
A Loss and Queuing-Delay Controller for
Router Buffer Management

Long Le Kevin Jeffay F. Donelson Smith
Department of Computer Science

University of North Carolina at Chapel Hill
http://www.cs.unc.edu/Research/dirt

Abstract — Active queue management (AQM) in routers has been
proposed as a solution to some of the scalability issues associated
with TCP’s pure end-to-end approach to congestion control. How-
ever, beyond congestion control, controlling queues in routers is
important because unstable router queues can cause poor applica-
tion performance. Existing AQM schemes explicitly try to control
router queues by probabilistically dropping (or marking) packets.
We argue that while controlling router queues is important, this
control needs to be tempered by a consideration of the overall loss-
rate at the router. Solely attempting to control queue length can
induce loss-rates that have as negative an effect on application and
network performance as the large queues that existing AQM
schemes were trying to avoid. Thus controlling queue length with-
out regard to loss-rate can be counterproductive. In this work we
demonstrate that by jointly controlling queue length and loss-rate,
both network and application performance are improved. We pre-
sent a novel AQM design that attempts to simultaneously optimize
queue length and loss-rate. Our algorithm, called loss and queuing
delay control (LQD), is a control theoretic scheme that explicitly
treats loss-rate as a control parameter. LQD is shown to provide
stable control analytically and is evaluated empirically by compar-
ing its performance against other control theoretic AQM designs
(PI and REM). The results of evaluation in a laboratory testbed
under realistic traffic mixes and loads show that LQD results in
lower overall loss rates and that applications see lower average
queue lengths than with PI or REM.

1 Introduction
Congestion control on the Internet has historically been per-
formed end-to-end with end-systems assuming the responsi-
bility for detecting congestion and reacting to it appropri-
ately. Current TCP implementations detect instances of
packet loss, interpret these events as indicators of conges-
tion, and reduce the rate at which they are transmitting data
by reducing the connection’s window size. This congestion
reaction (combined with a linear probing congestion avoid-
ance mechanism) successfully eliminated the occurrence of
congestion collapse events on the Internet and has enabled
the growth of the Internet to its current size. Nonetheless,
concerns have been raised about the future of pure end-to-
end approaches to congestion control [2, 7]. In response to
these concerns, router-based congestion control schemes
known as active queue management (AQM) have been de-
veloped and proposed for deployment on the Internet [2].
With AQM, it is now possible for end-systems to receive a
signal of incipient congestion prior to the actual occurrence
of congestion. The signal can be implicit, realized by a

router dropping a packet from a connection even though
resources exist to enqueue and forward the packet, or ex-
plicit, realized by the routers’ AQM scheme setting an ex-
plicit congestion notification (ECN) bit in the packet’s
header and forwarding the packet.

Between dropping and ECN marking of packets, ECN
marking and forwarding is clearly preferred. Indeed a previ-
ous study of marking versus dropping showed that when
combined with prominent AQM schemes, ECN allowed
interactive applications to experience significantly reduced
response times for request-response exchanges, and allowed
service providers to obtain higher link utilization and lower
loss rates [17]. The positive results of ECN, however, are
confounded by the lack of ECN deployment in the current
Internet. In a study of TCP behavior, Padhye and Floyd
found that less than 10% of 24,030 tested web servers had
ECN enabled, of which less than 1% had a compliant im-
plementation of ECN [20]. More recent ECN testing (Feb-
ruary – May 2004) showed that only 2.1% of web servers on
the Internet had correctly deployed ECN [21]. This clearly
points to obvious difficulties in deploying and properly us-
ing ECN on the end-systems.

Without ECN enabled at the end systems, dropping packets
is the only mechanism AQM schemes can use to signal in-
cipient congestion. Ultimately, the goal of AQM is to ensure
queues never overflow (i.e., ensure that true congestion does
not occur). AQM schemes typically avoid queue overflows
by dropping packets aggressively when a router’s queue
grows larger than a certain threshold. In this paper, we argue
that while it is important to control router queues, this con-
trol should not be performed without regard to the resulting
loss-rate. Solely attempting to control queue length can in-
duce loss-rates that have as negative an effect on application
and network performance as the large queues that existing
AQM schemes are trying to avoid. Thus controlling queue
length without regard to loss-rate can be counterproductive.

We propose a new AQM scheme that controls both loss rate
and queuing delay at a router. Our algorithm, loss and queu-
ing delay control (LQD), dynamically balances loss rate and
queuing delay at a router to improve network and applica-
tion performance. LQD is a control theoretic scheme that
explicitly treats loss-rate as a control parameter (in addition
to a target queue length parameter). LQD is shown to pro-

2

vide stable control analytically and is evaluated empirically
in a large-scale laboratory network testbed across a range of
realistic workloads. The workloads are derived from meas-
urements on Abilene (i.e., Internet2) and the UNC campus.
Application and network performance are compared for
LQD and several prominent AQM schemes of similar de-
sign (PI and REM). The results show that LQD results in
lower overall loss rates and that applications see lower aver-
age queue lengths than with PI or REM.

The rest of the paper is structured as follows. Section II dis-
cusses previous related work. Section III presents our LQD
scheme. Section IV explains our experimental evaluation
methodology and Section V presents the results of an exten-
sive performance study where our LQD scheme is compared
to several prominent AQM schemes from the literature. Sec-
tion VI concludes our paper.

