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Abstract — Active queue management (AQM) in routers has been 
proposed as a solution to some of the scalability issues associated 
with TCP’s pure end-to-end approach to congestion control. How-
ever, beyond congestion control, controlling queues in routers is 
important because unstable router queues can cause poor applica-
tion performance. Existing AQM schemes explicitly try to control 
router queues by probabilistically dropping (or marking) packets. 
We argue that while controlling router queues is important, this 
control needs to be tempered by a consideration of the overall loss-
rate at the router. Solely attempting to control queue length can 
induce loss-rates that have as negative an effect on application and 
network performance as the large queues that existing AQM 
schemes were trying to avoid. Thus controlling queue length with-
out regard to loss-rate can be counterproductive. In this work we 
demonstrate that by jointly controlling queue length and loss-rate, 
both network and application performance are improved. We pre-
sent a novel AQM design that attempts to simultaneously optimize 
queue length and loss-rate. Our algorithm, called loss and queuing 
delay control (LQD), is a control theoretic scheme that explicitly 
treats loss-rate as a control parameter. LQD is shown to provide 
stable control analytically and is evaluated empirically by compar-
ing its performance against other control theoretic AQM designs 
(PI and REM). The results of evaluation in a laboratory testbed 
under realistic traffic mixes and loads show that LQD results in 
lower overall loss rates and that applications see lower average 
queue lengths than with PI or REM.  

1 Introduction 
Congestion control on the Internet has historically been per-
formed end-to-end with end-systems assuming the responsi-
bility for detecting congestion and reacting to it appropri-
ately. Current TCP implementations detect instances of 
packet loss, interpret these events as indicators of conges-
tion, and reduce the rate at which they are transmitting data 
by reducing the connection’s window size. This congestion 
reaction (combined with a linear probing congestion avoid-
ance mechanism) successfully eliminated the occurrence of 
congestion collapse events on the Internet and has enabled 
the growth of the Internet to its current size. Nonetheless, 
concerns have been raised about the future of pure end-to-
end approaches to congestion control [2, 7]. In response to 
these concerns, router-based congestion control schemes 
known as active queue management (AQM) have been de-
veloped and proposed for deployment on the Internet [2]. 
With AQM, it is now possible for end-systems to receive a 
signal of incipient congestion prior to the actual occurrence 
of congestion. The signal can be implicit, realized by a 

router dropping a packet from a connection even though 
resources exist to enqueue and forward the packet, or ex-
plicit, realized by the routers’  AQM scheme setting an ex-
plicit congestion notification (ECN) bit in the packet’s 
header and forwarding the packet. 

Between dropping and ECN marking of packets, ECN 
marking and forwarding is clearly preferred. Indeed a previ-
ous study of marking versus dropping showed that when 
combined with prominent AQM schemes, ECN allowed 
interactive applications to experience significantly reduced 
response times for request-response exchanges, and allowed 
service providers to obtain higher link utilization and lower 
loss rates [17]. The positive results of ECN, however, are 
confounded by the lack of ECN deployment in the current 
Internet. In a study of TCP behavior, Padhye and Floyd 
found that less than 10% of 24,030 tested web servers had 
ECN enabled, of which less than 1% had a compliant im-
plementation of ECN [20]. More recent ECN testing (Feb-
ruary – May 2004) showed that only 2.1% of web servers on 
the Internet had correctly deployed ECN [21]. This clearly 
points to obvious difficulties in deploying and properly us-
ing ECN on the end-systems. 

Without ECN enabled at the end systems, dropping packets 
is the only mechanism AQM schemes can use to signal in-
cipient congestion. Ultimately, the goal of AQM is to ensure 
queues never overflow (i.e., ensure that true congestion does 
not occur). AQM schemes typically avoid queue overflows 
by dropping packets aggressively when a router’s queue 
grows larger than a certain threshold. In this paper, we argue 
that while it is important to control router queues, this con-
trol should not be performed without regard to the resulting 
loss-rate. Solely attempting to control queue length can in-
duce loss-rates that have as negative an effect on application 
and network performance as the large queues that existing 
AQM schemes are trying to avoid. Thus controlling queue 
length without regard to loss-rate can be counterproductive.  

We propose a new AQM scheme that controls both loss rate 
and queuing delay at a router. Our algorithm, loss and queu-
ing delay control (LQD), dynamically balances loss rate and 
queuing delay at a router to improve network and applica-
tion performance. LQD is a control theoretic scheme that 
explicitly treats loss-rate as a control parameter (in addition 
to a target queue length parameter). LQD is shown to pro-
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vide stable control analytically and is evaluated empirically 
in a large-scale laboratory network testbed across a range of 
realistic workloads. The workloads are derived from meas-
urements on Abilene (i.e., Internet2) and the UNC campus. 
Application and network performance are compared for 
LQD and several prominent AQM schemes of similar de-
sign (PI and REM). The results show that LQD results in 
lower overall loss rates and that applications see lower aver-
age queue lengths than with PI or REM. 

