetrahedra from the unprocessed ones. Each itera-
tion of the algorithm processes a triangle on the cut-border
either by declaring it a “border” face or by including its ad-
jacent tetrahedron into the cut-border. The latter requires
to specify the fourth vertex of the tetrahedron: Either it is
a “new vertex” or it is already on the cut-border, in which
case a “connect” operation is needed. This operation uses
a local indexing scheme to specify the fourth vertex on the
cut-border. Because of the order in which the cut-border
triangles are processed, the fourth vertex is often very close
to the processed triangle, which results in small local in-
dices. The average bit-rate for connectivity is about 2 bits
per tetrahedron, a result that has not been challenged since.

Besides coding the mesh connectivity, the authors also
describe two approaches to compress mesh geometry. Ver-
tex coordinates are compressed when a vertex is encoun-
tered for the first time (e.g. during the “new vertex” oper-
ation). The first approach uses pre-quantized vertices, pre-
dicts their position as the center of the currently processed
cut-border triangle, and codes only a corrective vector. The
second approach quantizes a vertex after expressing it in a
local coordinate frame whose z-axis is the normal of the
currently processed cut-border triangle. In both approaches
the resulting 16-bits correction vectors are split into four
packages of 4 bits, which are then entropy encoded with
separate arithmetic contexts. The authors report that more
sophisticated prediction schemes failed, essentially because
“tetrahedral meshes are too irregular to predict vertex coor-
dinates much better than with the proximity information of
the connectivity alone”. At 16 bits of precision they report
an average geometry compression ratio of 1 : 1.6.

Yang et al. propose a compression technique for tetra-
hedral meshes that allows to streamline decoding and ren-
dering of a volume mesh [34]. Their technique can signif-
icantly reduce the memory requirements of a ray-casting-
based volume mesh renderer. The contribution of tetrahedra
to the intersected rays is incrementally composited as they
are decompressed. As soon as a decoded tetrahedron is no

Compressing Hexahedral Volume Meshes, Isenburg, Alliez 2 appeared in Pacific Graphics ’2002

longer needed it is discarded and its memory is de-allocated.
This allows to render compressed tetrahedral meshes with-
out ever having to store a completely uncompressed mesh.

First, they encode the surface formed by the border trian-
gles using a triangle mesh compression scheme [20]. Then,
they grow the border surface inwards by processing the
adjacent tetrahedra using a breadth-first traversal. Similar
to [9] a tetrahedron is encoded by specifying its fourth ver-
tex. In case the fourth vertex was already visited they spec-
ify it using one of three different operations instead of the
universal “connect” from [9]. When the fourth vertex is
connected across a “face” or an “edge”, they use a local in-
dex into an enumeration of adjacent faces or adjacent edges.
Otherwise they use a global “index” into the list of all al-
ready visited vertices. The resulting connectivity compres-
sion rates are slightly above those of [9].

Simplification techniques for tetrahedral meshes have
been proposed independently by Staadt and Gross [26] and
Trotts et al. [31]. An iterative process collapses edge af-
ter edge, thereby removing all tetrahedra incident to them.
At each stage it picks the edge whose collapse results in the
minimal error according to some cost function. This simpli-
fication technique can be used to create a single mesh of a
certain resolution, but it also allows to construct a progres-
sive multi-resolution representation from which meshes at
various levels of resolution can be extracted on the fly. The
latter requires to store a sequence of inverse edge collapse
operations, often referred to as vertex splits.

A compact and progressive encoding of the sequence of
vertex splits was proposed by Pajarola et al. [22]. Instead
of coding each vertex split individually, their Implant Spray
technique codes entire batches of independent refinement
operations at once. This reduces the average cost for iden-
tifying a split vertex from O(log2v) to O(1). Additionally
the skirt of each split vertex has to be encoded, which spec-
ifies the set of faces that are split. The bit-rates for this pro-
gressive representation of tetrahedral mesh connectivity are
reported to be less than 6 bits per tetrahedron. The authors
note that the progressive nature of the connectivity encod-
ing suggests that efficient geometry compression should be
possible, but no experimental results are given.

3. Preliminaries

A hexahedral mesh or a hexahedralization is a collection
of hexahedra that intersect only along shared faces, edges,
or vertices. A hexahedron is a polyhedron that has six faces,
eight vertices, and twelve edges, where each edge is adja-
cent to two faces, each vertex is adjacent to three faces and
each face is a quadrilateral. A face is an interior face if it
is shared by two hexahedra, otherwise it is a border face.
Around each edge we find a cycle of faces and hexahedra.
An edge is an interior edge if all its surrounding faces are
interior faces, otherwise it is a border edge. A vertex is an

interior vertex if all its incident edges are interior edges,
otherwise it is a border vertex. In the following we denote
the number of hexahedra with h, the number of faces with
f = fi + fb, the number of edges with e = ei + eb, the
number of vertices with v = vi + vb, where i stands for
interior and b for border. A volume mesh has genus g if
one can perform cuts through g closed border loops with-
out disconnecting the underlying volume; such a volume is
topologically equivalent to a sphere with g handles.