2 Background and Related Work
The original AQM design, called random early detection
(RED), used a weighted-average queue length as a measure
of congestion [9]. When this weighted average is smaller
than a minimum threshold (minth), no packets are marked or
dropped. When the average queue length is between the
minimum threshold and the maximum threshold (maxth), the
probability of marking or dropping packets varies linearly
between 0 and a maximum drop probability (maxp, typically
0.10). If the average queue length exceeds maxth, all packets
are dropped. (The actual size of the queue must be greater
than maxth to absorb transient bursts of packet arrivals.)

Since the development of RED, numerous additional
schemes have been developed [1, 4, 5, 6, 8, 10, 12, 15, 22].
Of special interest are the class of designs based on the prin-
ciples of control theory. In a previous study [17], and in
follow-on work [16], we showed that proportional integral
(PI) design [12] and the random exponential marking
(REM) design [1] were the best performing AQM designs.
When compared against ARED [8], AVQ [15], SFB [5],
Blue [6], RIO-PS [10], and AFD [22] in our testbed, REM
and PI consistently provided the best application and net-
work performance. For this reason, we limit ourselves here
to a discussion of, and later a comparison between, PI and
REM.

The PI controller is based on a linear model of TCP and
AQM dynamics [12]. PI attempts to regulate the queue
length in a router to match a target value called the “queue
reference,” qref. PI uses samples of the instantaneous queue
length taken at a constant sampling frequency as its input.
The drop probability is computed at each sampling interval
based on the current and previous queue length samples. PI
control is such that the drop probability increases in sam-
pling intervals when the queue length is higher than its tar-
get value. Furthermore, the drop probability also increases if
the queue has grown since the last sample (reflecting an
increase in network traffic). Conversely, the drop probabil-

ity in a PI controller is reduced when the queue length is
lower than its target value or the queue length has decreased
since its last sample. The sampling interval and the coeffi-
cients in the equation depend on the link capacity, the
maximum RTT and the expected number of active flows
using the link.

The REM controller is conceptually similar to PI. REM pe-
riodically updates a congestion measure called “price” that
reflects the mismatch between packet arrival and departure
rates at the link (i.e., the difference between the demand and
the service rate) and the queue size mismatch (i.e., the dif-
ference between the actual queue length and its target
value). The measure is computed at each sampling point
based on the link capacity (in packet departures per unit
time), the instantaneous queue length, and the packet arrival
rate. As with PI, the control target is only expressed by the
queue size. In overload situations, the congestion price in-
creases due to the rate mismatch and the queue length mis-
match. Thus, more packets are dropped or marked to signal
TCP senders to reduce their transmission rate. When con-
gestion abates, the congestion price is reduced because the
mismatches are now negative. This causes REM to drop or
mark fewer packets and allows the senders to potentially
increase their transmission rate.

While PI and REM are a small sample of the large body of
literature in AQM, it is the case that virtually all existing
schemes have all focused solely on controlling a router’s
queue length (via different mechanisms and for different
objectives). In contrast, our focus is on the joint control of
queue length and loss rate. The majority of drops that occur
when using AQM are “early drops” and are made when
buffer capacity exists to queue the packet. We propose a
new queue management scheme that considers both a refer-
ence (target) queue length and the current loss-rate when
deciding whether to drop or enqueue an arriving packet.

3 The LQD Algorithm
Controlling the length of a router’s queue is an important
and difficult task. A large queue subjects arriving packets to
a long queuing delay and can also cause instability in the
TCP control feedback loop [18]. A short queue can be
achieved by dropping packets aggressively, however, a short
target queue length runs the risk that the queue can drain
quickly and become empty before new packets arrive. In
this case, the link is underutilized and the router has unnec-
essarily dropped packets that could have been enqueued and
forwarded without ill effect.

We argue that while controlling routers’ queues is an impor-
tant goal, it should not be achieved by simply dropping ar-
riving packets. This issue is particularly important because
of the bursty characteristics of Internet traffic that can cause
temporary congestion at routers [3, 23]. (AQM schemes
such as RED and its derivatives attempt to deal with bursty
arrivals by using a low-pass filter to smooth the measure of

3

average queue length, however, as we have previously
shown, this control is ineffective [17].) We believe an AQM
scheme should be flexible enough to absorb short-term
bursts where the input rate temporarily exceeds the link
capacity. On the other hand, an AQM design should be able
to control routers’ queue when persistent congestion occurs.
This design distinguishes our AQM scheme from existing
AQM schemes that simply try to control routers’ queue at
any cost (independent of its effect on the environment). To
this end, we propose a new AQM scheme called loss and
queuing delay (LQD) controller that provides a framework
for balancing loss rate and queuing delay.

