Lock-Free Transactions for Real-Time Systems*

James H. Anderson, Srikanth Ramamurthy, Mark Moir, and Kevin Jeffay
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

We show that previous algorithmic and scheduling
work concerning the use of lock-free objects in hard
real-time systems can be extended to support real-time
transactions on memory-resident data. Using our ap-
proach, transactions are not susceptible to priority in-
version or deadlock, do not require complicated mecha-
nisms for data-logging or for rolling back aborted trans-
actions, and are implemented as library routines that
require no special kernel support.

1 Introduction

In most real-time database systems, conventional
mechanisms such as locks, timestamps, and serializa-
tion graphs are used for concurrency control. The main
problem when using any of these mechanisms is that
of handling conflicting operations. If an operation of a
transaction creates a conflict, then one of two strategies
may be used: either that transaction may be blocked,
or one or more of the transactions involved in the con-
flict may be aborted. When using conflict resolution
schemes that employ blocking, deadlock is a key issue,
and mechanisms for deadlock avoidance or resolution
are required. In contrast, deadlock is not a problem
when using schemes that always resolve conflicts by
aborting transactions. However, with such schemes,
overhead associated with undoing the effects of par-
tially completed transactions and then restarting them
1s a key issue.

Most existing conflict resolution schemes for real-
time database systems are susceptible to priority in-
version; a priority inversion occurs when a given trans-
action 1s blocked by another transaction of lower pri-
ority. Priority inversion is a problem even for systems
that employ optimistic techniques, because in such sys-
tems, certain phases of a transaction (e.g., the valida-

*The first three authors were supported, in part, by NSF
contract CCR 9216421, and by a Young Investigator Award from
the U.S. Army Research Office, grant number DAAHO04-95-1-
0323. The third author was also supported by a UNC Alumni
Fellowship. The fourth author was supported by grants from
Intel and IBM.

tion phase or write phase) must be executed as crit-
ical sections [7, 8]. Priority inversion is often dealt
with through the use of priority inheritance protocols
or priority ceiling protocols [14]. These protocols dy-
namically adjust transaction priorities to ensure that a
transaction within a critical section executes at a pri-
ority that is sufficiently high to bound the duration of
any priority inversion. This functionality comes at the
expense of additional overhead associated with main-
taining information about transactions and the data
they access.

In addition, in many database systems, major func-
tional components are implemented as separate mod-
ules (e.g., transaction manager, lock manager, etc.),
each of which consists of one or more processes. Trans-
actions interact with these modules by invoking special
primitives (e.g., Begin_Transaction, End_Transaction,
Read, Write, Commit, Abort). Although structuring a
system in this way 1s attractive from a software engi-
neering standpoint, such an arrangement can result in
significant interprocess communication overhead.

To summarize, although conventional concurrency
control schemes provide a general framework for real-
time transactions, actual implementations of these
schemes can entail high overhead. In this paper, we
propose a new approach for implementing real-time
transactions on memory-resident data on uniproces-
sors. In our approach, transactions are implemented
using a collection of library routines that hide from
transaction programmers all details associated with
managing concurrency. Transactions implemented us-
ing these routines are not susceptible to priority in-
version or deadlock, and do not require complicated
mechanisms for data-logging or for rolling back aborted
transactions. In addition, they do not require special
kernel support or additional processes for concurrency
control; they therefore avoid interprocess communica-
tion overhead.

Our approach to implementing real-time transac-
tions is based upon previous research involving the use
of lock-free objects in real-time systems. An object
implementation is lock-free iff it guarantees that, af-
ter a finite number of steps of any operation, some
operation on the object completes. Lock-free objects

type obj = record data: valtype; next: xobj end
shared variable queue_tail: *o0bj

procedure Enqueue(input: valtype)
local variable old_tail, new_tail: xobj

xnew_tail := (input, NULL);

repeat old_tail := queune_tail

until CAS2(quene_tail, old_tail =>next,
old_tail, NULL,

new_tail, new_tail)

Figure 1: Lock-free enqueue operation.

are usually implemented using “retry loops”. Figure 1
depicts an example of a lock-free operation — an en-
queue taken from a shared queue implementation given
in [11]. In this example, an enqueue is performed by
trying to thread an item onto the tail of the queue us-
ing a two-word compare-and-swap (CAS2) instruction.!
This threading is attempted repeatedly until it suc-
ceeds. Note that the queue is never actually “locked”.

