
Making Shared Caches More Predictable on Multicore Platforms ∗

Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. Anderson
Department of Computer Science, University of North Carolina at Chapel Hill

Abstract
In safety-critical cyber-physical systems, the usage of mul-
ticore platforms has been hampered by problems due to in-
teractions across cores through shared hardware. The in-
ability to precisely characterize such interactions can lead
to worst-case execution time pessimism that is so great,
the extra processing capacity of additional cores is entirely
negated. In this paper, several techniques are proposed and
analyzed for dealing with such interactions in the context
of shared caches. These techniques are applied in a mixed-
criticality scheduling framework motivated by the needs of
next-generation unmanned air vehicles.

1 Introduction
Multicore platforms offer the potential of enabling compu-
tationally intensive workloads in many settings, with less
size, weight, and power (SWaP) consumption. Such settings
range from hand-held and embedded devices, to laptop and
desktop systems, to the world’s fastest supercomputers. In
all of these settings, the computational capabilities of multi-
core chips are being leveraged to realize a wealth of new
products and services across many application domains.
One domain, however, stands out as being largely unaf-
fected: safety-critical cyber-physical embedded systems.

Examples of such systems include avionic and automo-
tive systems, medical systems for diagnosis and treatment,
and smart robotic systems that function in environments
where failures cannot be tolerated or are difficult to correct
(e.g., planetary rovers). A common characteristic of these
and other safety-critical systems is that failures may have
catastrophic consequences, such as loss of life or serious fi-
nancial repercussions. Because of the high cost of failure,
safety-critical systems must be certified (often by govern-
mental or international bodies) before being deployed.

Certification can be expensive and time-consuming.
Thus, it is imperative that safety-critical systems be built
using certification-friendly hardware platforms and design
processes. One of the most important tenets in this regard is
that computations should be predictable. Predictability en-
sures that behaviors arising during certification reflect those
that will be seen in the deployed system. Predictability is
also fundamental when establishing real-time correctness.

∗Work supported by NSF grants CNS 1016954, CNS 1115284, CNS
1218693 and CNS 1239135; ARO grant W911NF-09-1-0535; AFOSR
grant FA9550-09-1-0549; and AFRL grant FA8750-11-1-0033. The first
author was supported by an NSF graduate research fellowship.

The importance of predictability in certification explains
why multicore platforms are not in widespread use in
safety-critical domains. In such platforms, different cores
share hardware components such as caches and memory
controllers. Using current technology, very pessimistic as-
sumptions must be made regarding the utilization of these
shared resources during certification. The processing ca-
pacity lost to such pessimism can easily negate the im-
pact of any additional cores. The resulting state of affairs
is unsettling: the multicore revolution is enabling dramati-
cally better functionality and services in many domains, but
safety-critical cyber-physical systems are excluded. Unless
the “predictability problem” associated with multicore plat-
forms is addressed, functional advances in such systems will
continue to be impeded. In this paper, we consider this prob-
lem in the context of shared caches.

Next-generation UAVs. Our work is motivated by ongo-
ing research with colleagues at Northrop Grumman Corp.
(NGC) on real-time operating system infrastructure for
next-generation unmanned air vehicles (UAVs). Currently,
avionics manufacturers resolve the multicore “predictabil-
ity problem” by turning off all but one core if highly critical
system components exist. They strongly desire a more in-
telligent solution for dealing with this problem.

Next-generation UAVs will have significant computa-
tional workloads (hence the need for multicore) and sys-
tem components of varying criticalities [22, 29]: these range
from “safety critical” tasks that perform functions required
for stable flight, to less-critical dynamic planning computa-
tions that produce better results over time. Our work to date
with our NGC colleagues has been directed at supporting
such mixed-criticality task systems on multicore platforms.
This work has resulted in the development of a multicore re-
source allocation framework called MC2 (mixed-criticality
on multicore) [12, 20]. Here, we consider the problem of
adding proper shared cache management to MC2.

We address this problem by considering several cache
management schemes that utilize page coloring in some
way. Under page coloring, pages of physical memory are
assigned “colors” in a way that ensures that differently col-
ored pages cannot cause cache conflicts. As discussed later,
prior work has shown that page coloring alone can often
completely eliminate inter-task cache conflicts in real-time
systems. However, the problem of optimally allocating col-
ors is NP-hard in the strong sense [5]. Also, due to con-
straints on memory, which can arise for a variety of rea-
sons (e.g., SWaP limitations, the need to support many pro-

cessing modes, etc.), conflict-free color assignments may be
unobtainable. Motivated by these observations, we present
a new idea to enable coloring to be more flexibly utilized.
Specifically, we consider treating colors as shared resources
to which accesses must be arbitrated, either by a real-time
locking protocol or a scheduling algorithm.

Contributions. We consider cache management in a vari-
ant of MC2 in which both higher-criticality (HC) hard real-
time (HRT) tasks and lower-criticality (LC) soft real-time
(SRT) tasks must be supported. Our objective is to enable
worst-case execution time (WCET) reductions in HC tasks
by properly managing shared-cache accesses; such reduc-
tions can enable more HC tasks to be supported.

We consider two basic cache-management approaches,
which we term cache locking and cache scheduling. Un-
der cache locking, portions of the cache are viewed as non-
preemptive resources that are accessible via a locking pro-
tocol. Under cache scheduling, portions of the cache are
viewed as preemptive resources that are “scheduled.” This
approach results in a scheduling problem that is quite diffi-
cult generally; however, we show that known uniprocessor
schedulability analysis can be used to provide a sufficient
schedulability condition that performs well in many cases.
We note that in some special cases, these cache management
strategies are obviated, in which case these approaches re-
duce to cache partitioning.