3.1 Algorithm Description
Like most AQM schemes, on each packet arrival LQD
computes a drop probability p(t) which is used to decide
whether the arriving packet is to be dropped or forwarded.
Let T be the sampling interval and l(t) be the estimated
packet loss rate (i.e., the ratio of the number of dropped
packets to the number of arriving packets). The drop prob-
ability at time kT is computed as

p(kT) = p((k–1)T) + a × (q(kT) – qref) – b × (l(kT) – pref)

where a and b are coefficients of the LQD controller and pref
� 0, and qref > 0, are the target loss rate and target queue
length respectively. We observe that the drop probability is
increased when the queue length is larger than the queue
target and is decreased otherwise. However, when the loss
rate grows larger than its threshold, the drop probability is
adjusted downward and the queue is allowed to grow tem-
porarily. The coefficients a and b allow a router to balance
between queuing delay and packet loss rate. The coefficient
a specifies how large the queue can grow and the coefficient
b allows the router to adjust the loss rate and absorb tran-
sient congestion. In general, a should be significantly
smaller than b since the range of values for queue length
(tens to hundreds) is significantly larger than the range of
values for packet loss rate (hundredths to tenths). We ob-
served from experimental data that the difference between
the actual queue length and the queue reference is on the
order of tens in dynamic environments and the packet loss
rate is on the order of hundredths. Based on these results of
empirical analysis, we set a = 0.0001 and b = 0.1 for LQD
to balance the relative contributions to the drop probability
of the queue length mismatch and the loss-rate miss match
in all experiments.

3.2 Stability Analysis
The basic issue with any control is its ability to realize sta-
ble control. Here we give a brief sketch of a stability analy-
sis. The analysis is mainly provided to provide intuition for
stability as the analysis necessarily has to make a number of
simplifying assumptions. Ultimately, our real proof of sta-
bility derives from the network performance achieved with
LQD.

Consider a system with N TCP connections sharing a bot-
tleneck link with capacity C. For analytic tractability, we
assume that the system is homogenous. Let w(t) be the con-
gestion window and τ be the propagation delay of these con-
nections. Let q(t) and p(t) be the queue length and drop
probability at the bottleneck router. The evolution of an end-
system’s window size and the queue at a bottleneck router
are given by

 dw(t)

dt
= f (p,q,w) = 1

τ
− w(t)w(t −τ)

ητ
p(t −τ) (1)

 dq(t)

dt
= g(p,q,w) = N

τ
w(t) − C (2)

where η is the number of data segments acknowledged by
an ACK (usually η = 2). The actual packet loss rate can be
approximated by the drop probability and the control equa-
tion of LQD can also be formulated as

 dp(t)

dt
= h(p,q,w) = a(q(t) − qref) −b(p(t) − pref) (3)

In steady state, the system operates around an operating
point (wo, po) where

w0 = τC

N
 and p0 = η

w0
2

= ηN 2

τ 2C2
.

Let ∂w = w–wo and ∂p = p–po, we can linearize equations
(1), (2), and (3) around the operating point using the Taylor
approximation. Noting that

∂f

∂q
= ∂g

∂p
= ∂g

∂q
= ∂h

∂w
= 0,

∂h

∂q
= a, and

∂h

∂p
= b,

we have

q

q

f
p

p

f
w

w

f

dt

wd δδδδ
∂
∂+

∂
∂+

∂
∂= (4)

)()(

131211
τδτδδδ −+−+=� tpKtwKwK

dt

wd (5)

 dδq

dt
= ∂g

∂w
δw+ ∂g

∂p
δp+ ∂g

∂q
δq = K21δw (6)

 dδp

dt
= ∂h

∂w
δw+ ∂h

∂p
δp+ ∂h

∂q
δq = aδq− bδp (7)

where

2

2
1211 τC

N

w

f
KK −=

∂
∂== ,

2

2

13 N

C

p

f
K

η
τ−

∂
∂= , and

K21 = ∂g

∂w
= N

τ
.

We transform equations (5), (6), and (7) to Laplace domain:

 ττ ss esPKesWKsWKssW −− ++=)()()()(
121211

 (7)

4

 sQ(s) = K21W (s) (8)

 sP(s) = aQ(s) − bP(s) (9)

From equation (7), (8), and (9), we can derive the character-
istic equation of the system.

 s3 + a1s
2 + a2s+ a3 = 0 (10)

where

beKKa s +−−= − τ
12111

, a2 = −K11b, and τseKaKa −−= 21123
.

Since the real parts of a1, a2, and a3 are positive, any roots
of equation (10) must have a negative real part. Hence, the
system is stable.

Example: Given the network parameters: C = 100 Mbps =
12,500 packets/sec for an average packet size of 1,000
bytes, N = 1,000 flows, T = 0.001 second, a = 0.0001 and b
= 0.1, we obtain the Nyquist diagram of the transfer func-
tion of the system TCP/LQD shown Figure 1. Since this
open loop diagram does not encircle the point (-1, 0), the
closed-loop system TCP/LQD does not enclose the origin
and does not have any poles (roots of equation (10)) in the
right-half plane. Hence, the system consisting of N TCP
flows (plant) and LQD (controller) is stable in this case.

4 Experimental Methodology
To evaluate LQD we run experiments in the network testbed
described in [17]. The network, illustrated in Figure 2, emu-
lates a peering link between two Internet service provider
(ISP) networks. In this network we emulate a large popula-
tion of users using a mix of TCP-based applications.