Using lock-free object implementations, objects are
optimistically accessed without locking, and an ac-
cess is retried if an interference occurs. Operations
are atomically validated and committed by invoking a
strong synchronization primitive (like CAS2). In Fig-
ure 1, this validation step can fail for a task 7 only if
a higher-priority task performs a successful CAS2 be-
tween the read of queue_tail by 7 and the subsequent
CAS2 operation by .

From a real-time perspective, lock-free object imple-
mentations are of interest because they avoid prior-
ity inversions with no kernel support. On the surface,
however, 1t is not immediately apparent that lock-free
shared objects can be employed if tasks must adhere
to strict timing constraints. In particular, repeated
interferences can cause a given operation to take an
arbitrarily long time to complete. Fortunately, such
interferences can be bounded by scheduling tasks ap-
propriately [4]. As explained in the next section, the
key to scheduling such tasks is to allow enough spare
processor time to accommodate the failed object up-
dates that can occur over any interval. The number
of failed updates in such an interval is bounded by the
number of task preemptions within that interval.

In this paper, we show that previous work on lock-
free objects can be extended to apply to lock-free trans-
actions on memory-resident databases. Our approach
to implementing such transactions is to first imple-
ment a multi-word CAS primitive (MWCAS). This primi-
tive can then be used as the basis for a lock-free retry
loop in which operations on many objects are validated

1The first two parameters of CAS2 are shared variables, the
next two parameters are values to which the shared variables
are compared, and the last two parameters are new values to be
placed in the shared variables should both comparisons succeed.

at once. Such an implementation differs from conven-
tional optimistic concurrency control protocols in two
respects. First, our implementations do not use lock-
ing. Therefore, they do not require special support for
dealing with priority inversion. Second, our implemen-
tations allow transactions to be aborted at arbitrary
points during their execution without the aid of recov-
ery procedures. An important implication of this point
is that data-logging is greatly simplified.

The rest of this paper is organized as follows. In
Section 2, we review previous work involving the use of
lock-free objects in real-time systems. Then, in Section
3, we outline our approach for implementing lock-free
transactions. We end the paper with concluding re-
marks in Section 4.

2 Lock-Free Objects

We begin this section by reviewing previous work on
scheduling hard real-time tasks that share lock-free ob-
jects. We then consider the issue of hardware support
for lock-free synchronization.

2.1 Scheduling with Lock-Free Objects

Although it should be clear that lock-free objects do
not give rise to priority inversions, it may seem that un-
bounded retry loops render such objects useless in real-
time systems. Nonetheless, Anderson, Ramamurthy,
and Jeffay have shown that if tasks on a uniproces-
sor are scheduled appropriately, then such loops are
indeed bounded [4]. We now explain intuitively why
such bounds exist. For the sake of explanation, let us
call an iteration of a retry loop a successful update if it
successfully completes, and a failed update otherwise.
Thus, a single invocation of a lock-free operation con-
sists of any number of failed updates followed by one
successful update.

Consider two tasks 7; and 7; that access a common
lock-free object B. Suppose that 7; causes 7; to experi-
ence a failed update of B. On an uniprocessor, this can
only happen if 7; preempts the access of 7; and then
updates B successfully. However, 7; preempts 7; only
if 7; has higher priority than 7;. Thus, at each prior-
ity level, there is a correlation between failed updates
and task preemptions. The maximum number of task
preemptions within a time interval can be determined
from the timing requirements of the tasks. Using this
information, it is possible to determine a bound on the
number of failed updates in that interval. A set of tasks
that share lock-free objects is schedulable if there is
enough free processor time to accommodate the failed

updates that can occur over any interval.