To evaluate the presented schemes, we implemented each
within LITMUSRT [18] and conducted experiments on an
NVidia Tegra T30 quad-core1 ARM Cortex A9 system to
assess relevant overheads and enabled WCET improve-
ments. We then conducted overhead-aware schedulability
experiments in which these schemes were compared against
each other and to the alternative of applying no cache man-
agement. Our major conclusions from these experiments are
as follows. First, proper shared cache management can en-
able significant WCET reductions; on our test platform, ob-
served WCETs were reduced up to almost five-fold. Sec-
ond, while cache management entails some overhead, these
WCET reductions enable significant schedulability gains.
Third, cache scheduling generally enables higher schedu-
lability gains than cache locking and can be more easily and
flexibly applied.

Organization. After providing needed background
(Sec. 2), we describe our cache management techniques
(Sec. 3) and their implementation, overheads, and enabled
WCET improvements (Sec. 4), present a schedulability-
based evaluation of them (Sec. 5), and conclude (Sec. 6).

2 Background
In this section, we provide background on scheduling, syn-
chronization, and page coloring that is relevant to our work.

Task model. We consider real-time workloads that can be
defined using the implicit-deadline periodic task model and

1Enabling even a quad-core machine to be used in an avionics setting
would be a significant innovation.

CE

RM

G-EDF

Best Effort

CE

RM

CE

RM

CE

RM

A

B

C

D

CPU 0 CPU 1 CPU 2 CPU 3

Figure 1: Scheduling under MC2 on a four-processor system.

we assume familiarity with this model. We specifically con-
sider a task system τ = {T1, . . . , Tn}, which is to be sched-
uled on m processors,2 where task Ti’s period and worst-
case execution time (WCET) are denoted pi and ei, respec-
tively. We denote the jobs released by Ti as Ji,1, Ji,2,
(We sometimes omit the job index and let Ji denote an ar-
bitrary job of Ti.) We denote Ti’s utilization by ui = ei/pi.
Algorithms for scheduling such a task system may follow
a partitioned approach (tasks are statically assigned to pro-
cessors), a global scheduling approach (any task may exe-
cute on any processor), or some hybrid of the two.

MC2. We consider periodic task systems scheduled un-
der the MC2 mixed-criticality framework [12, 20]. Un-
der mixed-criticality schedulability analysis [29], different
methods for determining task execution times are assumed
to be applied at different criticality levels, with greater pes-
simism at higher levels. For example, provably correct up-
per bounds on execution times from timing analysis tools
might be assumed at the highest criticality level, while ob-
served worst-case times from profiling might be sufficient at
lower levels. When checking real-time correctness, L vari-
ants of a system with L criticality levels must be analyzed:
in the level-l variant, level-l execution times are assumed
for all tasks.

In MC2, four criticality levels exist, denoted A (highest)
through D (lowest), as shown in Fig. 1. Higher criticality
tasks are statically prioritized over lower criticality ones.
Level-A tasks are partitioned and scheduled on each proces-
sor using a table-driven cyclic executive. Level-B tasks are
also partitioned but are scheduled using a rate-monotonic
(RM) scheduler on each processor.3 Level-A and -B tasks
are required to be simply periodic (all tasks commence ex-
ecution at time 0 and periods are harmonic). Level-C tasks
are scheduled via a global earliest-deadline-first (G-EDF)
scheduler. Level-D tasks are scheduled with no real-time
guarantees on a best-effort basis (so we do not consider
them further). A task’s execution time at its own critical-
ity level is treated as an operating-system (OS) enforced ex-
ecution budget: if a job of a task Ti has an execution time
exceeding Ti’s budget, then more than one budget allocation
will be required to service it. Level-A and -B tasks are HRT,
while level-C tasks are SRT (under the “bounded deadline
tardiness” definition of SRT [7]). Most interesting cache-
related issues are exposed by focusing only on levels B and

2We use the terms “processor,” “core,” and “CPU” interchangeably.
3An EDF scheduler can be optionally used at level B.

C (one HRT level and one SRT level). Thus, due to space
constraints, we hereafter focus on systems in which only
levels B and C are present. We note that systems with two
criticality levels have been the predominate focus of prior
work on mixed-criticality scheduling (see, e.g., [2, 3, 8]).
Page coloring. The ARM platform used in our experiments
has four cores that share an L2 cache. In this paper, we con-
sider page coloring with respect to this cache. The L2 cache
on this platform is a 1 MB 8-way set associative cache:
it stores contents of physical memory in 32 B units called
“lines,” each line of physical memory maps to a particular
cache “set,” each such set can store 8 lines (equivalently,
there are eight “ways” per set), and in total there are 212

sets. The physical memory of this platform is subdivided
into 4 KB pages. To envision the coloring process, consider
each page in sequence. For the first page in memory, as-
sign the color “0” to it, and assign the same color to the
cache sets to which its contents map. Then, since each page
consists of 4KB/(32B/line) = 128 lines, sets 1 − 128
are assigned color 0. Repeat this process, assigning color 1
(mapping to sets 129− 256) to the second page in memory,
color 2 (sets 257− 384) to the third page, and so on. Then,
after the 32nd page, all 212 sets will have been used and
color assignments will “wrap,” i.e., the 33rd page will map
to the same cache sets as the first, so we reuse color 0 for it.
Continuing this process, each page will be assigned to one
of 32 colors. Moreover, two pages that are assigned differ-
ent colors will map to different cache sets and thus cannot
conflict with each other in the cache.