The testbed consists of approximately 50 Intel processor
based machines running FreeBSD 4.5. Machines execute
synthetic traffic generation programs that produce synthetic
TCP traffic based on measurements of TCP traffic on real
network links [11]. The traffic is generated in such a way
that it is statistically similar to the traffic on the measured
link (e.g. the distributions of packet sizes, object sizes, ac-
tive connections per second, throughput per second, etc.
observed on the real network can be reproduced in the labo-
ratory network [11, 17]). For this work we use two traffic
generators: a synthetic HTTP generator [17] and a generator
capable of reproducing the mix of application traffic seen on
Abilene [11]. The HTTP workload is used to compare LQD
results with previous studies. A novel aspect of this study is
the consideration of general TCP traffic. For concreteness,
to explain the basic experimental methodology, we focus
here on the process of generating synthetic HTTP traffic.
The generation of Abilene traffic is similar and is briefly
described in Section 5.

End-systems in Figure 2 execute either a web request gen-
erator (a “browser”) that emulates the browsing behavior of
thousands of human users, or a web response generator (a
“server”) that responds to requests by transmitting an object

back to the requesting machine. The browser and server
machines have 100 Mbps Ethernet interfaces and are at-
tached to switched VLANs with both 100 Mbps and 1 Gbps
ports on 10/100/1000 Ethernet switches. The users and the
servers they contact are evenly distributed across ISP1 and
ISP2. At the core of this network are two router machines
running the ALTQ extensions to FreeBSD. ALTQ extends
IP-output queuing at the network interfaces to include alter-
native queue-management disciplines [13]. We used the
ALTQ infrastructure to implement LQD, PI, and REM.

Each router has sufficient network interfaces to create either
a point-to-point 100 Mbps Fast Ethernet network between
the two routers or a point-to-point Gigabit Ethernet between
the routers. The Gigabit Ethernet network is used as an un-
congested network on which we perform calibration ex-
periments to benchmark the traffic generators. To evaluate
LQD and compare its performance to other AQM schemes,
we create a congested 100 Mbps between the routers by
changing static routes in the routers to use the Fast Ethernet
interfaces rather than the gigabit interfaces.

So that we can emulate flows that traverse a longer network
path than the one in our testbed, we use a locally-modified
version of dummynet [24] to configure out-bound packet
delays on browser machines. These delays emulate different
round-trip times on each TCP connection (thus giving per-
flow delays). Our version of dummynet delays all packets
from each flow by the same randomly-chosen minimum
delay as described in [17]. Thus while our network is fun-

Figure 1: Nyquist diagram for the system TCP/LQD.

ISP 1
Router

1
Gbps100

Mbps

Ethernet
Switches

ISP 1
Browsers/Servers

100/1,000
Mbps

ISP 2
Browsers/Servers

... 1
Gbps

ISP 2
Router Ethernet

Switches

100
Mbps

Network Monitor

Network
Monitor

...

Figure 2: Experimental network setup.

5

damentally a “dumbbell” topology, our use of per-flow
minimum round-trip times ensures a packet arrival process
at the routers that mimics that found in wide-area networks
(e.g., is long-range dependent) [11, 17].

4.1 Synthetic Generation of Web Traffic
The HTTP traffic we generate is based on an empirical
model derived from a large-scale analysis of web traffic
[25]. The model is an application-level description of how
the HTTP 1.0 and 1.1 protocols are used. The model of web
browsing is as described in [17, 25], however, here we note
that the model is quite detailed as it, for example, captures
the use of persistent HTTP connections as implemented in
many contemporary browsers and servers, and distinguishes
between web objects that are “ top-level” (e.g., HTML files)
and objects that are embedded (e.g., image files). The model
is expressed as a set of empirical distributions describing the
elements necessary to generate synthetic HTTP workloads.

The request-generating “browser” program is configured to
emulate some number of browsing users (typically several
hundred to a few thousand). For each user to be emulated,
the program implements a simple state machine that repre-
sents the user’s state as either “ thinking” or requesting a
web page. If requesting a web page, a request is made to a
remote response-generating “server” program for the pri-
mary page. Requests are then made for each embedded ref-
erence and sent to some number of servers (the number of
servers and number of embedded references are drawn as
random samples from the appropriate distributions). In re-
questing a new Web page, the browser randomly decides to
use a persistent or non-persistent connection to retrieve the
page such that approximately 15% of new connections are
persistent. A related parameter is the number of parallel
TCP connections allowed on behalf of each browsing user
to make embedded requests within a page. This allows the
browser program to mimic the behavior of Netscape (which
typically allows up to 4 parallel connections) and Internet
Explorer (typically up to 2 parallel connections).

For each request from the browser program, a message of
random size, sampled from the request size distribution, is
sent to an instance of the server program. This message
specifies the number of bytes the server is to return as a re-
sponse (a random sample from the distributions of response
sizes for top-level or embedded requests). The server sends
this number of bytes back to the browser. The empirical
distribution of response sizes is heavy tailed. While the me-
dian response size is approximately 10,000 bytes, responses
as large as 109 bytes are also generated.

For each request/response pair, the browser program logs
the response time. When all of the request/response pairs for
a page have been completed, the emulated user enters the
thinking state and makes no more requests for a random
period of time sampled from the think time distribution.