A volume mesh is manifold if each edge has a neighbor-
hood that is homeomorphic to a cylinder or a half-cylinder
and each vertex has a neighborhood that is homeomorphic
to a sphere or a half-sphere. Edges with half-cylinder neigh-
borhoods and vertices with half-sphere neighborhoods are
on the border. The border of a manifold volume mesh is a
manifold surface mesh.

The degree of an edge is the number of faces adjacent to
the edge. For interior edges this corresponds to the num-
ber of hexahedra adjacent to the edge. For border edges
this corresponds to the number of hexahedra adjacent to the
edge plus the number of border openings. In the manifold
case a border edge has only one border opening. The de-
grees of interior edges tend to have a different distribution
(e.g. tend to be higher) than the degrees of border edges.

Two hexahedra are face-adjacent if they share a face,
edge-adjacent if they only share an edge, and vertex-
adjacent if they only share a vertex. A hexahedral mesh
may consist of one or more connected components. A com-
ponent is face-connected if there is a path of face-adjacent
hexahedra between any two hexahedra. A component is still
edge-connected if there is at least a path of edge-adjacent
hexahedra between any two hexahedra. Otherwise the com-
ponent is only vertex-connected.

4. Coding Connectivity with Degrees

The concept of coding connectivity with degrees was in-
troduced by Touma and Gotsman [30] for the case of tri-
angular surface meshes, which can be coded through a se-
quence of vertex degrees. The achieved bit-rates are mainly
dictated by the distribution of vertex degrees. This automat-
ically adapts to regularity in the mesh, which we loosely de-
fine as how regular it tiles the domain it lives in. A surface
mesh consisting of only equilateral triangles constitutes a
perfectly regular tiling of the 2D domain. Since the degree
of all vertices of such a mesh is 6, the vertex degree distri-
bution has an entropy of zero.

Degree coding was recently generalized to polygonal
connectivity [11, 15] by using both, a sequence of vertex
degrees and a sequence of face degrees. The adaptivity of
the coding scheme naturally extends to the other two regular
tilings of the 2D domain: using squares, all face degrees and
also all vertex degrees are 4; and using regular hexagons, all
face degrees are 6 and all vertex degrees are 3.

Compressing Hexahedral Volume Meshes, Isenburg, Alliez 3 appeared in Pacific Graphics ’2002

roof

stephut bridge

corner

gap

pit

den

tunnel

Figure 1. The nine different configurations in which a hexahedron (blue) can be face-adjacent
to the hull (green). The characteristics of each configuration are summarized in Table 1. The
faces of the hexahedron that are not adjacent to the hull are its free faces, the edges of the
hexahedron that are adjacent to two free faces are its free edges, and the vertices of the hexahe-
dron that are adjacent to three free faces are its free vertices. The focus face is the face on the
hull that contains the arrow. It has no zero-slots for the configurations “hut” and “roof”, one
zero-slot for “step’, two zero-slots for the “corner”, “bridge”, and “tunnel”, three zero-slots for
“gap”, and four zero-slots for “pit” and “den”.

hut

bridge

step

Figure 2. The shown “hut”
configuration has a local edge-
adjacency and also a vertex-
adjacency with the hull (both
marked in red), the “step” con-
figuration has a global edge-
adjacency, and the “bridge”
configuration has a known
edge-adjacency.

In the following we show that the concept of degree cod-
ing can be extended to compress the connectivity of hexa-
hedral meshes using its edge degrees. Going from surface
meshes to volume meshes we can think of the vertices get-
ting stretched into edges; what was a vertex degree in the
surface mesh, becomes an edge degree in the volume mesh.

Hexahedral meshes allow a regular tiling of the 3D do-
main. A cube is a hexahedron whose six faces are square
and meet each other at right angles. It is the only of the
five platonic solids that regularly tiles the 3D domain. The
interior edges of a perfectly regular hexahedral mesh all

have degree 4. Fortunately, many hexahedral meshes found
in practice are fairly regular and exhibit a low dispersion
in edge degrees. The equilateral tetrahedron, on the other
hand, does not permit a tiling of 3D space. In fact, tetra-
hedral meshes seem irregular by nature. Although degree
coding can be adapted for tetrahedral connectivity, initial
measurements on the edge degree distributions of various
tetrahedral meshes suggests that the achievable compres-
sion rates will be lower than those of [9, 34].