In Sec. 3, we consider techniques that exploit page col-
oring to eliminate or control cache conflicts. In discussing
these techniques, we limit attention to non-shared task data
pages, as only these pages are managed in the initial proto-
type system described in Sec. 4. We define the working set
size (WSS) of a task to be the size (in bytes) of the set of
data pages it may access in one job, i.e., the size of its per-
job working set (WS). We assume that each task’s WSS is
at most the size of the shared cache.
Multiprocessor real-time locking. Some of the cache
management schemes we consider utilize multiprocessor
real-time locking protocols. In the protocols we consider,
tasks wait by suspending execution. Locking protocols must
ensure that priority inversion blocking (pi-blocking) can be
analytically bounded. Pi-blocking is the duration of time a
job is blocked while a lower-priority job is running. Per-task
bounds on pi-blocking are required when analyzing schedu-
lability. We let bi denote the pi-blocking bound for task Ti.

On a multiprocessor system, the actual definition of
pi-blocking depends on how schedulability analysis is
done [4]. For some schedulers, suspensions are notoriously
difficult to analyze, so suspension-oblivious (s-oblivious)
analysis is applied: jobs may suspend, but each ei must
be analytically inflated by bi prior to applying a schedu-
lability test to account for lock-related delays. We utilize
s-oblivious analysis in this paper. Some of the nuances of
such analysis can best be explained by comparing it to
suspension-aware (s-aware) analysis, which explicitly ac-

50

J1

J2

J3 both s-oblivious and
s-aware pi-blocking

only s-aware
pi-blocking

without resource

with resource

scheduled on processor

job release job completionjob deadline

job suspended

1 2

waiting for resource

Figure 2: Example (from [4]) of s-oblivious and s-aware pi-
blocking. G-EDF scheduling on two processors is assumed. J3

suspends during [1, 3), and since no higher-priority jobs exist it
is pi-blocked under either definition. J1, suspended during [2, 4),
suffers pi-blocking under either definition during [3, 4) since it is
among the m highest-priority pending jobs, but only s-aware pi-
blocking during [2, 3) as J3 is pending but not ready then.

counts for bi and is available for some schedulers.
Since suspended jobs are counted as demand under s-

oblivious analysis, the mere presence of m higher-priority
jobs rules out a priority inversion, whereas only ready
higher-priority jobs can nullify a priority inversion under
s-aware analysis.4 Accordingly, under s-oblivious (resp., s-
aware) schedulability analysis, a job Ji incurs s-oblivious
(resp., s-aware) pi-blocking at time t if Ji is pending but not
scheduled and fewer than m higher-priority jobs are pend-
ing (resp., ready). This is illustrated in Fig. 2. Prior research
has shown that s-aware and s-oblivious analysis are compa-
rable in terms of schedulability achievable in practice [4].
Cache-related locking problem. We now describe the ba-
sic synchronization problem that arises when using locking
protocols for cache management (protocol-specific details
are discussed in Sec. 3). When using such protocols, each
color is viewed as a shared resource that has a number of
“replicas” as given by the number of cache ways, as illus-
trated in Fig. 3. Before a job commences execution, it must
first lock a replica of each color that it requires (as given
by the pages it will access). If the job accesses r pages with
the same color, then it must lock r replicas of that color. The
needed synchronization protocol must enable a set of shared
resources to be managed, where each resource has multiple
replicas, and jobs may need to lock several replicas simul-
taneously. In actuality, such a protocol is utilized by the OS
when making scheduling decisions, i.e., the jobs themselves
do not acquire and release color-related locks. This means
that the OS must know the pages a job will access prior to
making a scheduling decision.

3 Cache Management Techniques
In this section, we present techniques for managing accesses
to a shared cache by level-B tasks in MC2 (recall our as-
sumption that level A is not present). Our goal is to enable

4A job is pending if it has been released but is not completed. A pending
job is ready if it is available for execution. A suspended job is not ready.

Way 0
Way 1

Way 7

Color 0

Color 1

Color 31

...

...

T3

T2

T1

Suspended

Locked

Figure 3: Color locking.

WCET reductions and greater predictability in such tasks.
We do not apply these cache management techniques to
the level-C subsystem, which is provisioned using less pes-
simistic bounds on WCETs (e.g., the level-C subsystem may
be provisioned based on observed worst- or average-case
execution times), which are not as significantly impacted by
the possibility of adverse interactions across shared hard-
ware resources. Furthermore, we assume that tasks of dif-
ferent criticality levels are partitioned in the cache, i.e., they
are allocated such that they do not share colors (support for
such allocation is described in Sec. 4). The term “task” is
used to refer to a level-B task in the rest of this section.

3.1 Color Management Alternatives

We begin by broadly describing color management strate-
gies and our assumptions. First, we assume an inclusive
write-back cache for which the OS can precisely control
which cache sets and ways a task’s data is loaded into. Sec-
ond, we assume that the OS has access to hardware mecha-
nisms that enable ways of the cache to be locked (and later
unlocked) such that data in a locked way is protected from
being evicted (equivalently, the way is unavailable for allo-
cation). Third, we assume that the physical memory pages,
and therefore the color requirements of each task, have been
previously assigned, and that tasks have been partitioned
onto processors. Finally, we assume that the memory a task
uses is preallocated before the task system begins execution,
as is common in real-time systems. We discuss the realiza-
tion of the first two points on our test platform in Sec. 4.
In Sec. 5, we address the third requirement by describing
methods to assign colors.