4.2 Experimental Procedures
To evaluate LQD we performed experiments on the two ISP
networks in our testbed connected with 100 Mbps links that
we congest with varying degrees of traffic. To quantify the
traffic load in each experiment we define offered load as the
network traffic (in bits/second) resulting from emulating the
browsing behavior of a fixed-size population of web users.
More specifically, load is expressed as the long-term aver-
age throughput on an uncongested 1 Gbps link that would
be generated by that user population. For example, to de-
scribe the load offered by emulating a population of 20,000
users evenly distributed on our network testbed, we would
first emulate this user population on our network with the
two ISP networks connected with a gigabit/second link and
measure the average throughput in one direction on this
link. The measured throughput, approximately 105 Mbps in
this case, is our value of offered load.

Since experiments are ultimately performed with the two
ISP networks connected at 100 Mbps, we ran a series of
calibration experiments to determine how load on the giga-
bit network varied as a function of the number of emulated
users. As expected, load varied linearly with number if emu-
lated users (see [17] for details). Thus, for example, if we
want to generate an offered load equal to 80% of the capac-
ity of the 100 Mbps link (i.e., 80 Mbps), the calibration ex-
periments tell us that we need to emulate approximately
7,600 users in each ISP to consume 80% of the link in each
direction. Note that as offered loads approach saturation of
the 100 Mbps link, the actual link utilization will, in gen-
eral, be less than the intended offered load. This is because
as utilization increases, response times become longer and
users have to wait longer before they can generate new re-
quests and hence generate fewer requests per unit time.

Previous studies have shown that AQM is effective at high
loads [17]. Therefore, each experiment was run using of-
fered loads of 90%, 98%, or 105% of the capacity of the 100
Mbps link connecting the two router machines. It is impor-
tant to emphasize again that terms like “105% load” are
used as a shorthand notation for “a population of users that
would generate a long-term average load of 105 Mbps on a
1 Gbps link.” Thus our notion of offered load refers to the
traffic generating capacity present in an experiment, not the
actual load generated in an experiment. (The actual load
generated in an experiment is a function of the performance
of the AQM scheme used.) Each experiment was run for
120 minutes to ensure very large samples (over 10,000,000
request/response exchanges), but data were collected only
during a 90-minute interval to eliminate startup effects and
experiment termination synchronization anomalies.

4.3 Measures of Success
The primary metrics for comparing the performance of the
AQM schemes we study are loss-rate and a measure of the
router’s queue length. While we would like to measure and

6

observe directly how routers’ queue evolves over time when
AQM is used, it is technically and semantically difficult to
do so. The reason is that routers (both “real” routers and our
PC routers) have multiple packet queues on the outbound
path and only one of these queues is controlled by the AQM
scheme. For example, line cards on routers and NICs on
PCs internally buffer a potentially large number of outgoing
packets. This queue is different from the IP output queue
managed by the router OS where AQM is applied [14]. For
this reason, simple measures of the IP output queue can be
misleading as more (or less) packets may also be queued at
the router in the lower layer queue. Getting queue length
data from the line card or NIC is difficult as it increases the
workload of the processor on the card and hence can effect
the card’s performance (and thus bias experimental results).
Moreover, measures of instantaneous queue length can be
misleading as application performance depends on the sum
of the queue lengths seen by each arriving packet from an
application’s connection. Measures of average queue length
are also not good predictors of application performance
unless the averaging is taken on a per connection basis (one
sample for each packet of a connection). The cost of gather-
ing such data similarly effects router performance as this
level of per-packet processing is not optimized and has high
memory requirements.

To get around the difficulties of measuring and interpreting
queue length, we adopt an indirect measure of queue length,
namely end-to-end response times for a TCP application
data unit exchange. Response time measures the combined
effect of instantaneous queue length seen by a connection’s
packets and the loss-rate seen by a connection. For this rea-
son it is an effective summary measure of AQM perform-
ance. We also report in a more summary manner, network-
centric performance measures such as the fraction of IP
datagrams dropped at the link queues, the link utilization on
the bottleneck link, and the number of request/response ex-
changes completed in the experiment.

5. Experimental Results
We implemented LQD in the framework of ALTQ [13] and
ran experiments in our laboratory network to evaluate it. We
also implemented PI, REM, ARED, SFB, Blue, RIO-PS,
AVQ, and AFD and compared LQD against them. Because
of space considerations, we only show the results for LQD
versus PI and REM. (In all experiments, the performance of
PI and REM always dominated that of the other algorithms.
Thus the most significant comparisons to be made for LQD
are against PI and REM.) We also include results from ex-
periments with drop-tail FIFO queue management to illus-
trate the performance of no AQM, and results from experi-

ments on the uncongested gigabit network to illustrate the
best possible performance.

For PI, REM, and LQD, we performed extensive initial ex-
periments to determine “optimal” target queue lengths.
Based on these experiments, two target queue lengths were
chosen: 24 and 240 packets. These were chosen to provide
two operating points; one that potentially yields low latency
(24) and one that potentially provides high link utilization
(240). We found that PI performs best at a target queue
length of 240 at all loads. On the other hand, REM performs
best at a target queue length of 24. We only report results
for PI and REM with those target queue lengths. LQD ob-
tains its best performance with a target queue length of 24
overall although it obtains almost comparable performance
with a target queue length of 240. When comparing LQD
against PI and REM, we used a target queue length of 24 for
LQD and REM, and a target queue length of 240 for PI. For
PI and REM, we also used the parameter settings that were
recommended by their inventors. We also experimented
with different parameter settings for each AQM scheme but
only reported the results for the best settings here due to
space limitations. In all cases we set the maximum queue
size to a high number of packets that ensured tail drops did
not occur. (Recall that the target queue length does not rep-
resent the amount of buffering present in the router.)