5. Compressing the Connectivity

The encoder and the decoder perform the same space
growing process to compress and uncompress a connected
component of a hexahedral mesh. Each iteration of the algo-
rithm processes a hexahedron that is adjacent to one or more
previously processed hexahedra. In face-connected com-
ponents this hexahedron is always face-adjacent; in edge-
connected or vertex-connected components this hexahedron
is sometimes only edge-adjacent or vertex-adjacent. In or-
der to simplify the description of our compression method
we assume face-connected components. The two necessary
extensions for dealing with components that are only edge-
connected or vertex-connected are straight-forward.

Four arithmetic contexts [33] are used for compressing
the symbols that encode hexahedral connectivity. One for
border edge degrees, one for interior edge degrees, and two
binary contexts. One of two will distinguish border ele-
ments from interior elements, and the other will mark the

Compressing Hexahedral Volume Meshes, Isenburg, Alliez 4 appeared in Pacific Graphics ’2002

Figure 3. A close-up on the fru mesh at the beginning of the encoding process. Final faces are dark blue, incomplete faces are
light blue, the focus face is pink, the slots are red, and all hexahedra face-adjacent to the hull are shown in green: The leftmost frame
shows the initial hull. The next two frames show the hull after processing the first two tetrahedra. The rightmost frame shows the
hull after 37 tetrahedra have been processed.

of hut roof step corner bridge tunnel gap pit den
adjacent faces 1 2 2 3 3 4 4 5 6
zero-slots 0 0 1 2 2 2 3 4 4
free faces 5 4 4 3 3 2 2 1 -
free vertices 4 - 2 1 - - - - -
free edges 8 4 5 3 2 - 1 - -

(global) 4 - 1 - - - - - -
(local) 4 - 4 3 - - - - -
(known) - 4 - - 2 - 1 - -

Table 1. This table characterizes the nine configurations
in which a hexahedron can be face-adjacent to the hull (see
Figure 1). It lists the number of adjacent faces, the number
of zero-slots of the focus face, and the number of free ver-
tices, free faces, and free edges. The free edges are further
classified into the number of potential candidates for global,
local, or known edge-adjacency with the hull (see Figure 2).

infrequent occurances of “join” operations discussed below.
The algorithm maintains a hull that encloses at any time

all processed hexahedra. This hull is a quadrilateral surface
mesh, possibly non-manifold, whose edges and faces are
called hull edges and hull faces respectively. The hull faces
are classified as final faces and incomplete faces. A final
face is a border face whose corresponding hexahedron has
already been processed. An incomplete face is an interior
face that has a processed hexahedron on one side and an
unprocessed hexahedron on the other side. Each hull edge
maintains a slot-count that specifies the remaining number
of faces still to be added between its two adjacent hull faces.
A hull edge is a zero-slot if its two hull faces are incomplete
and its slot-count is zero. A hull edge is a border-slot if
one of its hull faces is final and the other incomplete and its
slot-count is one. The number of zero-slots and border-slots
around an incomplete face is always between 0 and 4.

The initial hull is defined around a border face by record-
ing the degrees of its four border edges. It has one final face,
one incomplete face, and four hull edges. The slot-count of
the hull edges is initialized to their degree minus one. In
each iteration the algorithm selects an incomplete face as
the focus face and processes the unprocessed hexahedron it
is adjacent to (see Figure 3). Processing of a (face-adjacent)

hexahedral mesh component is completed, when the hull
consists only of final faces.

The currently processed hexahedron can be in one out
of nine configurations face-adjacent to the hull; these are
shown in Figure 1 and characterized in Table 1. Both, en-
coder and decoder, can determine the actual configuration
based on the number of zero-slots in the vicinity of the fo-
cus face. Only when the focus face has no zero-slots, the
ambiguity between the “hut” and the “roof” configuration
needs to be coded explicitly. In case of the latter the encoder
also needs to specify the incomplete face that the “roof” is
formed with. Processing the hexahedron involves:

• recording if its free faces are border or interior faces;

• recording if its free edges are border or interior edges;

• recording the degrees of its free edges;

• predicting the positions of its free vertices;

• and updating the hull and the slot-counts appropriately.

The edge degree distribution of border edges is different
from that of interior edges. While border edge degrees typ-
ically have a spread around 3, interior edge degrees average
around 4 as documented in Table 2. It is therefore beneficial
to compress them with different arithmetic contexts.

5.1. Propagating the Border Information

The proposed algorithm only needs to distinguish border
faces from interior faces. Using this information all edges
can eventually be classified as border or interior. However,
in order to compress an edge degree with the appropriate
arithmetic context, we need know this in the moment its
degree is encoded. By using simple rules and by selecting
a suitable focus face (see Subsection 5.3) we can propagate
the information about the border. Most of the time encoder
and decoder can deduce whether faces or edges are on the
border without explicitly encoding it. The rules are:

rule R1 A free face is a border face if it connects to a border face
across an edge with a slot-count of zero.

rule R2 A free face is an interior face if any adjacent edge is
known to be an interior edge.

rule R3 A free edge is a border edge if any adjacent face is known
to be a border face.