The effect of these assumptions is that once data is
loaded into a cache way and it is locked, all subsequent
memory accesses to that data will hit in the cache. With
this property, uniprocessor timing analysis tools, which are
much less pessimistic than multicore ones,5 can be em-
ployed to more accurately estimate WCETs for level-B
tasks. Furthermore, observed WCETs will be improved as
the number of cache misses is provably reduced.

Under these assumptions the cache can be treated as ei-

5Actually, research on multicore timing analysis is still in its infancy,
so it is doubtful that such tools are used much (if at all) in practice. Note
that, to entirely reduce timing analysis to a uniprocessor problem, cache
management would need to be supported for all pages.

Color 0

Way
Queue 0

Way
Queue 7

RNLP

Color 31

Way
Queue 0

Way
Queue 7

T1 T1T2 T2

T3 T3T4

Figure 4: Illustration of the RNLP queue structure.

ther a non-preemptive or a preemptive resource. This gives
rise to four different classes of allocation policies, depend-
ing upon whether the processor or the cache is preemptive.
We claim, however, that either both should be preemptive,
or both should be non-preemptive. If the processor is non-
preemptive and the cache is preemptive, then it is possible
for a job to be scheduled while its needed cache colors have
been preempted (i.e., are not available for it to use). Alter-
natively, if the cache is non-preemptive and the processor
is preemptive, then colors could be locked by a job that
is later preempted and thus unable to use them. We there-
fore consider only the non-preemptive case, which we call
cache locking, and the preemptive case, which we call cache
scheduling.

3.1.1 Cache Locking

Under cache locking, a job must hold a color lock for all of
its needed colors before execution, and it does not release its
color locks until the end of its execution, i.e., its execution
requirement is a critical section. This ensures cache isola-
tion for each job during the entirety of its execution. This
policy can be realized by using a multiprocessor real-time
locking protocol to arbitrate access to colors and treating
each job’s execution time as a critical section.

For this purpose, we leverage the RNLP [30],6 a recently
developed multiprocessor real-time locking protocol that
optimally supports the simultaneous locking of multiple re-
sources. The RNLP controls access to all cache colors and
their respective ways. For each way of each color, there is
an associated FIFO-ordered way queue of jobs. This archi-
tecture is depicted in Fig. 4. The head of each way queue
is assumed to have acquired the associated way, though it
does not execute until it has acquired all needed ways. A
job Ji atomically requests all colors it requires before it
can commence execution. For each color c from which Ji
requests rc ways, Ji is enqueued in the shortest rc way
queues associated with c. A job in a way queue that is either
waiting for a resource or scheduled with its needed ways is
considered non-preemptive. Therefore, no other jobs on the
processor can be either scheduled or enqueued in the way
queues. Because there can be at most m jobs total in all
way queues, and because jobs enqueue in the shortest way
queues, the maximum duration of blocking for all cache col-
ors is O(mr/k) where k is the number of ways available

6We made a minor modification to support replicated resources.

T1

T2

T3

T4

0 5 10

Priority
Inversion

P1

P2

}
}

Color Blue Color Red

J1

J2

J3

J4

Figure 5: Example of the trade-off between priority inversion and
improved WCET (explained in text).

and r is the maximum number of ways per color requested
by any job. Under s-oblivious analysis, a non-preemptive
job is analytically treated as scheduled, even when it is
not actually scheduled. This non-preemptivity can cause
O(mr/k) non-preemptive blocking for other jobs. Thus, the
total duration of blocking is O(mr/k).7

Ex. 1. Consider a two-processor system, with two tasks on
each processor, as depicted in Fig. 5. For simplicity, as-
sume that the cache is direct-mapped (i.e., only one way per
color). Assume that jobs J1 and J2 (resp., J3 and J4) are
partitioned onto processor P1 (resp., P2). Also, assume the
lower-indexed jobs have higher priority. Let jobs J1 and J3
share blue (striped in the figure), and jobs J2 and J4 share
red (solid). If all jobs are released synchronously on both
processors, then without cache locking, both jobs J1 and
J3 would be concurrently scheduled, and would conflict in
the cache. However, as shown in Fig. 5, J1 is concurrently
scheduled with J4. These jobs do not conflict in the cache.
When J1 completes, J2 and J3 can execute without conflict-
ing in the cache. In this example, there is a priority inversion
when job J3 cannot run, and instead the lower-priority job
J4 executes. Our goal is to show that the effect of such pri-
ority inversions is offset by the improved WCETs afforded
by cache isolation.

Period splitting. Non-preemptive processor scheduling, a
byproduct of our locking protocol, can cause pi-blocking
that can be detrimental to the schedulability of a task set.
Ex. 2. Consider a system where Ti has a higher priority
than Tj . If ej ≥ pi, then the system may be unschedulable
because Tj might be non-preemptive throughout the entirety
of Ti’s period, causing Tj to miss its deadline.