The rest of the paper is structured as follows. Section II dis-
cusses previous related work. Section III presents our LQD 
scheme. Section IV explains our experimental evaluation 
methodology and Section V presents the results of an exten-
sive performance study where our LQD scheme is compared 
to several prominent AQM schemes from the literature. Sec-
tion VI concludes our paper. 

2 Background and Related Work 
The original AQM design, called random early detection 
(RED), used a weighted-average queue length as a measure 
of congestion [9]. When this weighted average is smaller 
than a minimum threshold (minth), no packets are marked or 
dropped. When the average queue length is between the 
minimum threshold and the maximum threshold (maxth), the 
probability of marking or dropping packets varies linearly 
between 0 and a maximum drop probability (maxp, typically 
0.10). If the average queue length exceeds maxth, all packets 
are dropped. (The actual size of the queue must be greater 
than maxth to absorb transient bursts of packet arrivals.)  

Since the development of RED, numerous additional 
schemes have been developed [1, 4, 5, 6, 8, 10, 12, 15, 22]. 
Of special interest are the class of designs based on the prin-
ciples of control theory. In a previous study [17], and in 
follow-on work [16], we showed that proportional integral 
(PI) design [12] and the random exponential marking 
(REM) design [1] were the best performing AQM designs. 
When compared against ARED [8], AVQ [15], SFB [5], 
Blue [6], RIO-PS [10], and AFD [22] in our testbed, REM 
and PI consistently provided the best application and net-
work performance. For this reason, we limit ourselves here 
to a discussion of, and later a comparison between, PI and 
REM. 

The PI controller is based on a linear model of TCP and 
AQM dynamics [12]. PI attempts to regulate the queue 
length in a router to match a target value called the “queue 
reference,”  qref. PI uses samples of the instantaneous queue 
length taken at a constant sampling frequency as its input. 
The drop probability is computed at each sampling interval 
based on the current and previous queue length samples. PI 
control is such that the drop probability increases in sam-
pling intervals when the queue length is higher than its tar-
get value. Furthermore, the drop probability also increases if 
the queue has grown since the last sample (reflecting an 
increase in network traffic). Conversely, the drop probabil-

ity in a PI controller is reduced when the queue length is 
lower than its target value or the queue length has decreased 
since its last sample. The sampling interval and the coeffi-
cients in the equation depend on the link capacity, the 
maximum RTT and the expected number of active flows 
using the link.  

The REM controller is conceptually similar to PI. REM pe-
riodically updates a congestion measure called “price”  that 
reflects the mismatch between packet arrival and departure 
rates at the link (i.e., the difference between the demand and 
the service rate) and the queue size mismatch (i.e., the dif-
ference between the actual queue length and its target 
value). The measure is computed at each sampling point 
based on the link capacity (in packet departures per unit 
time), the instantaneous queue length, and the packet arrival 
rate. As with PI, the control target is only expressed by the 
queue size. In overload situations, the congestion price in-
creases due to the rate mismatch and the queue length mis-
match. Thus, more packets are dropped or marked to signal 
TCP senders to reduce their transmission rate. When con-
gestion abates, the congestion price is reduced because the 
mismatches are now negative. This causes REM to drop or 
mark fewer packets and allows the senders to potentially 
increase their transmission rate.  

While PI and REM are a small sample of the large body of 
literature in AQM, it is the case that virtually all existing 
schemes have all focused solely on controlling a router’s 
queue length (via different mechanisms and for different 
objectives). In contrast, our focus is on the joint control of 
queue length and loss rate. The majority of drops that occur 
when using AQM are “early drops”  and are made when 
buffer capacity exists to queue the packet. We propose a 
new queue management scheme that considers both a refer-
ence (target) queue length and the current loss-rate when 
deciding whether to drop or enqueue an arriving packet.  

3 The LQD Algorithm  
Controlling the length of a router’s queue is an important 
and difficult task. A large queue subjects arriving packets to 
a long queuing delay and can also cause instability in the 
TCP control feedback loop [18]. A short queue can be 
achieved by dropping packets aggressively, however, a short 
target queue length runs the risk that the queue can drain 
quickly and become empty before new packets arrive. In 
this case, the link is underutilized and the router has unnec-
essarily dropped packets that could have been enqueued and 
forwarded without ill effect.  