Compressing Hexahedral Volume Meshes, Isenburg, Alliez 5 appeared in Pacific Graphics ’2002

Figure 4. Propagating the border information in the
“step” configuration: The free face at the top is a border
face because of rule R1. All other free faces are interior
faces because of rule R2. The two free edges at the top are
border edges because of rule R3. For the remaining three
free edges this needs to be specified explicitly. Usually
these would all be interior edges, but this example shows
a rare scenario where one of them is a border edge.

The example in Figure 4 illustrates these rules. When-
ever none of the rules applies a binary arithmetic context is
used to encode explicitly if an edge or a face is on the border
or not. Using these rules on our test meshes approximately
99 percent of all border elements are classified as such. The
arithmetic coder is mostly used to specify that an edge or a
face is interior. This requires only very few bits because the
same symbol will be coded again and again.

5.2. Join Operations

For every “roof” configuration it is necessary to specify
the incomplete face on the hull that forms the “roof”. Fur-
thermore, sometimes free edges are edge-adjacent or free
vertices are vertex-adjacent to the hull as illustrated in Fig-
ure 2. Instead of recording the degree of such an edge or
predicting the position of such a vertex, the encoder has
to specify how they are adjacent to the hull such that the
decoder can replay exactly the same updates. We use the
following “join” operations for this:

Joining free vertices is done by identifying the respective
vertex with an index between 0 and the current count of
vertices vcc minus one, which is coded with log2(vcc) bits.

Joining free edges is done by identifying the respective
hull edge, which has at least two slots, and by specifying
how the “join” divides its slot-count.

We identify the respective hull edge in three different
ways, depending on the type of edge-adjacency: known, lo-
cal, or global (see Figure 2). For the known type we know
the two vertices in whose linked lists the respective hull
edge must appear. In most cases this will leave us with a

unique candidate. For the local type we know only one ver-
tex in whose linked list the respective hull edge must appear.
Its position in this list is addressed with an index between 0
and the current number of edges es>=2 of this list that have
a slot-count of 2 or higher minus one, which is coded with
log2(es>=2) bits. For the global type we must furthermore
explicitly address one of the vertices in whose linked list the
respective hull edge appears using log2(vcc) bits.

Specifying how the “join” divides the s slots of the re-
spective hull edge can be coded with log2(s − 2) bits, as 2
slots are consumed during the “join”.

Joining the “roof” is done by identifying one of the hull
edges of the respective incomplete face. We specify this
edge, which has at least one slot, by addressing the vertex
in whose linked list it appears and its position in this list.
Addressing the vertex is again coded with log2(vcc) bits.
The position of the respective hull edge in this list is ad-
dressed with an index between 0 and the current number
of edges es>=1 of this list that have a slot-count s of 1 or
higher minus one, which is coded with log2(es>=1) bits.

mesh border edge degrees interior edge degrees
name total 2 3 4 >4 total 2 3 4 5 >5

hanger 768 .17 .77 .06 – 149 – .01 .98 .01 –
ra 792 .17 .79 .04 – 856 – .03 .95 .02 –

bump2 1780 .08 .88 .03 .01 2708 – .04 .94 .01 –
test 2928 .12 .87 .01 – 5774 – – 1.0 – –

mdg-1 3004 .06 .94 – – 9676 – .01 .98 .01 –
c2 3924 .07 .91 .02 – 10247 – .02 .96 .02 –
fru 2872 .04 .97 – – 11689 – .03 .96 .02 –

shaft 8788 .08 .90 .02 .01 16392 .01 .03 .95 .02 .01
warped 4800 .05 .95 – – 21660 – – 1.0 – –
hutch 2336 .03 .94 .02 – 23381 – .01 .98 .01 –

c1 27428 .03 .97 .01 – 201190 – .01 .98 .01 –
average .08 .90 .02 .00 .00 .02 .97 .01 .00

Table 2. This table reports the degree distribution for bor-
der and interior edges in our data sets. Border edge degrees
spread around 3; interior edge degrees spread around 4.

5.3. Minimizing the Number of Join Operations

Coding “join” operations requires local or even global
indexing. This is expensive and we would like to do this
as seldom as possible. If the mesh has handles then there
will always be at least one “roof” configuration, one global
edge-adjacency, or one vertex-adjacency per handle (see
Figure 5). Unfortunately these can also happen otherwise
and the frequency of their occurance is strongly dependent
on the strategy used for selecting the next focus face. This
problem is very similar to the occurance of “split” opera-
tions in surface mesh connectivity coding [30, 13, 10, 23].