In [4], scheduling conditions are established for
deadline-monotonic (DM) [9] and earliest-deadline-first
(EDF) [10] priority assignments. (The rate-monotonic
(RM) [10] priority scheme is also considered, but the
corresponding scheduling condition is a special case of
that presented for the DM case.) In order to state these
conditions, we must first define some notation. Each
condition applies to a collection of N periodic tasks
{m1,...,78}. The period of task 7; is denoted by p;,
and the relative deadline of task 7; is denoted by [;,
where [; < p;; under the EDF scheme, we assume that
l; = p;. Tasks are assumed to be sorted in nondecreas-
ing order by their deadlines, i.e., {; < {; = 7 < j. Let
¢; denote the worst-case computational cost (execution
time) of task 7; when it is the only task executing on the
processor, 1.e., when there is no contention for the pro-
cessor or for shared objects. Let s denote the execution
time required for one loop iteration in the implementa-
tion of a lock-free object. For simplicity, all such loops
are assumed to have the same cost. Note that s is also
the extra computation required in the event of a failed
object update. Given this notation, the DM condition
can be stated as follows.

Theorem 1: (Sufficiency under DM) A set of periodic
tasks that share lock-free objects on a uniprocessor can
be scheduled under the DM scheme if, for every task ;,
there exists some t € (0,1;] such that

(Cia [2] o+ min[5] 5) <o o

Informally, this condition states that a task set is
schedulable if, for each job of every task 7;, there ex-
ists a point in time ¢ between the release of that job
and 1ts deadline, such that the demand placed on the
processor in the interval between the job’s release and
time ¢ is at most the available processor time in that
interval. Demand in this interval can be broken into
two components: demand due to job releases, ignoring
object invocations (this is given by the first summa-
tion); and demand due to failed object updates, which
is bounded by the number of preemptions by higher-
priority tasks in the interval (this is given by the second
summation). In comparing the above condition to the
DM condition for independent tasks given in [1], we see
that our condition essentially requires that the compu-
tation time of each task be “dilated” by the time it
takes for one lock-free loop iteration.

We now turn our attention to the EDF scheme.

Theorem 2: (Sufficiency under EDF) A set of periodic
tasks that share lock-free objects on a uniprocessor can
be scheduled under the EDF scheme if

N ci+s
(Zj:l]Pj) <1 =

Informally, this condition states that a task set is
schedulable if processor utilization i1s at most 1. As
in the case of DM scheduling, this condition extends
the corresponding condition for independent tasks [10]
by requiring that the computation time of each task
be dilated by the time it takes for one lock-free loop
iteration.

The results presented above suggest a general strat-
egy for determining the schedulability of tasks that
share lock-free objects. First, determine a bound on
demand due to failed updates over any interval of time.
Then, modify existing scheduling conditions for inde-
pendent tasks by incorporating this demand. Schedul-
ing conditions derived in this manner are applicable not
only for tasks that perform single-object updates, but
also for tasks that perform multi-object transactions.

The bounds on failed updates given in the theorems
above are not very tight — these bounds are based on
the conservative assumption that each task interferes
with all lower-priority tasks that execute concurrently.
Scheduling conditions that incorporate tighter bounds
will be given in a forthcoming paper. In these new con-
ditions, tighter bounds are obtained by more accurately
accounting for interferences that can occur between
tasks. Also, the new conditions allow different lock-free
accesses to have different loop costs. When implement-
ing transactions, significant variations in loop costs are

likely.

2.2 Hardware Support for Lock-Free
Synchronization

A possible criticism of the lock-free algorithm given in
Figure 1 1s that it requires a strong synchronization
primitive, namely CAS2. The fact that many lock-free
object implementations are based on strong synchro-
nization primitives is no accident. Herlihy has shown
that such strong primitives are, in general, necessary
for these implementations [5]. Herlihy’s results are
based upon a categorization of objects by “consensus
number”. An object has consensus number N if 1t can
be used to solve N-process consensus, but not (N +1)-
process consensus, in a wait-free? manner. Herlihy’s
results show that primitives with unbounded consen-
sus numbers are necessary in general-purpose lock-free
(or wait-free) object implementations. Such objects
are called universal because they can be used to im-
plement any other object. Herlihy’s consensus-number

2 Wait-freedom is a strong form of lock-freedom that precludes
all waiting dependencies among tasks — including potentially
unbounded operation retries.

Consensus Object
Number
1 read /write registers
2 test&set, swap, fetch&add, queue
2n — 2 n-register assignment

memory-to-memory move and swap,
0 compare&swap,
load-linked /store-conditional

Figure 2: Herlihy’s consensus-number hierarchy.