We argue that while controlling routers’  queues is an impor-
tant goal, it should not be achieved by simply dropping ar-
riving packets. This issue is particularly important because 
of the bursty characteristics of Internet traffic that can cause 
temporary congestion at routers [3, 23]. (AQM schemes 
such as RED and its derivatives attempt to deal with bursty 
arrivals by using a low-pass filter to smooth the measure of 
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average queue length, however, as we have previously 
shown, this control is ineffective [17].) We believe an AQM 
scheme should be flexible enough to absorb short-term 
bursts where the input rate temporarily exceeds the link 
capacity. On the other hand, an AQM design should be able 
to control routers’  queue when persistent congestion occurs. 
This design distinguishes our AQM scheme from existing 
AQM schemes that simply try to control routers’  queue at 
any cost (independent of its effect on the environment). To 
this end, we propose a new AQM scheme called loss and 
queuing delay (LQD) controller that provides a framework 
for balancing loss rate and queuing delay.  

3.1 Algorithm Description 
Like most AQM schemes, on each packet arrival LQD 
computes a drop probability p(t) which is used to decide 
whether the arriving packet is to be dropped or forwarded. 
Let T be the sampling interval and l(t) be the estimated 
packet loss rate (i.e., the ratio of the number of dropped 
packets to the number of arriving packets). The drop prob-
ability at time kT is computed as  

p(kT) = p((k–1)T) + a × (q(kT) – qref)  –  b × (l(kT) – pref) 

where a and b are coefficients of the LQD controller and pref 
� 0, and qref > 0, are the target loss rate and target queue 
length respectively. We observe that the drop probability is 
increased when the queue length is larger than the queue 
target and is decreased otherwise. However, when the loss 
rate grows larger than its threshold, the drop probability is 
adjusted downward and the queue is allowed to grow tem-
porarily. The coefficients a and b allow a router to balance 
between queuing delay and packet loss rate. The coefficient 
a specifies how large the queue can grow and the coefficient 
b allows the router to adjust the loss rate and absorb tran-
sient congestion. In general, a should be significantly 
smaller than b since the range of values for queue length 
(tens to hundreds) is significantly larger than the range of 
values for packet loss rate (hundredths to tenths). We ob-
served from experimental data that the difference between 
the actual queue length and the queue reference is on the 
order of tens in dynamic environments and the packet loss 
rate is on the order of hundredths. Based on these results of 
empirical analysis, we set a = 0.0001 and b = 0.1 for LQD 
to balance the relative contributions to the drop probability 
of the queue length mismatch and the loss-rate miss match 
in all experiments. 

3.2 Stability Analysis 
The basic issue with any control is its ability to realize sta-
ble control. Here we give a brief sketch of a stability analy-
sis. The analysis is mainly provided to provide intuition for 
stability as the analysis necessarily has to make a number of 
simplifying assumptions. Ultimately, our real proof of sta-
bility derives from the network performance achieved with 
LQD.  

Consider a system with N TCP connections sharing a bot-
tleneck link with capacity C. For analytic tractability, we 
assume that the system is homogenous. Let w(t) be the con-
gestion window and τ be the propagation delay of these con-
nections. Let q(t) and p(t) be the queue length and drop 
probability at the bottleneck router. The evolution of an end-
system’s window size and the queue at a bottleneck router 
are given by  

 dw(t)

dt
= f (p,q,w) = 1

τ
− w(t)w(t −τ )

ητ
p(t −τ )  (1)

 dq(t)

dt
= g(p,q,w) = N

τ
w(t) − C  (2)

where η is the number of data segments acknowledged by 
an ACK (usually η = 2). The actual packet loss rate can be 
approximated by the drop probability and the control equa-
tion of LQD can also be formulated as 

 dp(t)

dt
= h(p,q,w) = a(q(t) − qref ) −b(p(t) − pref )  (3)

In steady state, the system operates around an operating 
point (wo, po) where  

w0 = τC

N
 and p0 = η

w0
2

= ηN 2

τ 2C2
. 

Let ∂w = w–wo and ∂p = p–po, we can linearize equations 
(1), (2), and (3) around the operating point using the Taylor 
approximation. Noting that  
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We transform equations (5), (6), and (7) to Laplace domain: 
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 sQ(s) = K21W (s) (8)

 sP(s) = aQ(s) − bP(s) (9)

From equation (7), (8), and (9), we can derive the character-
istic equation of the system. 

 s3 + a1s
2 + a2s+ a3 = 0 (10)

where 

beKKa s +−−= − τ
12111

, a2 = −K11b, and τseKaKa −−= 21123
. 