5.1 Experimental Results with Web Traffic
Figures 3-8 give the results for LQD, PI, REM, and drop-
tail FIFO. They show the cumulative distribution functions
(CDFs) and complementary cumulative distribution func-
tions (CCDFs) for response times at offered loads of 90%,
98%, and 105% respectively. We also report other statistics
for the experiments in Table 2.

At 90% load, REM obtained approximately the same per-
formance as drop-tail for the shortest 80% of responses and
gave worse performance than drop-tail for the remaining
20% of responses. On the other hand, PI gave worse per-
formance than drop-tail for the shortest 80% of responses
but achieved better performance than drop-tail for the re-
maining 20% of responses. These results demonstrate the
tradeoff between minimizing queuing delay and loss rate for
improving application performance. While REM with a tar-
get queue length of 24 managed to maintain a short queue, it
also inflicted a higher loss rate on connections (see Table 2).
These are the connections that experienced worse perform-
ance than under drop-tail. On the other hand, PI with a tar-
get queue threshold of 240 reduced packet loss rate but also
increased queuing delay and response times for applica-
tions’ request-response exchanges.

7

LQD managed to balance queuing delay and loss rate and
simultaneously gave good performance for response times,

loss-rate and link utilization. LQD absorbs transient conges-
tion (and avoids dropping packets aggressively) by allowing

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time (ms)

Uncongested network
drop-tail - qlen=240
PI - qref=240
REM - qref=24
LQD - qref=24

Figure 3: Comparison of the response time distributions of all
schemes at 90% load.

Figure 4: Tail of response time distributions for all schemes
at 90% load.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time (ms)

Uncongested network
drop-tail - qlen=240
PI - qref=240
REM - qref=24
LQD - qref=24

Figure 5: Comparison of the response time distributions of all

schemes at 98% load.
Figure 6: Tail of response time distributions for all schemes

at 98% load.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time (ms)

Uncongested network
drop-tail - qlen=240
PI - qref=240
REM - qref=24
LQD - qref=24

Figure 7: Comparison of the response time distributions of all

schemes at 105% load.
Figure 8: Tail of response time distributions for all schemes

at 105% load.

8

routers’ queue to grow temporarily. However, when persis-
tent congestion occurs, LQD still maintains stabilized
routers’ queue by increasing the drop probability appropri-
ately. Figure 4 shows the tail of the response time distribu-
tion and shows that response times were best under LQD for
all request-response exchanges except for a handful of large
responses having response times larger than 1,000 seconds.

At loads of 98% and 105%, there is clear performance supe-
riority for LQD over other AQM designs. We also note that
all AQM designs provide performance superior or compara-
ble to drop-tail at these loads. This result demonstrates the
benefits of AQM. We also see in Table 2 that loss rate in-
creases for all AQM designs as load increases. However,
LQD obtained the lowest loss rate among all AQM designs.
Link utilization was also highest under LQD at these loads.

5.2 Experiments with General TCP Traffic
While results for LQD from previous experiments are en-
couraging, they are limited to only Web traffic. To demon-
strate the generality of our results, we repeated our experi-
ment using synthetic traffic that is derived from the full mix
of TCP connections captured on Internet links. We use a 2-
hour packet trace taken on an Abilene (Internet 2) link be-
tween Cleveland and Indianapolis. The data to drive this
experiment was acquired from the NLANR repository. The
packet trace is filtered for all TCP connections including
HTTP, FTP, SMTP, NNTP, and peer-to-peer file-sharing
traffic. The synthetic traffic generated in our network repre-
sents the characteristics of existing Internet backbone traffic
as seen by routers in real network and provides the most
realistic method for evaluating AQM designs in a laboratory
network. The application used to generate synthetic TCP
traffic using packet traces is called tmix and is described in
[11]. We only provide a high-level description here.

tmix models traffic sources as network-independent entities.
The model is based on two endpoints exchanging applica-
tion data units (ADUs) defined by their specific application-
level protocol. The structure and sequencing of ADUs is
extracted from packet header traces via a “reverse compila-
tion” process. ADUs are aggregated into connections with
ADU exchanges within a connection separated by measured
think times. These connections, in essence a specification of
how an application used TCP at the socket layer to transmit
data, are replayed by a traffic generator. The connection
descriptions form a source-level model of how TCP is used
by the applications found on a given network.