(b)

Figure 3: Line segments denote operations on shared ob-
jects with time running from left to right. Each level cor-
responds to operations by a different task. (a) Interleaved
operations in a asynchronous system. Operations may over-
lap arbitrarily. (b) Interleaved operations in a uniprocessor
real-time system. Two operations overlap only if one is
contained within the other.

hierarchy is shown in Figure 2.

Although Herlihy’s hierarchy 1s of fundamental
importance for truly asynchronous systems, Rama-
murthy, Moir, and Anderson recently showed that, for
uniprocessor-based real-time systems, Herlihy’s hierar-
chy collapses, i.e., reads and writes can be used to im-
plement any lock-free object [13]. The basis for this
result is the realization that certain task interleavings
cannot occur within real-time systems. In particular,
if a task 7; accesses an object in the time interval [t,?'],
and if another task 7; accesses that object in the inter-
val [u, v'], then it is not possible to have t < u <t/ < o/,
because the higher-priority task must finish its opera-
tion before relinquishing the processor. Requiring an
object implementation to correctly deal with this in-
terleaving is therefore pointless, because it cannot arise
in practice. The distinction between traditional asyn-
chronous systems, to which Herlihy’s work is directed,
and hard real-time systems is illustrated in Figure 3.

The results of [13] are based upon an execution

shared var Fin, Prp : valtype U L

private var v : valtype

initially Fin = L A Prp =1

procedure decide(val : valtype) returns valtype
1:if Fin = L then

2: if Prp = L then

3: Prp := wval
fi;
4: if Fin = L then
5: v := Prp;
6: Fin = v
fi
fi;

7 :return Fin

Figure 4: Consensus using reads and writes.

model like that depicted in Figure 3(b). Two key as-
sumptions underlie this model: (i) a task 7, may pre-
empt another task 7; only if 7; has higher priority than
7j; (ii) a task’s priority can change over time, but not
during any object access. Assumption (i) is common to
all priority-driven scheduling policies. Assumption (ii)
holds for most common policies, including RM, DM,
and EDF scheduling. The only common scheduling
policy that we know of that violates assumption (ii) is
least-laxity-first (LLF) scheduling [12].

The collapse of Herlihy’s hierarchy for hard real-time
uniprocessor systems is established in [13] by giving a
wait-free (and hence lock-free) algorithm that solves
the consensus problem in such systems using only reads
and writes. This algorithm is shown in Figure 4. In
this algorithm, each task chooses a decision value by
invoking the procedure decide.

Procedure decide uses two shared variables, Prp
(“propose”) and Fin (“final”). Each task that does not
detect the input of another task in Prp or Fin writes its
own value into Prp. Having ensured that some value
has been proposed (lines 1 to 3), a task copies the pro-
posed value to Fin, if necessary (lines 4 to 6). It is
easy to see that no task returns before some task’s in-
put value is written into Fin, and that all tasks return
a value read from Fin. It can be further shown that
the first value written into Prp is the only value writ-
ten into Fin. The correctness of the algorithm easily
follows from this fact, yielding the following theorem.
(Tt is easy to show that the algorithm of Figure 4 does
not correctly solve the consensus problem in a truly
asynchronous system consisting of two or more pro-
cesses. Thus, it does not contradict the fact the reads
and writes have consensus number 1 for such systems.)

Theorem 3: Consensus can be implemented with con-
stant time and space using reads and writes on a hard

real-time uniprocessor system. a

Given an implementation of consensus objects, any
shared object can be implemented in a lock-free man-
ner [5]. However, such implementations usually en-
tail high overhead. More practical lock-free imple-
mentations are based on universal primitives such as
CAS and load-linked /store-conditional (LL/SC)[6]. To
enable such implementations to be used in real-time
uniprocessor systems, Ramamurthy, Moir, and Ander-
son present two implementations of an object that sup-
ports Read and CAS. (LL/SC can be implemented using
Read and CAS in constant time [2].) These implementa-
tions, which are summarized in the following theorems,
use read/write and memory-to-memory Move instruc-
tions, respectively. Although Move is rare in multipro-
cessors, 1t 1s widely available on uniprocessors. For
example, uniprocessor systems based on Intel’s 80x86
processor and the Pentium line of processors support
the move instruction. (In these theorems, N denotes
the number of tasks that share an object.)