The undesirable effects of non-preemptivity can be ame-
liorated by exploiting the fact that cache-related critical sec-
tions are not “true” critical sections: they can be preempted,
albeit with an additional cost to reload evicted cache lines
that are later required. Under s-oblivious analysis (recall
from Sec. 2), non-preemptive blocking can be eliminated
using a technique called period splitting. Under period split-
ting, each task’s period is set to the shortest period in the
system and its execution time is scaled accordingly. Thus,

7More exact blocking analysis, though possible, is omitted due to space
constraints.

each job actually executes as a sequence of subjobs.
Ex. 3. Consider a system with two tasks, T1 and T2, where
e1 = 1, p1 = 3, e2 = 6, and p2 = 9. Under period split-
ting, T2’s period is reduced to match p1, without altering its
utilization. Thus, after period splitting, e2 = 2 and p2 = 3.

Since level B in MC2 is simply periodic, period splitting
ensures that subjobs are always released in phase. Under
this assumption, the RNLP guarantees that all s-oblivious
pi-blocking is caused by tasks on remote processors.
Job splitting. Such remote blocking can clearly cause the
system to be unschedulable. It is particularly detrimental if
critical-section lengths are highly variant.
Ex. 4. Consider a system in which a color is shared between
two tasks T1 and T2, where e1 = 1 and p1 = e2 = 16. If T1
blocks for 16 time units on T2, then it will miss its deadline.

We can mitigate such detrimental blocking by break-
ing each task into multiple subtasks that are scheduled on
the same processor and that all have the same period, but
smaller execution times, such that all subtask utilizations
sum to the original task’s utilization. This is similar to in-
serting preemption points into jobs of a task, but is imple-
mented by enforcing budgets. We call this technique job
splitting. Note the difference between job and period split-
ting: under job splitting, tasks are broken into many sub-
tasks with smaller utilizations, while under period splitting,
a task’s period is reduced, while maintaining its utilization.
Ex. 4 (cont’d). If T2 is split into 16 subtasks, each with an
execution cost of one, then worst-case blocking for T1 is
improved from 16 to one.

Job and period splitting, which can potentially be ap-
plied together, can reduce pi-blocking bounds by amelio-
rating the adverse effects of highly variant critical-section
lengths. However, under either scheme, there is additional
overhead for each subjob, such as costs due to scheduling
decisions and reloading cache lines. Such overheads could
be prohibitive if splitting is too “fine-grained.”

3.1.2 Cache Scheduling

While non-preemptively scheduling tasks with respect to
the cache maximizes reuse of cache lines within each job,
it can cause adverse blocking, as we have seen. Alterna-
tively, we can treat the cache as a preemptive resource, a
technique we call cache scheduling. In this case, color repli-
cas are preemptively “scheduled.” When a task is scheduled
with respect to a set of color replicas, it has exclusive ac-
cess to those replicas and thus will not experience cache
conflicts with tasks on remote processors. However, it may
be preempted to allow a higher-priority task to access some
replica. Similar to job and period slicing, such a preemption
may force the preempted task to reload its WS. However,
the cost of such reloads can be analyzed and incorporated
into schedulability conditions using existing techniques as
described in [4, Chap. 3].
Ex. 5. Consider the two-processor schedule depicted in
Fig. 6, where each processor, P1 and P2, has two assigned

0 5 10 15

T1

T2

T4

T3 Preempted
from the
cache

Color Red Color Green

P1

P2

}
}

Figure 6: Preemptively scheduling the cache.

tasks with utilization 1/4. Tasks T1 and T3 are defined by
(e1, p1) = (e3, p3) = (1, 4) and both share red and green.
Task T2 is defined by (e2, p2) = (2, 8) and requires green
only, while T4 is defined by (e4, p4) = (4, 16) and requires
red only. RM priorities are applied to tasks on both the cache
and their respective processors. Thus, tasks T1 and T3 are
scheduled before T2 and T4. At time t = 4, T4 is preempted
by the higher-priority task T1 on processor P1.

We believe that by viewing cache colors as preemptive
processors we expose a new scheduling problem. The prob-
lem is how to schedule and verify the schedulability of a
task system in which each task Ti has an additional parame-
ter, Ri, which gives a set of processor requirements. A pro-
cessor requirement (a, s) ∈ Ri specifies that for Ti to ex-
ecute, it must be scheduled on a processors from the set of
processors s.
Ex. 6. For a task Ti assigned to processor P2 requiring
four replicas of color blue, of which there are 16 ways, B1,
. . . , B16, we have Ri = {(1, {P2}), (4, {B1, . . . , B16})}.

This scheduling problem is a generalization of gang
scheduling [13], and scheduling with processing set restric-
tions [16]. We leave this general problem for future work,
but present more simplistic analysis by reducing the prob-
lem to a uniprocessor scheduling problem.
Reduction to uniprocessor analysis. Fundamental to our
analysis is the observation that there are task systems for
which the processor may not be the constrained resource—
instead the cache may be overutilized, causing the task sys-
tem to be unschedulable.
Ex. 7. Consider two tasks that share the same set of col-
ors and have a total utilization greater than one. The tasks
may be partitioned onto either one or two processors. In the
former case, the processor is overutilized, and the task sys-
tem is unschedulable. In the latter case, the tasks must run
sequentially to ensure cache isolation, and thus the task sys-
tem is unschedulable despite the additional processing ca-
pacity of the second processor. This is because the cache is
the constrained resource, not the processors.

We next formalize the reduction to uniprocessor analy-
sis mentioned above and demonstrate how the utilization of
cache colors can be evaluated to check schedulability with
respect to both cache colors and processors.