The connection descriptions are replayed into the network to
generate synthetic traffic. During the replay, each TCP con-
nection is reproduced as a sequence of data unit exchanges
and think times, beginning at the same instant and the same
order as it appears in the original trace. We define response
time in this experiment as the time interval necessary to
complete the exchange of data units between two endpoints.
The degree of congestion induced in a network via tmix is a

function of the load on the original traced network and the
capacity of the replay network. The congestion can be con-
trolled via a scaling process that dilates (expands) or com-
presses the range of TCP connection start times in the trace.
Here we show experiments with two different scalings: a
“2.0” scaling (start times expanded by a factor of 2 thus
giving a less congested load than the original network), and
a “1.75” scaling (giving a more congested load than the 2.0
scaling). The choice of scaling parameter followed a calibra-
tion process similar to that described in Section 3 for HTTP.
The actual offered loads induced in the network for 2.0 scal-
ing were approximately 105.3 Mbps on average in one di-
rection and 91.2 Mbps on the reverse path. (Note that an
interesting aspect of Abilene traffic for experiments is that it
is not symmetrical between forward and reverse paths.) For
1.75 scaling, the offered loads were approximately 119
Mbps (forward path) and 104 Mbps (reverse path).

Figures 9-12 show the response time results of AQM per-
formance on Abilene traffic. For comparison purposes, we
also report results for the uncongested network and for drop-
tail FIFO at a queue depth of 240. We see the benefits of
AQM designs over drop-tail (except for PI which obtained
slightly worse performance than drop-tail for the shortest
75% of responses at both offered loads). LQD again ob-

Table 2: Loss, completed requests, and link utilizations.

Offered
Load

Loss ratio

(%)

Completed
requests

(millions)

Link
utilization/
throughput

(Mbps)

90% 0 15.0 91.3

98% 0 16.2 98.2

Uncongested
1 Gbps
network
(drop-tail) 105% 0 17.3 105.9

90% 1.8 14.6 89.9

98% 6.0 15.1 92.0
drop-tail
queue size =
 240

105% 8.8 15.0 92.4

90% 1.3 14.4 87.9

98% 3.9 15.1 89.3
PI
qref = 24

105% 6.5 15.1 89.9

90% 0.1 14.7 87.2

98% 3.7 14.9 90.0
PI
qref = 240

105% 6.9 15.0 90.5

90% 0.4 14.7 88.5

98% 2.7 15.3 91.6
LQD
qref = 24

105% 4.9 15.6 91.9

90% 0.2 14.7 88.3

98% 2.6 15.3 91.9
LQD
qref = 240

105% 5.1 15.7 92.1

90% 1.8 14.4 86.4

98% 5.0 14.5 87.6
REM
qref = 24

105% 7.7 14.6 87.5

90% 3.3 14.0 83.3

98% 5.4 14.4 86.2
REM
qref = 240

105% 7.3 14.6 87.7

9

tained the best performance among all schemes and came
closest to the performance obtained on an uncongested net-
work. The summary statistics for these experiments are in-
cluded in Table 3. The efficiency of LQD is also reflected in
its lowest loss rate and highest link utilization among all
AQM designs.

6. Summary and Conclusions
Active queue management (AQM) in routers has been pro-
posed as a solution to some of the scalability issues associ-
ated with TCP’s pure end-to-end approach to congestion
control. Our recent study of AQM schemes [17] demon-
strated that the AQM algorithms are effective in reducing
the response times of web request/response exchanges as
well as increasing link throughput and reducing loss rates.
However, ECN was required for these results. Since ECN is
currently not widely deployed in the Internet, we argue in
this paper that AQM schemes should be cautious when they
convey congestion signal to end systems by dropping pack-
ets. While we appreciate the benefits of having stabilized
router queues, we argue that controlling queue should not be

the ultimate goal for AQM designs. Furthermore, this goal
should not be achieved by dropping packets aggressively.

We presented an alternate approach, called loss and queuing
delay (LQD) controller, that enables a more flexible frame-
work in managing routers’ resources. LQD allows to bal-
ance queuing delay and loss rate at a router to improve net-
work and application performance. Within this framework,
LQD can obtain a low loss rate by allowing routers’ queue
to grow temporarily when transient congestion occurs.
When congestion is persistent, LQD can still control router
queues by increasing the packet loss rate appropriately.

We evaluated LQD and compared it to prominent AQM
designs such as PI and REM under realistic conditions. Our
experiments showed that both network and applications
benefit from our approach and LQD outperforms the other
AQM designs. Response times for request/response ex-
changes were most improved under LQD. Further, LQD
obtained higher link utilization and lower loss rate than ex-
isting AQM schemes. We believe that our results open a
new direction and inspire a new focus in AQM design.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Reponse time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Reponse time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

Figure 9: Comparison of response time distributions (body) of
all schemes under tmix traffic with 2.0 scaling.

Figure 10: Comparison of response time distributions (tail) of
all schemes under tmix traffic with 2.0 scaling.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Reponse time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Reponse time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

Figure 11: Comparison of response time distributions (body)
of all schemes under tmix traffic with 1.75 scaling.

Figure 12: Comparison of response time distributions (tail) of
all schemes under tmix traffic with 1.75 scaling.

10

7 References
[1] S. Athuraliya, V. H. Li, S.H. Low, Q. Yin, REM: Active

Queue Management, IEEE Network, Vol. 15, No. 3, May
2001, pp. 48-53.

[2] B. Braden, et al., Recommendations on Queue Management
and Congestion Avoidance in the Internet, RFC 2309, April
1998.

[3] A. Feldmann, A. Gilbert, and W. Willinger, Data networks as
cascades: Explaining the multifractal nature of Internet WAN
traffic, ACM SIGCOMM 1998.