Since the real parts of a1, a2, and a3 are positive, any roots 
of equation (10) must have a negative real part. Hence, the 
system is stable. 

Example: Given the network parameters: C = 100 Mbps = 
12,500 packets/sec for an average packet size of 1,000 
bytes, N = 1,000 flows, T = 0.001 second, a = 0.0001 and b 
= 0.1, we obtain the Nyquist diagram of the transfer func-
tion of the system TCP/LQD shown Figure 1. Since this 
open loop diagram does not encircle the point (-1, 0), the 
closed-loop system TCP/LQD does not enclose the origin 
and does not have any poles (roots of equation (10)) in the 
right-half plane. Hence, the system consisting of N TCP 
flows (plant) and LQD (controller) is stable in this case. 

4 Experimental Methodology 
To evaluate LQD we run experiments in the network testbed 
described in [17]. The network, illustrated in Figure 2, emu-
lates a peering link between two Internet service provider 
(ISP) networks. In this network we emulate a large popula-
tion of users using a mix of TCP-based applications. 

The testbed consists of approximately 50 Intel processor 
based machines running FreeBSD 4.5. Machines execute 
synthetic traffic generation programs that produce synthetic 
TCP traffic based on measurements of TCP traffic on real 
network links [11]. The traffic is generated in such a way 
that it is statistically similar to the traffic on the measured 
link (e.g. the distributions of packet sizes, object sizes, ac-
tive connections per second, throughput per second, etc. 
observed on the real network can be reproduced in the labo-
ratory network [11, 17]). For this work we use two traffic 
generators: a synthetic HTTP generator [17] and a generator 
capable of reproducing the mix of application traffic seen on 
Abilene [11]. The HTTP workload is used to compare LQD 
results with previous studies. A novel aspect of this study is 
the consideration of general TCP traffic. For concreteness, 
to explain the basic experimental methodology, we focus 
here on the process of generating synthetic HTTP traffic. 
The generation of Abilene traffic is similar and is briefly 
described in Section 5.  

End-systems in Figure 2 execute either a web request gen-
erator (a “browser” ) that emulates the browsing behavior of 
thousands of human users, or a web response generator (a 
“server” ) that responds to requests by transmitting an object 

back to the requesting machine. The browser and server 
machines have 100 Mbps Ethernet interfaces and are at-
tached to switched VLANs with both 100 Mbps and 1 Gbps 
ports on 10/100/1000 Ethernet switches. The users and the 
servers they contact are evenly distributed across ISP1 and 
ISP2. At the core of this network are two router machines 
running the ALTQ extensions to FreeBSD. ALTQ extends 
IP-output queuing at the network interfaces to include alter-
native queue-management disciplines [13]. We used the 
ALTQ infrastructure to implement LQD, PI, and REM.  

Each router has sufficient network interfaces to create either 
a point-to-point 100 Mbps Fast Ethernet network between 
the two routers or a point-to-point Gigabit Ethernet between 
the routers. The Gigabit Ethernet network is used as an un-
congested network on which we perform calibration ex-
periments to benchmark the traffic generators. To evaluate 
LQD and compare its performance to other AQM schemes, 
we create a congested 100 Mbps between the routers by 
changing static routes in the routers to use the Fast Ethernet 
interfaces rather than the gigabit interfaces.  

So that we can emulate flows that traverse a longer network 
path than the one in our testbed, we use a locally-modified 
version of dummynet [24] to configure out-bound packet 
delays on browser machines. These delays emulate different 
round-trip times on each TCP connection (thus giving per-
flow delays). Our version of dummynet delays all packets 
from each flow by the same randomly-chosen minimum 
delay as described in [17]. Thus while our network is fun-

 

Figure 1: Nyquist diagram for the system TCP/LQD. 
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damentally a “dumbbell”  topology, our use of per-flow 
minimum round-trip times ensures a packet arrival process 
at the routers that mimics that found in wide-area networks 
(e.g., is long-range dependent) [11, 17].  

4.1 Synthetic Generation of Web Traffic  
The HTTP traffic we generate is based on an empirical 
model derived from a large-scale analysis of web traffic 
[25]. The model is an application-level description of how 
the HTTP 1.0 and 1.1 protocols are used. The model of web 
browsing is as described in [17, 25], however, here we note 
that the model is quite detailed as it, for example, captures 
the use of persistent HTTP connections as implemented in 
many contemporary browsers and servers, and distinguishes 
between web objects that are “ top-level”  (e.g., HTML files) 
and objects that are embedded (e.g., image files). The model 
is expressed as a set of empirical distributions describing the 
elements necessary to generate synthetic HTTP workloads.  

