
A Peer-to-Peer Architecture to Enable Versatile Lookup System Design

Vivek Sawant Jasleen Kaur
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA�

vivek, jasleen � @cs.unc.edu

Abstract

The resource lookup requirements in applications such
as web caching, web content search, content distribution,
resource sharing, network monitoring and management,
and e-commerce have caught the attention of peer-to-peer
(P2P) distributed systems researchers. Over the past few
years, several decentralized P2P lookup system designs
have been proposed for addressing these requirements.
Most of these early designs are targeted at specific appli-
cations. Unfortunately, the variations in the operating envi-
ronments and lookup characteristics across applications re-
stricts the applicability of such specialized designs. In this
paper, we present an architecture for P2P systems that iden-
tifies the functions necessary for designing resource lookup
systems with wide applicability. We demonstrate the useful-
ness of the functions included in the architecture by illus-
trating their use in developing diverse lookup techniques.

1. Introduction

The Peer-to-Peer (P2P) service model is being intensely ex-
plored for creating scalable and robust designs for decen-
tralized Internet-scale applications. One of the application
domains receiving significant attention of P2P researchers
is resource lookup motivated by a variety of applications
including web caching, web content search, content distri-
bution, resource sharing, network monitoring and manage-
ment, and e-commerce.

The resource lookup problem involves locating resources
of interest from among a large collection of resources. De-
signing a lookup system for these applications is made chal-
lenging by several issues including those of scale (large
number of resources, participants and end hosts), volatil-
ity (high churn of participants), availability (independent
or correlated failures), load balance (non-uniform resource
placement and query distributions), and changing scale
(sustained growth). In the past few years, numerous tech-
niques have been proposed for addressing these challenges,

and several recent designs have employed these techniques
for creating decentralized P2P lookup systems for applica-
tions such as those mentioned above [1, 4, 9, 13, 14].

As is often the case, most of the early designs of lookup
systems are targeted at specific applications. While these
applications share most the above design issues, they also
show significant differences, especially along two dimen-
sions: operating environments and lookup characteristics.
These differences limit the wider applicability of existing
lookup systems designs due to one or more of the following
design choices they make.

� First, a design may tightly couple application-specific
functions with application-independent functions. For
example, popular P2P file-sharing networks are known
to be quite heterogeneous in their capacity [15]. The
lookup efficiency of these networks is improved if the
peers bias their neighbor selection toward high capac-
ity peers — the high capacity nodes become the high
degree nodes attracting proportionately larger query
load. However, making this bias an integral part of the
neighbor selection algorithm would make the system
unsuitable for other applications for which the above
assumptions do not hold.

� Second, the design may provide overly specialized
functions or provide only a subset of functions along
a design dimension restricting the applicability of the
system. For example, a system may support imprecise
queries efficiently but may not support precise queries
as efficiently. Such undue specialization can also keep
applications from evaluating alternative solutions.

� Finally, certain functions in a lookup system may lack
the customizability desired by many applications. For
example, the lookups in file-sharing applications may
benefit from neighbor selection based on the capac-
ity and up-times of peers, whereas the lookups in
web caching applications may benefit from network-
proximity based neighbor selection.

In summary, the variations in the operating environments
and lookup characteristics across applications restrict the



applicability of specialized lookup system designs. Further-
more, these variations can also exist within a single applica-
tion; a fact that has been largely ignored so far. For exam-
ple, a given application may have several different classes
of queries each with significantly different query distribu-
tions. Variations can also occur over a period of time as the
application grows. It is the central tenet of this paper that
given the pervasiveness of the resource lookup problem it is
only timely that the recent insights gained from designing
several P2P lookup systems be applied toward building re-
source lookup system designs that support diverse require-
ments of applications.

In this paper, we present an architecture for P2P systems
that identifies the functions necessary for designing such re-
source lookup systems. We also demonstrate the usefulness
of these functions by illustrating their use in designing sev-
eral resource lookup techniques.