We define a binary relation for direct contention D, such
that two tasks are related if they share colors or a processor,

D = {(Ti, Tj) ∈ τ2 | Ci ∩ Cj 6= ∅ ∨ P (Ti) = P (Tj)},

whereCi is the set of colors that task Ti requires, and P (Ti)
is the processor on which Ti is partitioned. Let D+ be the
transitive closure of direct contention, D. We define each
equivalence class in D+ to be a logical cache processor. By
definition, all tasks on the same physical processor must be
on the same cache processor, and thus the number of cache
processors is at most m.

We evaluate the schedulability of each cache processor
as a uniprocessor, and apply known schedulability tests. In
MC2, which uses RM priorities on each physical proces-
sor and simply periodic periods, the schedulability test for
a physical processor Pj is

∑
Ti on Pj

ui ≤ 1. We can also
schedule the cache using RM priorities, and allow new jobs
of high-priority tasks to preempt low-priority tasks with re-
spect to the cache. Thus, the resulting schedulability test is
the same: the total utilization of each cache processor is at
most one. We do not need to explicitly evaluate the schedu-
lability of the physical processors, since the set of tasks on
each physical processor is a subset of the tasks on the re-
spective cache processor. Thus, if each cache processor is
schedulable, then each physical processor is as well.

Ex. 5 (cont’d). Because tasks on processors P1 and P2

share the same set of colors (red and green), they form a sin-
gle cache processor. Since the utilization of the four tasks is
one, both the cache and the processors are schedulable. If all
tasks required both red and green, then the tasks would nec-
essarily be serialized as if they were on a single processor
(assuming cache isolation is required). However, because
tasks T2 and T4 do not share the same colors, they can exe-
cute concurrently, as depicted in Fig. 6.

Note that this schedulability condition is only sufficient
and may be pessimistic: it may be possible for tasks to run
concurrently on different physical processors if they require
disjoint colors. This pessimism can be avoided in two ways:
through tighter analysis of the aforementioned more general
scheduling problem, or by assigning colors to tasks in a way
that reflects our uniprocessor analysis, as discussed later.

3.2 Related Work

Prior work exists on cache management that is similar to
ours in some respects. An approach called cache lockdown
(not to be confused with our use of the term “locking”) has
been proposed wherein designated cache lines are “locked
down” in the cache so that they cannot be evicted [6]. Simi-
larly, an approach called cache partitioning has been pro-
posed that attempts to mitigate the impact of cache con-
flicts by allocating sections (or partitions) of the cache to
specific tasks (see [14] for an overview). Cache partition-
ing can be done automatically by the compiler [21], but the
source code of programs must be available for compilation
and large portions of memory must be allocated as padding
to achieve the desired code and data placement. To remedy
this, partitioning at the OS level was proposed [17]. This ap-
proach can be applied dynamically, transparently, and with-
out access to application source code. However, it may be
difficult to size partitions so that the cache is efficiently uti-

lized from a system-wide perspective.
In general, the problems of optimally assigning tasks

to processors and colors to tasks are both NP-hard in the
strong sense [5], though suboptimal heuristic-based algo-
rithms have been proposed and evaluated on different hard-
ware platforms [9, 22, 24]. Cache partitioning is actually a
special case of our cache locking approach in which inter-
task cache conflicts are entirely eliminated, and hence the
usage of a locking protocol is obviated. However, our gen-
eralization allows more flexibility in determining color as-
signments and can enable greater dynamism at runtime.

A system execution model called PREM [25] has been
proposed that takes an approach similar to ours. Specifi-
cally, PREM uses scheduling to reduce or eliminate con-
tention for shared resource accesses, including main mem-
ory. However, unlike our proposed cache management tech-
niques, PREM is restricted to single-core systems. An ex-
tension to PREM [31] exists that uses memory-centric
TDMA-based scheduling on multicore processors, but as-
sumes no shared resources among cores except memory—
each core’s last-level cache is private.

In work on timing analysis, methods pertaining to mem-
ory hierarchies have been proposed (e.g., see [15, 26] and
the references therein). Related hardware-based techniques
include cache bypass [11], which reduces cache conflicts by
exploiting special hardware instructions, and methods for
making multicore platforms more predictable at the proces-
sor [23] and interconnect levels [1, 10, 27, 28]. In contrast
to this work, our approaches are software-based.

4 Implementation
We implemented the cache management techniques de-
scribed above in an MC2 prototype within LITMUSRT [18].
In developing this implementation, we restricted attention to
tasks that are independent (no shared resources other than
cache lines), have only memory-resident pages, and that do
not share pages with each other. We used the ARM ma-
chine described in Secs. 1-2 as our development platform.
All page coloring was done with respect to the last level of
cache, which on this machine is its L2. In prior work, we
found that level-B schedulability is greatly improved if one
CPU is designated as a release master that processes all job-
release interrupts and is not assigned any level-B tasks [12].
We employed a release master in our current prototype, so
level-B tasks are actually only scheduled on three CPUs
(level-C tasks can execute on the release master).

As noted earlier, we implemented coloring with respect
to tasks’ data pages. We leave the coloring of other areas of
memory as future work. We believe this is reasonable for a
first prototype, as our implemented tasks have a small per-
job code footprint that does not make any system calls and
operate only on the colored memory they allocate. We im-
plemented a memory allocation function similar to malloc
that modifies the page tables of the backing user process for
each task to map pages with the proper colors into its con-
tiguous virtual address space.