Theorem 4: Read and CAS can be implemented in a
wait-free manner on a hard real-time uniprocessor sys-
tem with O(N) time and space complexity using reads
and writes. ad

Theorem 5: Read and CAS can be implemented in
a wait-free manner on a hard real-ttme uniprocessor
system with constant time and O(N) space complexity
using Move. a

3 Lock-Free Transactions

In this section, we outline an implementation of lock-
free transactions on memory-resident data. We assume
that transactions are invoked by a collection of priori-
tized tasks executing on the same processor. Our im-
plementation is mostly based on the universal lock-free
constructions of large objects and multiple objects by
Anderson and Moir [2, 3].

In contrast to conventional schemes for concurrency
control, when lock-free algorithms are used, transac-
tions are executed as if they do not access any shared
data — 1i.e., such transactions can be viewed as being
independent. As a result, mechanisms are not needed
to handle priority inversion, deadlock, or data conflicts,
or to undo the effects of partially-completed transac-
tions that are aborted.

In our lock-free implementation, which is shown in
Figure 5, a transaction commits and validates at the
same time by performing a MWCAS operation.® A trans-

3The MWCAS procedure takes four input parameters. The first

action successfully completes, and the corresponding
modifications to data take effect, only if the MWCAS op-
eration succeeds. Thus, transactions can be aborted
arbitrarily without executing expensive recovery pro-
cedures. This can be advantageous in situations that
require transactions with firm deadlines to be aborted
due to transient overload conditions. In such situa-
tions, transactions can be arbitrarily terminated by the
system without fear of compromising data consistency.

One possible criticism of our implementation is that
the MWCAS primitive is not supported by the hardware
in most systems. However, Anderson and Moir have
shown that MWCAS can be implemented using the single-
word CAS primitive in general asynchronous systems
[3]. Furthermore, because real-time systems only al-
low a subset of the transaction interleavings in asyn-
chronous systems, these constructions can be simplified
for real-time systems using techniques similar to those
presented in Section 2.2.

In our lock-free construction, all data is stored in
a single array. However, we do not require the array
to be stored in contiguous memory locations. Instead,
we provide the “illusion” of a contiguous array. Before
describing the code in Figure b, we explain how this
is achieved, and how the details of the implementation
are hidden from the programmer.

The implemented array MEM is partitioned into B
blocks of size S. (Figure 6 depicts this arrangement
for B = 5.) The first block contains array locations 0
through S — 1, the second block contains locations S
through 25—1, and so on. (We assume that blocks have
the same size only because it simplifies the presentation
of the ideas in the paper.) A bank of pointers — one for
each block — 1s used to point to the blocks that make
up the array. In order to modify the contents of the
array, a task makes a copy of each block to be changed,
and then attempts to update the bank of pointers so
that they point to the modified blocks.

When a transaction of task p accesses a word in the
array, say MEM [z], the block containing the zth word
is identified. If p’s transaction writes into MEM [z],
then p must replace the corresponding block. The de-
tails of identifying blocks and replacing modified blocks
are hidden from the programmer by means of the Read
and Write routines, which perform all necessary ad-
dress translation and record-keeping. These routines
are called by the transaction in order to read or write
an element of the MEM array. Thus, instead of writing

parameter specifies the number of words on which a CAS op-
eration is to be performed. The remaining parameters specify
the words’ addresses, old values, and new values, respectively.
The operation returns true if a CAS operation can be success-
fully performed on all the words simultaneously, and returns false
otherwise.