The request-generating “browser”  program is configured to 
emulate some number of browsing users (typically several 
hundred to a few thousand). For each user to be emulated, 
the program implements a simple state machine that repre-
sents the user’s state as either “ thinking”  or requesting a 
web page. If requesting a web page, a request is made to a 
remote response-generating “server”  program for the pri-
mary page. Requests are then made for each embedded ref-
erence and sent to some number of servers (the number of 
servers and number of embedded references are drawn as 
random samples from the appropriate distributions). In re-
questing a new Web page, the browser randomly decides to 
use a persistent or non-persistent connection to retrieve the 
page such that approximately 15% of new connections are 
persistent. A related parameter is the number of parallel 
TCP connections allowed on behalf of each browsing user 
to make embedded requests within a page. This allows the 
browser program to mimic the behavior of Netscape (which 
typically allows up to 4 parallel connections) and Internet 
Explorer (typically up to 2 parallel connections). 

For each request from the browser program, a message of 
random size, sampled from the request size distribution, is 
sent to an instance of the server program. This message 
specifies the number of bytes the server is to return as a re-
sponse (a random sample from the distributions of response 
sizes for top-level or embedded requests). The server sends 
this number of bytes back to the browser. The empirical 
distribution of response sizes is heavy tailed. While the me-
dian response size is approximately 10,000 bytes, responses 
as large as 109 bytes are also generated.  

For each request/response pair, the browser program logs 
the response time. When all of the request/response pairs for 
a page have been completed, the emulated user enters the 
thinking state and makes no more requests for a random 
period of time sampled from the think time distribution. 

4.2 Experimental Procedures 
To evaluate LQD we performed experiments on the two ISP 
networks in our testbed connected with 100 Mbps links that 
we congest with varying degrees of traffic. To quantify the 
traffic load in each experiment we define offered load as the 
network traffic (in bits/second) resulting from emulating the 
browsing behavior of a fixed-size population of web users. 
More specifically, load is expressed as the long-term aver-
age throughput on an uncongested 1 Gbps link that would 
be generated by that user population. For example, to de-
scribe the load offered by emulating a population of 20,000 
users evenly distributed on our network testbed, we would 
first emulate this user population on our network with the 
two ISP networks connected with a gigabit/second link and 
measure the average throughput in one direction on this 
link. The measured throughput, approximately 105 Mbps in 
this case, is our value of offered load. 

Since experiments are ultimately performed with the two 
ISP networks connected at 100 Mbps, we ran a series of 
calibration experiments to determine how load on the giga-
bit network varied as a function of the number of emulated 
users. As expected, load varied linearly with number if emu-
lated users (see [17] for details). Thus, for example, if we 
want to generate an offered load equal to 80% of the capac-
ity of the 100 Mbps link (i.e., 80 Mbps), the calibration ex-
periments tell us that we need to emulate approximately 
7,600 users in each ISP to consume 80% of the link in each 
direction. Note that as offered loads approach saturation of 
the 100 Mbps link, the actual link utilization will, in gen-
eral, be less than the intended offered load. This is because 
as utilization increases, response times become longer and 
users have to wait longer before they can generate new re-
quests and hence generate fewer requests per unit time. 

Previous studies have shown that AQM is effective at high 
loads [17]. Therefore, each experiment was run using of-
fered loads of 90%, 98%, or 105% of the capacity of the 100 
Mbps link connecting the two router machines. It is impor-
tant to emphasize again that terms like “105% load”  are 
used as a shorthand notation for “a population of users that 
would generate a long-term average load of 105 Mbps on a 
1 Gbps link.”  Thus our notion of offered load refers to the 
traffic generating capacity present in an experiment, not the 
actual load generated in an experiment. (The actual load 
generated in an experiment is a function of the performance 
of the AQM scheme used.) Each experiment was run for 
120 minutes to ensure very large samples (over 10,000,000 
request/response exchanges), but data were collected only 
during a 90-minute interval to eliminate startup effects and 
experiment termination synchronization anomalies.  

4.3 Measures of Success 
The primary metrics for comparing the performance of the 
AQM schemes we study are loss-rate and a measure of the 
router’s queue length. While we would like to measure and 
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observe directly how routers’  queue evolves over time when 
AQM is used, it is technically and semantically difficult to 
do so. The reason is that routers (both “real”  routers and our 
PC routers) have multiple packet queues on the outbound 
path and only one of these queues is controlled by the AQM 
scheme. For example, line cards on routers and NICs on 
PCs internally buffer a potentially large number of outgoing 
packets. This queue is different from the IP output queue 
managed by the router OS where AQM is applied [14]. For 
this reason, simple measures of the IP output queue can be 
misleading as more (or less) packets may also be queued at 
the router in the lower layer queue. Getting queue length 
data from the line card or NIC is difficult as it increases the 
workload of the processor on the card and hence can effect 
the card’s performance (and thus bias experimental results). 
Moreover, measures of instantaneous queue length can be 
misleading as application performance depends on the sum 
of the queue lengths seen by each arriving packet from an 
application’s connection. Measures of average queue length 
are also not good predictors of application performance 
unless the averaging is taken on a per connection basis (one 
sample for each packet of a connection). The cost of gather-
ing such data similarly effects router performance as this 
level of per-packet processing is not optimized and has high 
memory requirements.  