Controlling eviction. When discussing various page-
coloring-oriented cache management techniques in Sec. 2,
we assumed that the OS can precisely control the cache
sets and ways that a task’s data is loaded into. In our im-
plementation, this functionality is achieved by exploiting
cache lockdown using a clever method proposed by Man-
cuso, et al. [19]. As noted earlier, cache lockdown allows
certain ways to be marked as unavailable for allocation (or
locked down) such that the contents of a locked way cannot
be evicted.

The approach in [19] utilizes a variant of cache lockdown
called Lockdown by Master (LbM), where each CPU Pq has
access to a per-CPU lockdown register8 xq such that bit i
in xq is zero if allocation can occur in way i for memory
references from CPU Pq , and one otherwise. LbM is sup-
ported on our ARM platform. As noted by the authors of
[19], setting all but one bit of xq to one pigeonholes mem-
ory requests from CPU Pq to be allocated in a specific cache
way. By applying this idea, memory can be prefetched by
reading it in a “prefetch” loop such that the loop code oc-
cupies at most one cache line and is cache-line aligned.
During prefetching, CPU-local interrupts must be disabled
to avoid interrupt-related cache pollution. To ensure that
each prefetched cache line is read into the proper way, none
of the memory to be prefetched can be cached elsewhere.
Consequently, under cache locking when a job releases its
color locks, and under cache scheduling when a job com-
pletes or is preempted, all prefetched pages are flushed or
evicted from the cache. This is done using a similar process
to prefetching, except that pages reserved for flushing are
loaded into the ways to be flushed thereby evicting the job’s
cached pages.

Evaluation. We evaluated our implementation by measur-
ing system overheads (including cache prefetching/flushing
costs) and observed WCET improvements. To obtain
these measurements, we traced the behavior of task sets
with varying task counts, where periods and utilizations
were generated uniformly from {25, 50, 100, 200}ms and
[0.01, 0.05], respectively. Level-B tasks were assigned to
cores using the worst-fit heuristic. (Any task set that could
not be so assigned was discarded.) Cache prefetching was
turned off. Each task was defined via a per-job code se-
quence in which it reads its WS in a random order one or
more times.

Scaling factors. A job executed under cache locking or
cache scheduling does not suffer cache misses and therefore
completes execution earlier than it would in a system with-
out cache management. We use scaling factors to denote
the ratio of per-job execution times without and with cache
management, e.g., if cache scheduling reduces a task’s per-
job execution time from 10 ms to 2 ms, then this task has a
scaling factor of five. The worst-case scaling factors on our
test platform were on the order of 3.5 to 4.5, while average-
case scaling factors were between 3.3 and 3.9.

8Actually, there is a per-CPU register for instructions and data, but we
are concerned with only data at this point.

 0

 20

 40

 60

 80

 100

Unmanaged Locking Scheduling

S
ch

e
d

u
lin

g
 O

v
e
rh

e
a
d

 (
u
s) Avg

Max

(a) Scheduling overhead.

 0

 200

 400

 600

 800

 1000

128K 192K 256K

P
re

fe
tc

h
 &

 F
lu

sh
 O

v
e
rh

e
a
d

 (
u
s)

Avg
Max

(b) Prefetch & flush overhead.

Figure 7: Each graph shows average-case (orange, textured) and
worst-case (blue, solid) measurements. (a) Scheduling overheads.
(b) Prefetch and flush overheads for various WSSs.

In Sec. 5, we use these scaling factors to compare
schedulability with and without cache management in the
presence of system overheads. While it might be preferable
to use WCETs predicted by timing analysis tools in such
comparisons, adequate tools for multicore platforms do not
yet exist. Also, note that observed WCETs lower bound pre-
dicted ones (if the prediction is safe). Thus, observed val-
ues give some indication of how a tool might perform given
varying degrees of information about cross-core cache in-
teractions.
System overheads. Cache management increases schedul-
ing costs and consequently the duration of OS overheads
interrupting task execution. Additional overhead arises un-
der cache locking due to locking-protocol overhead, and un-
der cache scheduling due to added complexity for maintain-
ing cache processor state. Fig. 7(a) depicts scheduling over-
heads (i.e., the time taken by the OS to make a scheduling
decision) for level B assuming no cache management (Un-
managed), cache locking (Locking), and cache scheduling
(Scheduling). Observe that worst-case overheads were in-
creased by around 60µs for cache scheduling and 50µs for
cache locking.

The cache lockdown prefetching and flushing operations
must also be considered. A task will not begin execution
until its assigned processor has cached the entirety of its
WS. Additionally, whenever a job unlocks or is preempted
from the cache, its WS must be flushed from the cache. In
Fig. 7(b), we show the cost of prefetching and flushing for

different WSSs. The worst-case cost varied from 400µs to
900µs in our experiments, depending on WSS. With re-
spect to schedulability, these costs and higher scheduling
overheads are offset by lower WCETs as we show next.

5 Schedulability Study
In this section, we evaluate the utility of our proposed
cache management techniques from a schedulability per-
spective, with measured overheads considered, and examine
the tradeoff between improved WCETs enabled by our tech-
niques and any utilization loss due to cache management.
Utilization scaling. To evaluate the schedulability of a task
system using cache management, we scale the level-B uti-
lization of tasks scheduled without cache management by a
scaling factor commensurate with those observed in Sec. 4.
This utilization scaling theoretically allows a scheduler us-
ing our cache management techniques to schedule task sys-
tems that, unmanaged, contain tasks with level-B utiliza-
tions greater than one or have a total level-B utilization
greater than the number of processors. For example, us-
ing our cache management techniques, it may be possible
to schedule on four processors a task system with a total un-
managed level-B utilization of five and that contains a task
with an unmanaged utilization of 1.5. These observations
motivate the experimental design of of our schedulability
study, as is discussed next.