2. Background and Approach

The resource lookup problem involves locating resources
of interest from a large collection of resources. In the target
applications mentioned earlier, the lookup problem is dis-
tributed in nature — the information about resources and
the users trying to lookup those resources are distributed
across the network. Such a decentralized setting is served
well with the peer-to-peer service model, in which concur-
rently operating service points distributed across the net-
work cooperate to implement a service. Over the past few
years, several designs using the P2P model for decentral-
ized resource lookup have been proposed. Each of these de-
signs are called upon to address the complexity arising from
the operating environment and the lookup characteristics of
their target application to provide an efficient lookup solu-
tion. They achieve this by employing suitable techniques
for P2P overlay network construction and P2P query res-
olution. In the rest of this section, we examine these tech-
niques and their limitations to identify the requirements for
a P2P resource lookup architecture with wide applicability.

2.1. P2P Overlay Construction

In the P2P model, the service points, often known as peers,
form an application-level overlay network and communi-
cate over this virtual network for implementing the P2P ser-
vice. To participate in an overlay, each peer maintains a
neighbor table containing information about a small set of
nodes to be used for communicating with arbitrary nodes in
the overlay.

The architectures for P2P overlay networks used by P2P
lookup systems are divided into two categories: structured
and unstructured. Structured P2P networks conform their
topology to a graph structure, such as a tree or a mesh, and

leverage that structure for limiting the cost of overlay net-
work functions to a sub-linear order (e.g. ���������
	�� ) of the
number of nodes in the overlay. They also provide a mes-
sage routing function that maps each identifier or key drawn
from a numeric identifier space to a unique node in the over-
lay, called its authority node, and export the abstraction of
routing a message identified with a key to its authority node.

Unstructured networks, on the other hand, are ad-hoc
networks. For overlay communication, They provide mes-
sage dissemination abstractions, like flooding and random
walk. Flooding involves each node, starting from the mes-
sage source, forwarding the message to each of its over-
lay neighbors. A random walk involves a message being
forwarded along a random path determined by each peer
on the path forwarding the message to a random neighbor.
A recent study implemented these abstractions on struc-
tured overlays, and proved that they can be made more effi-
cient by leveraging the topology of structured overlays [2].
Therefore, we will consider only structured overlay archi-
tectures in the rest of the discussion.

2.2. Neighbor Selection

In structured overlays, the neighbor table is organized such
that the resulting topology can be leveraged to route a mes-
sage in bounded number of hops. Consequently, a given
slot in the neighbor table can only be filled with a node that
has an identifier from corresponding portion of the iden-
tifier space. In a network with sufficiently large number
of nodes, however, multiple nodes may qualify for a given
slot in the neighbor table. The simplest neighbor selection
strategy would be to select a node at random from the can-
didate nodes. However, P2P applications, particularly P2P
lookup, can benefit from being able to select a node based
on an application-specific criteria such as node capacity or
node uptime. Some of the existing designs of lookup sys-
tems support such neighbor selection. They, however, in-
tegrate the application-specific neighbor selection criterion
into the basic neighbor selection algorithm, making them
unsuitable for applications where other criteria are relevant.
The above observation motivates the following requirement
for a lookup system that is useful to diverse applications:
The P2P system should allow the application to apply an
arbitrary neighbor selection criteria (within the bounds of
basic structural constraints) for application-specific cus-
tomization of the overlay.

2.3. P2P Query Resolution

The lookup queries in the applications of our interest
can be precise queries based on resource identifiers or
imprecise ones involving keywords or attributes associated
with resources, or both. For efficient resolution of queries,



particularly for imprecise queries, it is often necessary to
create indexes that map attribute values to resource entities
(or their locations.) In the applications involving large
number of resources these indexes can be quite large and
are partitioned across nodes in the P2P overlay.

Index Partitioning – Attribute vs. Entity: There are
two common ways of partitioning the index: attribute-
partitioning (vertical partitioning) and entity-partitioning
(horizontal partitioning). In an attribute-partitioned index,
all the index entries corresponding to a certain attribute
value are stored at the same node. To resolve a query, it
is sent to the nodes storing the index entries for the attribute
values appearing in the query to extract the lists of entities
(the posting list) associated with those attribute values. An
intersection is performed on these lists to obtain the result
for the query. It is possible to achieve very high recall with
this method, however, it incurs high overhead of indexing
and query processing for popular attribute values [12].