To get around the difficulties of measuring and interpreting 
queue length, we adopt an indirect measure of queue length, 
namely end-to-end response times for a TCP application 
data unit exchange. Response time measures the combined 
effect of instantaneous queue length seen by a connection’s 
packets and the loss-rate seen by a connection. For this rea-
son it is an effective summary measure of AQM perform-
ance. We also report in a more summary manner, network-
centric performance measures such as the fraction of IP 
datagrams dropped at the link queues, the link utilization on 
the bottleneck link, and the number of request/response ex-
changes completed in the experiment.  

5. Experimental Results 
We implemented LQD in the framework of ALTQ [13] and 
ran experiments in our laboratory network to evaluate it. We 
also implemented PI, REM, ARED, SFB, Blue, RIO-PS, 
AVQ, and AFD and compared LQD against them. Because 
of space considerations, we only show the results for LQD 
versus PI and REM. (In all experiments, the performance of 
PI and REM always dominated that of the other algorithms. 
Thus the most significant comparisons to be made for LQD 
are against PI and REM.) We also include results from ex-
periments with drop-tail FIFO queue management to illus-
trate the performance of no AQM, and results from experi-

ments on the uncongested gigabit network to illustrate the 
best possible performance.  

For PI, REM, and LQD, we performed extensive initial ex-
periments to determine “optimal”  target queue lengths. 
Based on these experiments, two target queue lengths were 
chosen: 24 and 240 packets. These were chosen to provide 
two operating points; one that potentially yields low latency 
(24) and one that potentially provides high link utilization 
(240). We found that PI performs best at a target queue 
length of 240 at all loads. On the other hand, REM performs 
best at a target queue length of 24. We only report results 
for PI and REM with those target queue lengths. LQD ob-
tains its best performance with a target queue length of 24 
overall although it obtains almost comparable performance 
with a target queue length of 240. When comparing LQD 
against PI and REM, we used a target queue length of 24 for 
LQD and REM, and a target queue length of 240 for PI. For 
PI and REM, we also used the parameter settings that were 
recommended by their inventors. We also experimented 
with different parameter settings for each AQM scheme but 
only reported the results for the best settings here due to 
space limitations. In all cases we set the maximum queue 
size to a high number of packets that ensured tail drops did 
not occur. (Recall that the target queue length does not rep-
resent the amount of buffering present in the router.) 

5.1 Experimental Results with Web Traffic 
Figures 3-8 give the results for LQD, PI, REM, and drop-
tail FIFO. They show the cumulative distribution functions 
(CDFs) and complementary cumulative distribution func-
tions (CCDFs) for response times at offered loads of 90%, 
98%, and 105% respectively. We also report other statistics 
for the experiments in Table 2. 

At 90% load, REM obtained approximately the same per-
formance as drop-tail for the shortest 80% of responses and 
gave worse performance than drop-tail for the remaining 
20% of responses. On the other hand, PI gave worse per-
formance than drop-tail for the shortest 80% of responses 
but achieved better performance than drop-tail for the re-
maining 20% of responses. These results demonstrate the 
tradeoff between minimizing queuing delay and loss rate for 
improving application performance. While REM with a tar-
get queue length of 24 managed to maintain a short queue, it 
also inflicted a higher loss rate on connections (see Table 2). 
These are the connections that experienced worse perform-
ance than under drop-tail. On the other hand, PI with a tar-
get queue threshold of 240 reduced packet loss rate but also 
increased queuing delay and response times for applica-
tions’  request-response exchanges. 



7 

LQD managed to balance queuing delay and loss rate and 
simultaneously gave good performance for response times, 

loss-rate and link utilization. LQD absorbs transient conges-
tion (and avoids dropping packets aggressively) by allowing 
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Figure 3: Comparison of the response time distributions of all 
schemes at 90% load. 