type blktype = array[0..S — 1] of wordtype; pirtype = record addr: 0..B + NT — 1; wer: integer end

shared variable BANK: array[0..B — 1] of ptriype; /* Bank of pointers to array blocks =/
BLK: array[0..B+ NT — 1] of blktype; /* Array and copy blocks =/
initially (Vk:0< k < B :: BANK[k] = (NT + k,0) A BLK[NT + k] = (kth block of initial value))

private variable addrlist, copy: array[0..T — 1] of 0..B+ NT —1; oldist, ptrs: array[0..B — 1] of pitrtype;
dirty, touch: array[0..B — 1] of boolean; src, dest: =blktype; nw, dirtyent: 0..T; 1, blkide: 0..B — 1;
oldval, newval: array[0..B — 1] of ptriype; blklist: sorted_list of 0..B — 1; env: jmp_buf

initially (Vk:0< k< T :: copy[k] =pT + k) A (Vk:0< k < B :~touchlk] A —dirty[k])

procedure Read(address: 0..BS — 1) returns wordtype

1: blkide := address div S;

2: if ~touch[blkidz] then touch[blkidz] := true; blklist.insert(blkidr); ptrs[blkide] := BANK/[blkidz] fi;
3: v := BLK|[ptrs[blkidz]][address mod S];

4: if BANK [blkidz].ver = ptrs[blkids].ver then return v else longjmp(env, 1) fi

procedure Write(address: 0..BS — 1; val: wordtype) procedure LF_Transaction(ir: function_pointer)
5: blkider := address div S; while true do
6: if —touch[blkidz] then dirtyent, nw := 0, 0;
touch[blkidz] := true; 11: if setymp(env) # 1 then xir() fi;
blklist.insert(blkidz); 12: while —blklist.empty() do
pirs[blkide] := BANK [blkidz] ¢ := blklist.delete_list_head();
fi; addrlist[nw] = 1;
if —dirty[blkide] then if dirty[] then
dirty[blkidz] := true; oldval[nw] = oldlst[1];
7: sre := BLK|[ptrs[blkidz].addr]; newval[nw] = (ptrs[i].addr, ptrs[i].ver +1);
8: dest := BLK[copy[dirtyent]]; dirty[i] = false
memepy(dest, sre, sizeof (blktype)); else oldval[nw], newval[nw] := ptrs[i], ptrs[i]
9: if BANK [blkidz).ver = ptrs[blkidz].ver then fi;
oldlst[blkidz] := ptrs[blkidz]; touch[t], nw := false, nw +1
pirs[blkidz].addr = copy[dirtycnt]; od;
dirtyent = dirtyent +1 13: if MWCAS(nw, addrlist, oldval, newval) then
else longjmp(env, 1) for 7 := 0 to dirtyent — 1 do copy[i] := oldist[i].addr od;
fi return
fi; fi
10: BLK [ptrs[blkidz].addr][address mod S] := wal od

Figure 5: Implementation of lock-free transactions (LF_Transaction) and the associated Read and Write procedures.

BANK
of

Current Blocks Pointers Replacement Blocks I:l
- al

| | Modified Block Pointers I:l
|| Block1 |4—— Cligy O g
| | Block 1 Unmodified Block Pointers | |
| |

| Block 2 +~T Copy of

| | Block 2

| | I |

[Block 3 | fe——] | | |

' T — —_| —_

I I i |

[Block 4 |de——] |

| | — [

I I i |

|| Block 5 |f—— L Copy of
| | I | Block 5
U — a— — —
MEM array made up Transaction T, Transaction T, Transaction T,
of S-word blocks Writes block 1 Writes block 2 Writes block 5

Reads blocks 3,5 Reads block 3 Reads block 4

Figure 6: Implementation of the MEM array for lock-free transactions (depicted for B = 5).

“MEMI1] := MEMJ10]”, the programmer would write
“Write(1, Read(10))”.

In Figure 5, BANK is a B-word shared variable.
Each element of BANK contains a pointer to a block of
size S and a version number for the pointer. (Actually,
each pointer is an index into an array of blocks BLK.)
The B blocks pointed to by BANK constitute the cur-
rent value of the array MFEM. We assume that an upper
bound 7" is known on the number of blocks modified by
any transaction. Because a task’s transaction copies a
block before modifyingit, T' “copy” blocks are required
per task. Therefore, a total of B+ NT blocks are used.
These blocks are stored in the array BLK. Although
blocks BLK[NT] to BLK[NT + B — 1] are the initial
blocks of the array, and BLK [pT] to BLK[(p+1)T —1]
are task p’s initial copy blocks, the roles of these blocks
are not fixed. If p successfully completes a transaction
by performing a MWCAS operation, then p reclaims the
replaced blocks as copy blocks. Thus, the copy blocks
of one task may become blocks of the array MEM , and
then later become copy blocks of another task.