In an entity-partitioned index, all the index entries for a
given resource entity are stored at the same node. To re-
solve a query, it must be disseminated so that it can reach
the nodes that have the index entries that satisfy the query.
The query dissemination is commonly implemented using
techniques like flooding or random walk. In this method,
the index for a given entity is self-contained and can be
replicated at multiple nodes to improve the performance of
lookups. The entity-partitioning based systems often repli-
cate entries in proportion with the popularity of entities to
improve the average lookup performance of the system, but
this does not improve the performance of less popular items.

The lookup characteristics of a given application deter-
mine which of the above schemes are suitable. For exam-
ple, in an application like network monitoring, most the re-
sources are of a local or restricted scope of interest, and
hence the queries of universal interest are rare. Attribute-
partitioning would work well for such applications. On the
other hand, applications like file-sharing and web content
search show skewed popularity distributions. Such appli-
cation would find a combination of the above two schemes
more effective. This motivates the following requirement
from a generic lookup system that is capable of supporting
diverse applications: The P2P system should provide effi-
cient functions to enable diverse indexing techniques—such
as entity-partitioning and attribute-partitioning—used for
efficient query resolution.

2.4. Proposed Architecture

In this paper, we present a structured overlay based P2P sys-
tem architecture, which identifies a set of functions neces-
sary for addressing the above requirements. These functions
are divided into two layers: overlay networking and com-

munication functions at the lower layer and distributed state
management functions at the upper layer (Figure 1.) The
details of these layers are described in next two sections.

P2P Lookup System
DISQ: DHI + DHT

HYROAD

Figure 1. Layers of the Architecture

3. HYROAD

The lower layer of the proposed architecture is called HY-
ROAD (Hybrid Routing to Arbitrary Destinations.) It iden-
tifies two categories of functions: P2P overlay networking
and P2P message communication.

3.1. Overlay Networking Functions

The HYROAD networking function is primarily concerned
with participation of a node in an overlay. For a particular
peer, this amounts to maintaining its neighbor table with
the help of its neighbors and helping them maintain theirs.
The latter involves sharing the information about any known
nodes in the overlay with ones neighbors. Maintaining own
neighbor table involves two functions.

The first function, which we will refer to as node in-
formation acquisition, deals with actively acquiring or pas-
sively receiving information about the nodes in the overlay
that are useful for populating the local routing table. The
function uses a join protocol for acquiring node information
when the node enters the overlay, and an update protocol for
acquiring up to date information about the nodes of interest
while the node remains a member of the overlay.

The second function, called neighbor selection, involves
applying a selection criteria for choosing a node from a set
of candidate nodes for a particular slot in the neighbor ta-
ble. The HYROAD neighbor selection function provides
random selection as the default selection criterion. Unlike
existing P2P lookup systems, it also allows applications to
apply their own neighbor selection criteria. For this purpose
it defines an up-call interface: (i) for the system to pass the
information about the candidate nodes to the application,
and (ii) for the application to return its selection. This al-
lows the application to select neighbors from the given set
using arbitrary criteria, including those based on system-
acquired node information like latency, node capacity, and
node uptime. This relatively minor alteration to the neigh-
bor selection function in typical structured overlays gives
applications significant flexibility in customizing the over-
lay per their operating environment. P2P lookup systems
can use this feature to customize the overlay topology to
improve the efficiency of lookups.



3.2. Message Communication Functions

HYROAD defines two types of overlay communication
abstractions: message routing and message dissemination.

Message Routing (KBR): The message routing abstraction
defined by HYROAD is the same as the key-based routing
(KBR) abstraction provided by several structured P2P
systems [7]. The application addresses a message with a
unique identifier, or a key, drawn from the identifier space
used by the structured overlay, and the routing function of
the system routes the message to the authority node within
a bounded number of hops by using the neighbor table
at each hop. P2P lookup systems can use this message
routing abstraction for designing a scheme for resolving
precise queries, and for resolving imprecise queries using
an attribute-partitioned index.

Message Dissemination (Broadcast, Random Walk):
Message dissemination abstractions are key to implement-
ing a scheme for resolving imprecise queries using an
entity-partitioned index. The message dissemination ab-
stractions of HYROAD allow applications to propagate a
message in the overlay without identifying a specific desti-
nation. HYROAD defines two such abstractions: broadcast
and random walk. Broadcast involves wide propagation of a
message with each node, starting from the message source,
forwarding the message to each of its overlay neighbors. A
random walk involves a message being propagated along a
random path determined by each peer on the path forward-
ing the message to a random neighbor. A technique called
structured broadcast has been proposed for various struc-
tured overlay architectures, which can disseminate a mes-
sage with no or very little duplicate forwarding [2, 3, 8].
Recently, a technique for random walk over a structured
overlay architecture, derived from the structured broadcast
algorithm for the architecture, has also been proposed [2].
HYROAD implementations are expected to provide mes-
sage dissemination abstractions by employing these kind of
techniques that leverage structured overlay topology.