Compressing Hexahedral Volume Meshes, Isenburg, Alliez 6 appeared in Pacific Graphics ’2002

Figure 5. Five freeze-frames from
the encoding process of the test mesh.
Final faces are dark blue, incomplete
faces are light blue, the focus is pink,
and the slots are red. Furthermore all
hexahedra face-adjacent to the hull are
illustrated in green. Between frames d)
and e) the handle of the mesh is pro-
cessed with a “roof” configuration.

Adaptive traversal strategies have been proposed that suc-
cessfully reduce the number of these operations [1, 11].

The heuristics used by adaptive traversal strategies pick
a focus such that the creation of cavities during the region
growing process is avoided. The focus is first moved to ver-
tices on the boundary that are nearly completed (e.g. that
have a low slot-count). We use a similar heuristic for avoid-
ing the creation of cavities in our space growing process.
The focus is moved to an incomplete face with the highest
number of zero-slots. This strategy is very successful on
our set of hexahedral meshes. Only for one data set, the
hutch mesh, we need a “join” operation that is not due to a
handle. This happens because during encoding the hull has
temporarily the topology of a torus (see Table 4).

In case there is no face with zero-slots, a face with
border-slots is selected as the focus face. This increases the
success rate of the border propagation described earlier. If
there is also no face with border-slots, an arbitrary incom-
plete face is selected in some agreed-upon way.

6. Compressing the Geometry

We use the traversal order on the vertices induced by the
connectivity coder to compress their associated positions
with a predictive coding scheme. In order to use such a
scheme the floating-point positions are first uniformly quan-
tized using a user-defined precision of for example 10, 12,
14, 16 or even 18 bits per coordinate. This introduces a
quantization error as some of the floating-point precision
is lost. In some applications it might therefore be prefer-
able not to compress the mesh geometry. Then a prediction
rule is applied that represents each quantized position as an
offset vector that corrects the predicted position to the ac-
tual position. The values of these corrective vectors tend

to spread around zero, which means they can be efficiently
compressed with, for example, an arithmetic coder [33].

For compressing the vertex positions of triangle meshes
several prediction methods have been proposed. The sim-
plest prediction method that predicts the next position as
the last position was suggested by Deering [4]. This is also
known as delta coding. A more sophisticated scheme is
the spanning tree predictor by Taubin and Rossignac [28]
that uses a weighted linear combination of previously de-
coded vertices; the particular coefficients used can be opti-
mized for each mesh. A similar, but much simpler scheme is
the parallelogram predictor introduced by Touma and Gots-
man [30]. This is the predictor we will use.

init

hut

0

4

12

3

56

7

8

0

12

3

v0 0
v1 v0
v2 v1
v3 v0 - v1 + v2
v4 2v0 – v8 (or v0)
v5 v1 – v0 + v4
v6 v2 – v1 + v5
v7 v3 – v2 + v6

vertex prediction rule

Figure 6. This figure illustrates how vertex positions are
predicted: The rules for v0 to v3 are only used for the ver-
tices of the initial hull. All other vertices are predicted dur-
ing a “hut”, a “step, or a “corner” configuration using the
rules for v4 to v7. The first “hut” configuration needs to use
a different prediction rule for v4, since v8 will not exist.

Compressing Hexahedral Volume Meshes, Isenburg, Alliez 7 appeared in Pacific Graphics ’2002

This scheme predicts vertex positions to complete a par-
allelogram spanned by the three previously processed ver-
tices. Good predictions are those that predict a position
close to its actual position. In the triangle mesh case the par-
allelogram predictor gives good predictions if used across
two triangles that are in a fairly planar and convex position
to each other. Consequently, the parallelogram predictor
gives bad predictions if used across triangles that are in a
highly non-planar and/or non-convex position.

When compressing polygonal meshes it is possible to
improve the number of good predictions by letting the
polygons dictate where to apply the parallelogram predic-
tor [12]. Since polygons tend to be fairly planar and fairly
convex, it is beneficial to make predictions within a polygon
rather than across polygons. This, for example, avoids poor
predictions due to a crease angle between polygons.

In similar spirit we predict most vertex positions within
the side of a hexahedron in the moment they are first en-
countered using the rules illustrated in Figure 6. Four ver-
tices are encountered during initialization of the hull, all
others are encountered as free vertices of a “hut”, “step”, or
“corner” configuration. The first vertex v0 has no obvious
predictor and is predicted as 0. Also the next two vertices
v1 and v2 cannot yet use parallelogram prediction and are
predicted as a previously processed position. This makes a
systematic prediction error, but there will be only two such
predictions per mesh component. For most following vertex
positions we use the parallelogram predictor. An exception
is vertex v4 of the “hut” configuration, which is predicted
by extending the ray from v8 to v0 (if vertex v8 exists).