Task p performs a lock-free transaction by calling the
LF_Transaction procedure, which repeatedly performs
the transaction until it executes a successful MWCAS op-
eration. The user-supplied transaction code accesses
the MEM array in a sequential manner using the Read
and Write procedures. The Read procedure first com-
putes the index of the block containing the accessed
word, and then marks the block as “touched”. Before
returning the value from the appropriate offset within
that block, the block index is inserted into a sorted list
blklist, and the block pointer is recorded in pitrs.

Like the Read procedure, the Write procedure first
computes the block to be accessed and records it as
“touched”; if necessary. Then, if Write is modifying
the block for the first time during the transaction, the
block is copied into one of the task’s copy blocks, and
the block is marked as “dirty”. The copy block is then
made part of the local version of MEM by linking it
into ptrs. Finally, the displaced block is recorded in
oldlst for possible reclaiming later, and the appropriate
word is modified in the local copy of the block.

The ver counter? associated with each block pointer
in BANK records the block’s current “version” num-
ber. If a transaction successfully replaces a modified
block, then it increments the block’s version number.
Thus, a transaction determines whether the ith block
has been changed by comparing the version number
that it last read from BANKJi] to the current version
number of BANKTJi]. Note that if a successful trans-

4Our implementation uses unbounded counters to implement
block version numbers. In a forthcoming paper, we show that
these counters can be bounded.

action reads a block but does not modify it, then the
block is marked as “touched” but not “dirty”, and the
subsequent successful MWCAS does not change the block
pointer or version number.

A complication arises in our implementation when
the BANK variable is modified by a higher-priority
task’s transaction during the execution of task p’s
transaction, thereby causing p to read inconsistent val-
ues from the MEM array. Because its MWCAS operation
will subsequently fail, p will not be able to install cor-
rupted data. However, there 1s a risk that p’s sequential
operation might cause an error, such as a division by
zero or a range error. This problem is solved by ensur-
ing that if task p detects that the version number of one
of the blocks accessed by it has been modified since its
most recent access, then control is returned from the
Read or Write procedure to line 12 in LF_Transaction
using Unix-like set jmp and longjmp system calls. Task
p then “cleans up” by reinitializing blklist, dirty, and
touch, fails the MWCAS operation, and retries the trans-
action. Transactions can take advantage of this mecha-
nism by re-reading previously accessed blocks in order
to fail early in the event that the block has been mod-
ified by another transaction.

An example transaction that updates the tempera-
ture display of a boiler is given in Figure 7. Under our
implementation, the transaction is executed by call-
ing LF_Transaction(update_display). As can be seen,
transactions implemented under conventional schemes
can be easily modified to work under our lock-free
scheme.

In our implementation, concurrent read operations
do not interfere with one another. Also, concurrent
transactions that modify disjoint sets of blocks do not
interfere with one another, as illustrated in Figure 6.
The figure depicts three concurrent transactions 77, 75,
and 73. Transactions 77 and 75 do not interfere with
each other because neither of them modifies a block
accessed by both. However, T35 can potentially interfere
with 7} because T3 modifies block 5, which is read by
transaction 77.

Observe that the scheduling conditions presented in
Section 2.2 apply to task sets. These conditions can be
applied directly to periodic (or sporadic) transactions
even if the objects accessed by a transaction are not
known in advance, i.e., a transaction can access data
anywhere in the MEM array. In many applications,
it should be possible to tighten these scheduling con-
ditions by more carefully accounting for the kinds of
conflicts that can arise among transactions. Note that
a transaction 7; can interfere with another transaction
T; only if T; has higher priority than 7; and 7} writes
a block that is accessed by 7.

procedure update_display()
local variable ¢: integer
t := Read(Boiler_temp);
if Read(Disp_temp) # ¢ then Write(Disp_temp,t) fi

Figure 7: An example Transaction.