4. DISQ

A major challenge in designing a distributed application is
that of managing the distributed state. Simple and powerful
abstractions for managing distributed state go a long way
in making a platform convenient for developing distributed
applications. This applies to P2P lookup systems as well.

DISQ (Distributed Storage and Query), the upper-layer
of the proposed architecture, identifies two abstractions
for managing distributed state in structured P2P overlays:
distributed hash index (DHI), and distributed hash table

(DHT). These are based on popular distributed storage and
lookup abstractions devised for structured overlays [7].

4.1. Distributed Hash Index (DHI)

Distributed Hash Index (DHI) uses KBR as an indexing
mechanism for finding the data items stored at nodes in the
overlay. It is defined in terms of the operations insert (key,
data) and lookup (key). The insert operation stores the data
item at the node where the operation was invoked. Then,
using KBR it forwards a message to the authority node for
the key, where a pointer indicating the location (node) of
the newly inserted data items is stored. Different instances
of an data item associated with a given key can be inserted
at different nodes. The lookup operation routes a message
to the authority node of the given key to retrieve the point-
ers to all the instances of data items inserted using that key.
DHI is quite similar to the distributed object location and
routing (DOLR) [7, 10] but with one important difference.
DOLR returns a pointer to the instance that is closest to the
requesting node in terms of some distance metric like net-
work latency. DHI removes this unnecessary restriction on
the semantics of the basic lookup function, and allows the
application apply its own selection criteria.

4.2. Distributed Hash Table (DHT)

DHI provides an effective indexing mechanism for the dis-
tributed state stored at various nodes in the overlay using
insert operation. However, when a node leaves the network,
the state stored on that node becomes inaccessible. An ap-
plication may desire its distributed state to be relatively per-
sistent even as nodes join and leave the network. The pop-
ular abstraction of distributed hash tables (DHT) addresses
this requirement [6, 7]. DHT is defined in terms of the oper-
ations put (key, data) and get (key). The put operation stores
the data item at the authority node for the specified key by
routing a message to that node using KBR. The get opera-
tion retrieves the data item corresponding to the given key
by similarly routing a message to the authority node of the
key. This allows the data to be accessible even after its pub-
lisher leaves the network. To keep a data item available even
after its authority node leaves the network, it is replicated on
a set of nodes that are likely to become the authority node
for that item if its current authority node leaves the overlay.

5. Designing with DISQ/HYROAD

The main objective of the architecture presented in the pre-
vious sections is to identify functions that can enable us to
design P2P lookup systems with wide applicability. In this
section, we will discuss how a system based on the pro-
posed architecture can support diverse lookup techniques,



currently available in separate designs. We will also discuss
some new techniques enabled by the architecture.

5.1. Overlay Construction

As noted earlier, operating environments vary across the
target applications of P2P lookup systems. Moreover,
there is often significant heterogeneity within the operating
environment of even a single application with respect to
parameters such as inter-node latency, node capacities,
and node up-times for the participants of an overlay [15].
It has been shown that adjusting the structure of the
overlay in accordance with the characteristics of the
operating environment can help in making lookups more
efficient [2, 4]. The application-specific neighbor selection
of HYROAD enables precisely this kind of customization
on an application-specific basis. For example, the lookups
in file-sharing applications may benefit from neighbor
selection based on the capacity and up-times of peers,
whereas the lookups in web caching applications may
benefit from network proximity based neighbor selection.
But the criteria for custom neighbor selection need not
only be based on such information made available by the
underlying P2P system. HYROAD also allows the use of
criteria involving application-level information. We discuss
a lookup technique based on one such criteria below.