Figure 4: Tail of response time distributions for all schemes  
at 90% load.  
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Figure 5: Comparison of the response time distributions of all 

schemes at 98% load. 
Figure 6: Tail of response time distributions for all schemes  

at 98% load. 
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Figure 7: Comparison of the response time distributions of all 

schemes at 105% load. 
Figure 8: Tail of response time distributions for all schemes  

at 105% load. 
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routers’  queue to grow temporarily. However, when persis-
tent congestion occurs, LQD still maintains stabilized 
routers’  queue by increasing the drop probability appropri-
ately. Figure 4 shows the tail of the response time distribu-
tion and shows that response times were best under LQD for 
all request-response exchanges except for a handful of large 
responses having response times larger than 1,000 seconds. 

At loads of 98% and 105%, there is clear performance supe-
riority for LQD over other AQM designs. We also note that 
all AQM designs provide performance superior or compara-
ble to drop-tail at these loads. This result demonstrates the 
benefits of AQM. We also see in Table 2 that loss rate in-
creases for all AQM designs as load increases. However, 
LQD obtained the lowest loss rate among all AQM designs. 
Link utilization was also highest under LQD at these loads. 

5.2 Experiments with General TCP Traffic  
While results for LQD from previous experiments are en-
couraging, they are limited to only Web traffic. To demon-
strate the generality of our results, we repeated our experi-
ment using synthetic traffic that is derived from the full mix 
of TCP connections captured on Internet links. We use a 2-
hour packet trace taken on an Abilene (Internet 2) link be-
tween Cleveland and Indianapolis. The data to drive this 
experiment was acquired from the NLANR repository. The 
packet trace is filtered for all TCP connections including 
HTTP, FTP, SMTP, NNTP, and peer-to-peer file-sharing 
traffic. The synthetic traffic generated in our network repre-
sents the characteristics of existing Internet backbone traffic 
as seen by routers in real network and provides the most 
realistic method for evaluating AQM designs in a laboratory 
network. The application used to generate synthetic TCP 
traffic using packet traces is called tmix and is described in 
[11]. We only provide a high-level description here. 

tmix models traffic sources as network-independent entities. 
The model is based on two endpoints exchanging applica-
tion data units (ADUs) defined by their specific application-
level protocol. The structure and sequencing of ADUs is 
extracted from packet header traces via a “reverse compila-
tion”  process. ADUs are aggregated into connections with 
ADU exchanges within a connection separated by measured 
think times. These connections, in essence a specification of 
how an application used TCP at the socket layer to transmit 
data, are replayed by a traffic generator. The connection 
descriptions form a source-level model of how TCP is used 
by the applications found on a given network.  

The connection descriptions are replayed into the network to 
generate synthetic traffic. During the replay, each TCP con-
nection is reproduced as a sequence of data unit exchanges 
and think times, beginning at the same instant and the same 
order as it appears in the original trace. We define response 
time in this experiment as the time interval necessary to 
complete the exchange of data units between two endpoints. 
The degree of congestion induced in a network via tmix is a 

function of the load on the original traced network and the 
capacity of the replay network. The congestion can be con-
trolled via a scaling process that dilates (expands) or com-
presses the range of TCP connection start times in the trace. 
Here we show experiments with two different scalings: a 
“2.0”  scaling (start times expanded by a factor of 2 thus 
giving a less congested load than the original network), and 
a “1.75”  scaling (giving a more congested load than the 2.0 
scaling). The choice of scaling parameter followed a calibra-
tion process similar to that described in Section 3 for HTTP. 
The actual offered loads induced in the network for 2.0 scal-
ing were approximately 105.3 Mbps on average in one di-
rection and 91.2 Mbps on the reverse path. (Note that an 
interesting aspect of Abilene traffic for experiments is that it 
is not symmetrical between forward and reverse paths.) For 
1.75 scaling, the offered loads were approximately 119 
Mbps (forward path) and 104 Mbps (reverse path).  

Figures 9-12 show the response time results of AQM per-
formance on Abilene traffic. For comparison purposes, we 
also report results for the uncongested network and for drop-
tail FIFO at a queue depth of 240. We see the benefits of 
AQM designs over drop-tail (except for PI which obtained 
slightly worse performance than drop-tail for the shortest 
75% of responses at both offered loads). LQD again ob-

Table 2: Loss, completed requests, and link utilizations. 