[4] W. Feng, D. Kandlur, D. Saha, K. Shin, A Self-Configuring
RED Gateway, Proc., INFOCOM ‘99, March 1999.

[5] W. Feng, D. Kandlur, D. Saha, and K. Shin, Stochastic Fair
Blue: A Queue Management Algorithm for Enforcing Fair-
ness, Proc., IEEE INFOCOM 2001, April 2001.

[6] W. Feng, D. Kandlur, D. Saha, and K. Shin, Blue: An Alterna-
tive Approach To Active Queue Management, in Proc. of
NOSSDAV 2001, June 2001.

[7] S. Floyd, Congestion Control Principles, RFC 2914, Septem-
ber 2000.

[8] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: An Algo-
rithm for Increasing the Robustness of RED’s Active Queue
Management, http://www.icir.org/floyd/papers/adaptiv-
eRed.pdf, August 1, 2001.

[9] S. Floyd, and V. Jacobson, Random Early Detection Gate-
ways for Congestion Avoidance, IEEE/ACM Transactions on
Networking, Vol. 1 No. 4, August 1993, p. 397-413.

[10] L. Guo and I. Matta: The War between Mice and Elephants,
Proc., ICNP 2001, Nov. 2001, pp. 180-188.

[11] F. Hernandez Campos, K. Jeffay, and F.D. Smith, Generating
Realistic TCP Workloads, CMG International Conference,
December 2004.

[12] C.V. Hollot, Vishal Misra, Don Towsley, and W. Gong, On
Designing Improved Controllers for AQM Routers Supporting
TCP Flows, Proc., IEEE Infocom 2001, pp. 1726-1734.

[13] C. Kenjiro, A Framework for Alternate Queueing: Towards
Traffic Management by PC-UNIX Based Routers, USENIX
1998 Annual Technical Conf., June 1998, pp. 247-258.

[14] C. Kenjiro, Fitting theory into reality in the ALTQ case, ASIA
BSD conference, Taipei, Taiwan, March 2004.

[15] S. Kunniyur and R. Srikant, Analysis and Design of an Adap-
tive Virtual Queue (AVQ) Algorithm for Active Queue Man-
agement, Proc., ACM SIGCOMM 2001, pp. 123-134.

[16] L. Le, Understanding the Effects of Active Queue Manage-
ment on Web and General TCP Applications, Ph.D. thesis,
University of North Carolina, 2005.

[17] L. Le, J. Aikat, K. Jeffay, F. D. Smith, The Effects of Active
Queue Management on Web Performance, Proc., ACM SIG-
COMM 2003, Aug. 2003, pp. 265-276.

[18] S. Low, F. Paganini, J. Wang, S. Adlakha, J. Doyle, Dynamics
of TCP/RED and a Scalable Control, IEEE Infocom 2002.

[19] V. Misra, W. Gong, and D Towsley, A Fluid-based Analysis
of a Network of AQM Routers Supporting TCP Flows with an
Application to RED, ACM SIGCOMM 2000.

[20] J. Padhye, and S. Floyd, On Inferring TCP Behavior, Proc.,
ACM SIGCOMM 2001, Aug. 2001, pp. 287-298.

[21] A. Medina, M. Allman, and S. Floyd, Measuring Interactions
Between Transport Protocols and Middleboxes, ACM Inter-
net Measurement Conference 2004, August 2004.

[22] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, Approxi-
mate Fairness through Differential Dropping, ACM CCR,
April 2003, pp. 23-39.

[23] Paxson, V, and Floyd, S., Wide-Area Traffic: The Failure of
Poisson Modeling, IEEE/ACM Transactions on Networking,
Vol. 3 No. 3, pp. 226-244, June 1995.

[24] L. Rizzo, Dummynet: A simple approach to the evaluation of
network protocols, ACM CCR, Vol. 27, No. 1, January 1997.

[25] F.D. Smith, F. Hernandez Campos, K. Jeffay, and D. Ott,
What TCP/IP Protocols Headers Can Tell Us About The Web,
Proc., ACM SIGMETRICS 2001, June 2001, pp. 245-256.

Table 3: Summary statistics for experiments using tmix.

Rate
scaling

Com-
pleted

exchanges
(millions)

Loss
rate
(for-
ward
path)
(%)

Loss
rate
(re-

verse
path)
(%)

Link
through-
put (for-

ward
path)

(Mbps)

Link
through-
put (re-
verse
path)

(Mbps)

2.0 2.8 0.0 0.0 105.3 91.2 Uncon-
gested 1.75 3.2 0.0 0.0 119.1 104.5

2.0 2.6 3.7 0.9 90.8 85.7 drop-tail
qlen =
240 1.75 3.0 7.2 2.7 91.0 89.1

2.0 2.6 1.7 0.6 87.9 83.6 PI w/
qref =
240 1.75 3.0 4.2 2.4 86.5 84.9

2.0 2.7 1.4 0.6 90.6 86.7 LQD
qref = 24 1.75 3.0 4.0 2.1 90.5 89.5

2.0 2.6 2.1 0.8 84.3 81.4
REM w/
qref = 24 1.75 3.0 5.4 3.4 83.4 81.6