Improving Lookups with Semantic Association: The
analysis of query workloads of popular P2P resource lookup
applications has revealed that the interest of two or more
peers in the same set of entities can be used as a predictor of
their future shared interests, particularly in less popular en-
tities. Studies have reported the benefits of using the knowl-
edge of such semantic association between peers for iden-
tifying peers that are more likely to resolve a given query
[5, 11, 16]. A P2P lookup system based on HYROAD can
use semantic association as a criterion for neighbor selec-
tion, to improve entity-partitioned index based lookups.

The real challenge in using semantic associations is iden-
tifying such associations. The techniques proposed in the
literature identify the semantic associations in one of the
two ways. In the first approach, when a query from peer�

is resolved by peer � , both
�

and � identify a semantic
association with each other. More such resolutions between
the pair indicates greater degree of association between the
two. In the other approach, if peer � resolves a query for an
entity E from peer

�
and peer � , it notes that as semantic

interest between
�

and � informs them about it. In both
cases,

�
and � (and, in the second case, � ) can use these

associations while routing future lookup queries.
The above techniques measure the shared interest rela-

tively locally, and hence, may underestimate the degree of
semantic association or miss certain associations. For ex-

ample, in the first approach, if the query from � for an
entity is resolved by � ,

�
and � will not discover about

the interest they share with � and � . Similarly, in the sec-
ond approach, � would not discover its shared interest with
other peers that resolve the queries for � . A P2P lookup
system based on the proposed architecture can broaden the
scope of semantic association identification using a simple
technique based on the DHT abstraction. The interest in a
given resource entity � can be tracked by creating a DHT
record. Whenever a query result contains � , its DHT record
would be updated to note the peers originating and resolv-
ing the query. Each peer would maintain a list of its se-
mantic peers. For a successfully resolved query, the peers
involved in the query would examine the DHT record for
each resource entity appearing in the query result to see if
they need to update their list of semantic peers. A simple
criteria based on counting the number of records in which a
certain peer appears can be used to control the list member-
ship.

5.2. Query Processing

Supporting precise and imprecise queries broadens the
applicability of a P2P lookup system. Both DHI and DHT
abstractions enable a lookup system to directly provide
support for precise queries, as the underlying KBR map-
ping effectively serves as an index of resource identifiers.
For imprecise queries, an explicit index that maps attribute
values to resource location must be maintained across the
nodes in the overlay. Both ways of maintaining such decen-
tralized index, attribute-partitioning and entity-partitioning,
can be supported by a P2P system based on the proposed
architecture as described below.

P2P Lookups with Attribute-Partitioned and Entity-
Partitioned Indices: In an attribute-partitioned index, all
the index entries corresponding to a certain attribute value
are stored at the same node. A P2P system can use the DHT
abstraction for implementing an attribute-partitioned index
as follows. Each attribute value is assigned a KBR key. The
index entries corresponding to a given attribute can then be
stored using the DHT. To resolve an imprecise queries, all
the attribute values appearing in the query will be looked
up in the DHT to obtained their associated index entries,
which are basically lists of resources. An intersection (or
appropriate join) on these lists will produce the result for
the original query. Several existing designs have variations
of this technique for supporting query resolution based
on an attribute-partitioned index [1, 9, 13, 14]. In an
entity-partitioned index, all the index entries for a given
resource entity are stored at the same node. To resolve
a query, it must be disseminated so that it can reach the
nodes that have the index entries that satisfy the query. A



P2P system based on the proposed architecture can support
query resolution based on an entity-partitioned index by
using a combination of functions: the DHI abstraction
for maintaining entity-partitioned index and the message
dissemination abstractions of HYROAD for resolving
imprecise queries using that index.

Caching Imprecise Queries A lookup system can further
improve the lookup performance of imprecise queries by us-
ing the following technique that is independent of the type
of index partitioning used. The system would map a given
successful imprecise query to a unique KBR identifier, and
cache the result obtained for the query into the DHT by us-
ing that identifier. While resolving an imprecise queries, it
will use the same mapping scheme, and use the identifier to
first lookup the DHT to check if the query is cached there.
If not, it will fall back to resolving it using one of the above
two methods. Unlike precise queries, imprecise queries and
the resource entities corresponding to those queries do not
have a one-to-one mapping. However, as evident from the
lists of popular keywords published by web search engines,
certain imprecise queries do appear more frequently than
others. These can serve as effective cache identifiers.