In some applications, it is essential to back up the
database in stable storage. This is usually achieved
by logging operations on the database. The techniques
presented here have the potential to greatly simplify
transaction logging, mainly because they do not re-
quire procedures for recovery from aborted transac-
tions. When a task performs a transaction, it can
update the database and the log file simultaneously
(treating the log file as simply another block of memory
to update). Because all transactions access the log file,
a simplistic application of this approach would result
in each transaction interfering with all lower-priority
concurrent transactions, which would adversely impact
schedulability. Log-file updates should therefore be
handled differently from other memory accesses. In
particular, if a transaction fails to update the log file,
then it should retry only the log file update (using a
very short retry loop like that in Figure 1), as opposed
to retrying the entire transaction.

4 Concluding Remarks

The research outlined above leaves many opportunities
for further research. Of foremost importance are ex-
perimental studies that compare lock-free transactions
with more conventional implementations. It would also
be interesting to determine if lock-free algorithms could
be used in systems with disk-resident data. Finally,
it would be interesting to investigate the applicabil-
ity of these techniques within multiprocessors and dis-
tributed systems.

Acknowledgement: We thank Steve Goddard and the

anonymous referees for their valuable comments.

References

[1] N. Audsley, A. Burns, M. Richardson, and A.
Wellings, “Hard Real-Time Scheduling: The
Deadline Monotonic Approach”, Proceedings of the
8th IEEE Workshop on Real-Time Operating Sys-
tems and Software, Oxford, UK, 1992, pp. 127-
132.

[2] J. Anderson and M. Moir, “Universal Construc-
tions for Multi-Object Operations”, Proceedings of
the 14th Annual ACM Symposium on Principles of
Distributed Computing, 1995, pp. 184-193.

[3] J. Anderson and M. Moir, “Universal Construc-
tions for Large Objects”, Proceedings of the
Ninth International Workshop on Distributed Al-
gorithms, Lecture Notes in Computer Science 972,
Springer-Verlag, September 1995, pp. 168-182.

[4] J. Anderson, S. Ramamurthy, and K. Jeffay “Real-
Time Computing with Lock-Free Shared Objects”,
Proceedings of the 16th IEEE Real-Time Systems
Symposium, 1995, pp. 28-37.

[65] M. Herlihy, “Wait-Free Synchronization”, ACM
Transactions on Programming Languages and Sys-
tems, Vol. 13, No. 1, 1991, pp. 124-149.

[6] M. Herlihy, “A Methodology for Implementing
Highly Concurrent Data Objects”, ACM Trans-
actions on Programming Languages and Systems,

Vol. 15, No. 5, 1993, pp. 745-770.

[7] J. Huang, J. Stankovic, K. Ramamritham, and D.
Towsley, “Experimental Evaluation of Real-Time
Optimistic Concurrency Control Schemes”, Pro-
ceedings of the Seventeenth International Confer-
ence on Very Large Databases, 1991, pp. 35-46.

[8] H. Kung and J. Robinson, “On Optimistic Meth-
ods for Concurrency Control”, ACM Transactions
on Database Systems, Vol. 6, No. 2, 1981, pp. 213-
226.

[9] J. Leung and J. Whitehead, “On the Complex-
ity of Fixed-Priority Scheduling of Periodic, Real-
Time Tasks”, Performance Evaluation, Vol. 2, No.

4, 1982, pp. 237-250.

C. Liu and J. Layland, “Scheduling Algorithms for
multiprogramming in a Hard Real-Time Environ-
ment”, Journal of the ACM | Vol. 30, No. 1, 1973,
pp- 46-61.

H. Massalin, Synthesis: An Efficient Implementa-
tion of Fundamental Operating System Services,
Ph.D. Dissertation, Columbia University, 1992.

[10]

A. Mok, Fundamental Design Problems of Dis-
tributed Systems for the Hard Real-Time Environ-
ment, Ph.D. Thesis, MIT Laboratory for Com-
puter Science, 1983.

S. Ramamurthy, M. Moir, and J. Anderson, “Real-
Time Object Sharing with Minimal System Sup-
port”, Proceedings of the 15th Annual ACM Sym-
postum on Principles of Distributed Computing,
to appear.

L. Sha, R. Rajkumar, S. Son, and C. Chang, “A
Real-Time Locking Protocol”, IEEE Transactions
on Computers, Vol. 40, No. 7, 1991, pp. 793-800.

[14]