Predictive geometry compression does not scale with in-
creasing precision. The achievable compression ratio is
strongly dependent on the number of precision bits. Since
this technique mainly predict away the high-order bits, the
compression ratios decrease if more precision (= low bits)
is added. This is clearly demonstrated by the results in Ta-
ble 3, which reports the performance of our geometry com-
pression scheme at different levels of precision.

7. Implementation and Results

The data structures used by encoder and decoder are
shown in Figure 7. The spin-edges that store mesh con-
nectivity are a straight-forward extension of standard twin-
edges and are similar to those used in [18]. Each hexahe-
dron uses 24 spin-edges, 4 per face, and also border faces
are represented explicitly. Therefore each face has two sets
of 4 spin-edges, whose list pointers are used to maintain
two kinds of single-linked lists during encoding and decod-
ing. One set is used to link all spin-edges a vertex has on
the hull to its edge list pointer. These lists are used to
address an edge during a “join” operation. The other set is
used to link spin-edges on the hull that either have border-
slots, or one, two, three, or four zero-slots into five priority

mesh 10 bits 12 bits 14 bits 16 bits 18 bits
name bpv ratio bpv ratio bpv ratio bpv ratio bpv ratio

hanger 11.2 2.7 15.4 2.3 19.6 2.1 23.2 2.1 26.5 2.0
ra 14.5 2.1 19.9 1.8 25.2 1.7 30.8 1.6 36.2 1.5

bump2 9.5 3.1 14.2 2.5 19.1 2.2 24.4 2.0 29.8 1.8
test 1.8 17.0 3.3 11.0 4.3 9.8 5.9 8.2 6.5 8.3

mdg-1 5.3 5.6 7.7 4.7 10.1 4.2 12.3 3.9 14.4 3.8
c2 5.0 6.0 7.5 4.8 10.7 3.9 14.2 3.4 17.6 3.1
fru 7.1 4.2 12.0 3.0 17.1 2.5 23.1 2.1 29.1 1.9

shaft 6.8 4.4 10.6 3.4 15.2 2.8 19.9 2.4 24.8 2.2
warped 3.4 8.8 5.1 7.1 7.9 5.3 10.5 4.6 13.2 4.1
hutch 8.1 3.7 11.6 3.1 16.1 2.6 19.9 2.4 23.9 2.3

c1 1.5 19.7 2.7 13.3 4.1 10.2 5.9 8.1 8.0 6.8
average 7.0 5.2 4.3 3.7 3.4

Table 3. This table reports bit-rates for compressed geom-
etry in bits per vertex (bpv) at different quantization levels
and gives the corresponding compression ratio compared to
uncompressed geometry. The bit-rate for uncompressed ge-
ometry is simply three times the number of precision bits.

class SpinEdge { class Vertex {
Vertex* vertex; int index;
SpinEdge* next; SpinEdge* edge list;
SpinEdge* inv; float p[3];
SpinEdge* spin; }
SpinEdge* list;
int on border; SpinEdge* face list[5];
int slots; Vertex* permutation[];

}

Figure 7. The data structures used for compression: The
connectivity of the hexahedral mesh is captured by the
next, inv, and spin pointers. The geometry is attached
by the vertex pointer. The list pointer is used for all
linked-lists: One list per vertex, starting at the edge list
pointers, links all incomplete edges incident to a vertex.
Furthermore five lists, starting at the face list pointers,
link incomplete faces that have either border-slots, or one,
two, three, or four zero-slots.

lists. These five lists are used to select the next focus face.
Spin-edges are inserted into and removed from a list at most
once. After leaving the hull they are not explicitly deleted,
but marked invalid and removed the next time encountered.
Hence, maintaining these lists has a linear time complexity.

Compression results for connectivity and geometry for a
set of eleven test meshes are listed in Table 4. The bit-rates
for connectivity are strongly dependent on the compacity of
the mesh, which can be characterized by the ratio of border
elements. The fraction of border vertices vb/v and border
edges eb/e, for example, but also the number border faces
per hexahedron fb/h can be used as a measure of compac-
ity. The less compact a mesh, the bigger the impact of the
costs for encoding its border. The hanger mesh, for exam-

Compressing Hexahedral Volume Meshes, Isenburg, Alliez 8 appeared in Pacific Graphics ’2002

ple, is closer to a surface mesh than to a volume mesh. Al-
though its bit-rate of 5.30 bits per hexahedron seems high,
expressed as 2.65 bits per vertex it is comparable to results
in surface connectivity compression.

8. Summary and Future Work

We have introduced the first scheme for compressing
hexahedral volume meshes. The connectivity is coded using
an edge-degree based approach that naturally adapts to the
regularity typically found in hexahedral meshes. For regu-
lar meshes the bit-rates go down to 0.18 bits per hexahedron
while averaging at around 1.5, which corresponds to a com-
pression ratio of 1 : 162. The geometry is compressed by
parallelogram prediction within a hexahedron, leading to a
compression ratio of 1 : 3.7 at a quantization level of 16
bits. Furthermore, we describe a data structure well suited
to efficiently implement the selection strategy for the focus
face and maintain the hull during encoding and decoding.