6. Conclusion

The resource lookup requirements in applications such as
web caching, web content search, content distribution, re-
source sharing, network monitoring and management, and
e-commerce have caught the attention of peer-to-peer (P2P)
distributed systems researchers. Over the past few years,
several decentralized P2P lookup system designs for ad-
dressing these requirements have been proposed. As is of-
ten the case, most of these early designs are targeted at spe-
cific applications. Unfortunately, the variations in the oper-
ating environments and lookup characteristics across appli-
cations limits the applicability of such specialized designs.

In this paper, we present an architecture for P2P sys-
tems that identifies the functions necessary for designing
resource lookup systems with wide applicability. In select-
ing and defining these functions, we attempt to avoid two
pitfalls restricting the applicability of existing systems: un-
due coupling between application-specific and application-
independent functions, and hardcoding application-specific
optimizations into the design. The resulting architecture al-
lows key functions like neighbor selection to be customized,
and enables diverse lookup techniques to be implemented
within the same system. We demonstrate the utility of the
functions included in the architecture by illustrating their
use in developing diverse lookup techniques. Supporting a
range of techniques not only makes such systems broadly
applicable, but also makes it possible for their applications
to evaluate alternative techniques with relative ease.

Finally, it is worth noting that the customizability of HY-
ROAD neighbor selection function and DHI lookup func-
tion is useful to other P2P systems besides P2P lookup, such
as end-system multicast and content distribution networks.

References

[1] M. Balazinska, H. Balakrishnan, and D. Karger. Ins/twine:
A scalable peer-to-peer architect ure for intentional resource
discovery. In Pervasive 2002, Aug 2002.

[2] M. Castro, M. Costa, and A. Rowstron. Debunking some
myths about structured and unstructured overlays. In Pro-
ceedings of NSDI’05, May 2005.

[3] M. Castro, M. B. Jones, A.-M. Kermarrec, A. I. T. Rowstron,
M. Theimer, H. J. Wang, and A. Wolman. An evaluation of
scalable application-level multicast built using peer-to-peer
overlays. In Proceedings of the 22th Infocom, Mar 2003.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making gnutella-like P2P systems scalable. In
Proceedings of SIGCOMM 2003, Aug 2003.

[5] E. Cohen, A. Fiat, and H. Kaplan. Associative search in peer
to peer networks: Harnessing latent semantics. In Proceed-
ings of the 22th Infocom, Mar 2003.

[6] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with cfs. In Proceed-
ings of the Eighteenth ACM symposium on Operating sys-
tems principles (SOSP), Oct 2001.

[7] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Sto-
ica. Towards a common API for structured P2P overlays. In
Proceesings of IPTPS’03, Feb 2003.

[8] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi. Effi-
cient broadcast in structured P2P networks. In Proceesings
of IPTPS’03, Feb 2003.

[9] L. Garces-Erice, P. A. Felber, E. W. Biersack, G. Urvoy-
Keller, and K. W. Ross. Data indexing in peer-to-peer DHT
networks. In Proceedings of the 24th International Confer-
ence on Distributed Computing Systems (ICDCS’04), 2004.

[10] K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao. Dis-
tributed object location in a dynamic network. In Proceed-
ings of the Fourteenth ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), Aug 2002.

[11] A. Iamnitchi and I. Foster. Small-world file-sharing commu-
nities. In Proceedings of the 23rd Infocom, Mar 2004.

[12] J. Li, B. T. Loo, J. Hellerstein, F. Kaashoek, D. R. Karger,
and R. Morris. On the feasibility of peer-to-peer web index-
ing and search. In Proceesings of IPTPS’03, Feb 2003.

[13] B. T. Loo, J. M. Hellerstein, R. Huebsch, S. Shenker, and
I. Stoica. Enhancing P2P file-sharing with an internet-scale
query processor. In VLDB, 2004.

[14] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat.
Distributed resource discovery on planetlab with SWORD.
In WORLDS ’04, Dec 2004.

[15] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measure-
ment study of peer-to-peer file sharing systems. In Multime-
dia Computing and Networking (MMCN’02), Jan 2002.

[16] K. Sripanidkulchai, B. M. Maggs, and H. Zhang. Efficient
content location using interest-based locality in peer-to-peer
systems. In Proceedings of the 22th Infocom, Mar 2003.