  
Offered 
Load 

 
Loss ratio 

(%) 

Completed 
requests 

(millions) 

Link  
utilization/ 
throughput 

(Mbps) 

90% 0 15.0 91.3 

98% 0 16.2 98.2 

Uncongested 
1 Gbps  
network  
(drop-tail)  105% 0 17.3 105.9 

90% 1.8 14.6 89.9 

98% 6.0 15.1 92.0 
drop-tail 
queue size =  
                 240 

105% 8.8 15.0 92.4 

90% 1.3 14.4 87.9 

98% 3.9 15.1 89.3 
PI 
qref = 24 

105% 6.5 15.1 89.9 

90% 0.1 14.7 87.2 

98% 3.7 14.9 90.0 
PI 
qref = 240 

105% 6.9 15.0 90.5 

90% 0.4 14.7 88.5 

98% 2.7 15.3 91.6 
LQD 
qref = 24 

105% 4.9 15.6 91.9 

90% 0.2 14.7 88.3 

98% 2.6 15.3 91.9 
LQD 
qref = 240 

105% 5.1 15.7 92.1 

90% 1.8 14.4 86.4 

98% 5.0 14.5 87.6 
REM 
qref = 24 

105% 7.7 14.6 87.5 

90% 3.3 14.0 83.3 

98% 5.4 14.4 86.2 
REM 
qref = 240 

105% 7.3 14.6 87.7 
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tained the best performance among all schemes and came 
closest to the performance obtained on an uncongested net-
work. The summary statistics for these experiments are in-
cluded in Table 3. The efficiency of LQD is also reflected in 
its lowest loss rate and highest link utilization among all 
AQM designs. 

6.   Summary and Conclusions 
Active queue management (AQM) in routers has been pro-
posed as a solution to some of the scalability issues associ-
ated with TCP’s pure end-to-end approach to congestion 
control. Our recent study of AQM schemes [17] demon-
strated that the AQM algorithms are effective in reducing 
the response times of web request/response exchanges as 
well as increasing link throughput and reducing loss rates. 
However, ECN was required for these results. Since ECN is 
currently not widely deployed in the Internet, we argue in 
this paper that AQM schemes should be cautious when they 
convey congestion signal to end systems by dropping pack-
ets. While we appreciate the benefits of having stabilized 
router queues, we argue that controlling queue should not be 

the ultimate goal for AQM designs. Furthermore, this goal 
should not be achieved by dropping packets aggressively. 

We presented an alternate approach, called loss and queuing 
delay (LQD) controller, that enables a more flexible frame-
work in managing routers’  resources. LQD allows to bal-
ance queuing delay and loss rate at a router to improve net-
work and application performance. Within this framework, 
LQD can obtain a low loss rate by allowing routers’  queue 
to grow temporarily when transient congestion occurs. 
When congestion is persistent, LQD can still control router 
queues by increasing the packet loss rate appropriately. 

We evaluated LQD and compared it to prominent AQM 
designs such as PI and REM under realistic conditions. Our 
experiments showed that both network and applications 
benefit from our approach and LQD outperforms the other 
AQM designs. Response times for request/response ex-
changes were most improved under LQD. Further, LQD 
obtained higher link utilization and lower loss rate than ex-
isting AQM schemes. We believe that our results open a 
new direction and inspire a new focus in AQM design. 
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Figure 9: Comparison of response time distributions (body) of 
all schemes under tmix traffic with 2.0 scaling.  

Figure 10: Comparison of response time distributions (tail) of 
all schemes under tmix traffic with 2.0 scaling. 

 0

 20

 40

 60

 80

 100

 0  500  1000  1500  2000

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

Reponse time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000  10000  100000  1e+06  1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e 
pr

ob
ab

ili
ty

 (
%

)

Reponse time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 

Figure 11: Comparison of response time distributions (body) 
of all schemes under tmix traffic with 1.75 scaling. 

Figure 12: Comparison of response time distributions (tail) of 
all schemes under tmix traffic with 1.75 scaling.  
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Table 3: Summary statistics for experiments using tmix.  

 
Rate 
scaling 

Com-
pleted 

exchanges 
(millions) 

Loss 
rate 
(for-
ward 
path) 
(%) 

Loss 
rate 
(re-

verse 
path) 
(%) 

Link 
through-
put (for-

ward 
path) 

(Mbps) 

Link 
through-
put (re-
verse 
path) 

(Mbps) 

2.0 2.8 0.0 0.0 105.3 91.2 Uncon-
gested  1.75 3.2 0.0 0.0 119.1 104.5 

2.0 2.6 3.7 0.9 90.8 85.7 drop-tail 
qlen = 
240 1.75 3.0 7.2 2.7 91.0 89.1 

2.0 2.6 1.7 0.6 87.9 83.6 PI w/  
qref = 
240 1.75 3.0 4.2 2.4 86.5 84.9 

2.0 2.7 1.4 0.6 90.6 86.7 LQD 
qref = 24 1.75 3.0 4.0 2.1 90.5 89.5 

2.0 2.6 2.1 0.8 84.3 81.4 
REM w/ 
qref = 24 1.75 3.0 5.4 3.4 83.4 81.6 