In the future we plan to generalize the degree-based ap-
proach to unstructured volume meshes containing arbitrary
polyhedra. The final goal is an universal degree-based coder
for irregular surface and volume meshes that obtains bit-
rates competitive to those of a specialized coder. We would
also like to compute a combinatorial worst-case analysis for
our hexahedral connectivity compression rates.

9. Acknowledgements

We thank several researchers for providing their data
sets: Alla Sheffer for bump2, fru, shaft, c1, and c2, Steven
Owen for test, mdg-1, and warped, and Scott Mitchell for
hanger, hutch, and ra. This work was done while both au-
thors were at INRIA, Sophia-Antipolis and was supported
in part by the ARC TeleGeo grant from INRIA.

References

[1] P. Alliez and M. Desbrun. Valence-driven connectivity encoding for
3D meshes. In Eurographics’01 Conf. Proc., pages 480–489, 2001.

[2] C. Bajaj, V. Pascucci, and G. Zhuang. Single resolution compression
of arbitrary triangular meshes with properties. In Data Compression
Conference’99 Conference Proceedings, pages 247–256, 1999.

[3] P. Bunyk, A. Kaufmann, and C. Silva. Simple, fast, and robust ray
casting of irregular grids. In Proceedings of Dagstuhl’97, pages 30–
36, 2000.

[4] M. Deering. Geometry compression. In SIGGRAPH’95 Conference
Proceedings, pages 13–20, 1995.

[5] D. Eppstein. Linear complexity hexahedral mesh generation. Com-
putational Geometry Theory and Applications, 12:3–16, 1999.

[6] R. Farias, J. Mitchell, and C. Silva. Zsweep: An efficient and exact
projection algorithm for unstructured volume rendering. In Proceed-
ings of Volume Visualization Symposium’00, pages 91–99, 2000.

[7] R. Farias and C. Silva. Out-of-core rendering of large unstructured
grids. IEEE Computer Graphics & Applications, 21(4):42–50, 2001.

[8] M. Garrity. Raytracing irregular volume data. Computer Graphics,
24(5):35–40, 1990.

[9] S. Gumhold, S. Guthe, and W. Strasser. Tetrahedral mesh compres-
sion with the cut-border machine. In Visualization’99 Conference
Proceedings, pages 51–58, 1999.

[10] S. Gumhold and W. Strasser. Real time compression of triangle mesh
connectivity. In SIGGRAPH’98 Conf. Proc., pages 133–140, 1998.

[11] M. Isenburg. Compressing polygon mesh connectivity with degree
duality prediction. In Graphics Interface’02 Conference Proceed-
ings, pages 161–170, 2002.

[12] M. Isenburg and P. Alliez. Compressing polygon mesh geometry
with parallelogram prediction. In Visualization’02 Conference Pro-
ceedings, pages 141–146, 2002.

[13] M. Isenburg and J. Snoeyink. Face Fixer: Compressing polygon
meshes with properties. In SIGGRAPH’00 Conference Proceedings,
pages 263–270, 2000.

[14] Z. Karni and C. Gotsman. Spectral compression of mesh geometry.
In SIGGRAPH’00 Conference Proceedings, pages 279–286, 2000.

[15] A. Khodakovsky, P. Alliez, M. Desbrun, and P. Schroeder. Near-
optimal connectivity encoding of 2-manifold polygon meshes. to
appear in Graphic Models (Special Issue), 2002.

[16] B. Kronrod and C. Gotsman. Optimized compression of triangle
mesh geometry using prediction trees. In Proceedings of 1st In-
ternational Symposium on 3D Data Processing, Visualization and
Transmission, pages 602–608, 2002.

[17] H. Lee, P. Alliez, and M. Desbrun. Angle-analyzer: A triangle-quad
mesh codec. In Eurographics’02 Proc., pages 383–392, 2002.

[18] B. Levy, G. Caumon, S. Conreaux, and X. Cavin. Circular incident
edge list: A data structure for rendering complex structured grids. In
Visualization’01 Conference Proceedings, pages 191–198, 2001.

[19] Meshing Corner http://www.andrew.cmu.edu/˜ sowen/mesh.html
[20] T. Mitra and T. Chiueh. A breadth-first approach to efficient mesh

traversal. In Proceedings of Eurographics Workshop on Graphics
Hardware, pages 31–38, 1998.

[21] M. Mueller-Hannemann. Shelling hexahedral complexes for mesh
generation. Journal of Graph Algo. and Appl., 5(5):59–91, 2001.

[22] R. Pajarola, J. Rossignac, and A. Szymczak. Implant sprays: Com-
pression of progressive tetrahedral mesh connectivity. In Visualiza-
tion’99 Conference Proceedings, pages 299–306, 1999.

[23] J. Rossignac. Edgebreaker: Connectivity compression for triangle
meshes. IEEE Trans. on Vis. and Comp. Graph., 5(1):47–61, 1999.

[24] R. Schneider, R. Schindler, and F. Weiler. Octree-based generation
of hexahedral element meshes. In Proceedings of the 5th Interna-
tional Meshing Roundtable, pages 205–215, 1996.

[25] A. Sheffer, M. Etzion, A. Rappoport, and M. Bercovier. Hexahedral
mesh generation using the embedded voronoi graph. In Proceedings
of the 7th International Meshing Roundtable, pages 347–364, 1998.

[26] O. Staadt and M. Gross. Progressive tetrahedralizations. In Visual-
ization’98 Conference Proceedings, pages 397–402, 1998.

[27] A. Szymczak and J. Rossignac. Grow & fold: Compression of tetra-
hedral meshes. In Proceedings of the 5th ACM Symposium on Solid
Modeling and Applications, pages 54–64, 1999.

[28] G. Taubin and J. Rossignac. Geometric compression through topo-
logical surgery. ACM Trans. on Graphics, 17(2):84–115, 1998.

[29] T. Tautges and S. Mitchell. Whisker weaving: A connectivity-based
based method for constructing all-hexahedral finite element meshes.
In Proc. of the 4th Intern. Mesh. Roundtable, pages 115–127, 1995.

[30] C. Touma and C. Gotsman. Triangle mesh compression. In Graphics
Interface’98 Conference Proceedings, pages 26–34, 1998.

[31] I. Trotts, B. Hamann, K. Joy, and D. Wiley. Simplification of tetrahe-
dral meshes. In Visualization’98 Conf. Proc., pages 287–295, 1998.

[32] J. Wilhelms, A. V. Gelder, P. Tarantino, and J. Gibbs. Hierarchical
and parallelizable direct volume rendering for irregular and multiple
grids. In Visualization’96 Conf. Proc., pages 57–64, 1996.

[33] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540, 1987.

[34] C. Yang, T. Mitra, and T. Chiueh. On-the-fly rendering of losslessly
compressed irregular volume data. In Visualization’00 Conference
Proceedings, pages 101–108, 2000.

Compressing Hexahedral Volume Meshes, Isenburg, Alliez 9 appeared in Pacific Graphics ’2002

mesh mesh characteristics mesh connectivity (bph) geometry (bpv)
name g h v e fb vb/v eb/e fb/h name raw coded ratio raw coded ratio

hanger 2 171 382 917 384 1.0 .84 2.25 hanger 72.0 5.30 13.6 48.0 23.19 2.1
ra 0 408 635 1648 396 .63 .48 0.97 ra 80.0 2.89 27.7 48.0 30.83 1.6

bump2 1 1189 1665 4480 890 .53 .40 0.75 bump2 88.0 2.10 41.9 48.0 24.41 2.0
test 1 2386 3198 8702 1464 .46 .34 0.61 test 96.0 0.87 110.3 48.0 5.85 8.2

mdg-1 0 3710 4510 12680 1502 .33 .24 0.40 mdg-1 104.0 0.77 135.1 48.0 12.30 3.9
c2 0 4046 5099 14171 1962 .39 .28 0.48 c2 104.0 1.31 79.4 48.0 14.24 3.4
fru 0 4360 5124 14561 1436 .28 .20 0.33 fru 104.0 0.98 106.1 48.0 23.12 2.1

shaft 0 6883 9218 25180 4394 .48 .35 0.64 shaft 112.0 1.70 65.9 48.0 19.93 2.4
warped 0 8000 9261 26460 2400 .26 .18 0.30 warped 112.0 0.18 622.2 48.0 10.45 4.6
hutch 0 8172 8790 25717 1168 .13 .09 0.14 hutch 112.0 0.31 361.3 48.0 19.88 2.4

c1 0 71572 78618 228618 13714 .17 .12 0.19 c1 136.0 0.60 226.7 48.0 5.91 8.1
average .37 .27 0.48 average 101.8 1.55 162.7 48.0 17.28 3.7

Table 4. The table lists the genus g and number of hexahedra h, vertices v, edges e, and border faces fb for each mesh. Furthermore
the fraction of border vertices vb/v and border edges eb/e is given together with the number of border faces per hexahedra fb/h. The
bit-rates for uncompressed and compressed connectivity are reported in bits per hexahedron (bph). The bit rates for uncompressed
and compressed geometry at 16 bits of precision are reported in bits per vertex (bpv). The corresponding compression ratios are also
listed.

Compressing Hexahedral Volume Meshes, Isenburg, Alliez 10 appeared in Pacific Graphics ’2002