We evaluated the schedulability of randomly generated
task systems having equal level-B and -C subsystem utiliza-
tions. That is, for each system utilization x, we generated
task systems where the sum of all level-B tasks’ level-B uti-
lizations was equal to x, and the sum of all level-B and
-C tasks’ level-C utilizations together also summed to x
(recall that in mixed-criticality scheduling, a task has an
execution cost, and hence utilization, for each criticality
level). The level-C utilization of each level-B task was as-
sumed to be 10% of its level-B utilization. We considered
task systems with utilizations without cache management
of {1.0, 1.1, . . . , 10.0} with respect to the previously de-
scribed system (four processors, 1MB 8-way set associative
cache, with 512 KB allocated to each criticality level). Both
the level-B utilizations of level-B tasks and the level-C uti-
lizations of level-C tasks were uniformly distributed over
[0.1,0.4] or [0.5,0.9], though in all graphs presented herein,
which depict relevant trends, the former utilization distribu-
tion is assumed.9 We note that greater per-task utilizations
could be supported using cache management (e.g., 1.5).
However, we did not consider such systems in our evalua-
tions as there is no basis for comparison with a system with
an unmanaged cache (which cannot schedule tasks with uti-
lizations greater than 1.0).

Schedulability was determined by evaluating the gener-
ated task systems using the level-B and -C schedulability
conditions given in [20], with overheads factored in us-
ing the techniques described in [4, Chap. 3]. Worst-case

9The remaining graphs are available in an online appendix available at
http://www.cs.unc.edu/˜anderson/papers.html.

(average-case) overheads were assumed for level B (C), as
level B (C) is HRT (SRT). Comparisons between systems
with and without cache management were performed by
generating task systems for an unmanaged system, and then
scaling task execution times by scaling factors commensu-
rate with those observed in Sec. 4.
Coloring schemes. We investigated two heuristics for as-
signing colors to level-B tasks. Each was designed to reduce
cross-core color contention, since such contention is detri-
mental to both cache locking and cache scheduling. Both
heuristics function similarly and are applied assuming that
tasks have been previously assigned to physical processors
and that physical memory pages are unconstrained (con-
ceptually, there are infinitely many physical memory pages
available for each color—note that our test platform has 213

pages per color). Letting S denote the size of the cache and
W denote the maximum WSS, we divide the cache into
bS/W c “bins”, each of sizeW . Under way-first (color-first)
allocation, the number of ways (colors) in each bin is maxi-
mized. For example, a bin half the size of an 8-way, 32-color
cache has 8 ways of 16 colors under way-first allocation,
and 4 ways of 16 colors under color-first allocation. Under
either heuristic, processors are packed into the obtained bins
using the worst-fit heuristic, and each task is assigned col-
ors to satisfy its WSS from the set of colors assigned to the
processor on which it is partitioned. Note that ifW ≤ S/m,
then our heuristics partition the cache.

These heuristic are more flexible than cache partitioning,
as they allow colors to be shared across processors. How-
ever, the problem of assigning colors to tasks is generally
intractable and may be particularly hard if the number of
physical memory pages per color is severely constrained.
In many embedded systems, such constraints may exist due
to SWaP requirements, the need to support separate pro-
cessing modes,10 etc. Nonetheless, the experiments below
demonstrate that if a reasonable color assignment can be
found, then schedulability-related impacts can be dramatic.
We plan to further investigate color assignment strategies in
the future to widen the applicability of our work.
Schedulability. We now discuss several schedulability
graphs involving randomly generated task systems. A cache
management scheme’s schedulability is specified with re-
spect to a set S of generated task systems and is defined
as the fraction of S deemed schedulable under that scheme.
We present level-B (HRT) and level-C (SRT) schedulabil-
ity graphs in Fig. 8. In the level-B graphs, schedulability is
plotted versus total level-B utilization prior to scaling. In
the level-C graphs, it is plotted versus total level-B and -C
utilization assuming level-C execution costs for both. With
respect to the level-B scheduling policy, we denote ordi-
nary partitioned RM (P-RM) scheduling with an unman-
aged cache (i.e., no cache locking or scheduling) as UM,
cache locking as CL, cache scheduling as CS, and cache
locking with period splitting as CL-PS. We do not present

10When assigning colors to the tasks that participate in one mode, the
execution requirements of tasks that participate only in other modes can be
ignored, but those tasks still consume memory pages and hence colors.

graphs for job splitting as it was always inferior to period
splitting alone. To prevent interference between tasks of dif-
ferent criticality levels, level-B and -C tasks are each as-
signed half of the available cache, so a WSS of 256K cor-
responds to half of the available level-B cache. Our major
observations are as follows.

Obs. 1. In all observed cases, at least one of the proposed
cache management solutions (CL, CS, or CL-PS) offered
improved level-B schedulability, often scheduling task sys-
tems with almost 50% greater processor utilization than an
unmanaged P-RM level-B subsystem (UM).

This observation is corroborated by insets (a)-(e) of
Fig. 8, which depict level-B schedulability. For example, in
Fig. 8(a), with a scaling factor of three, which is less than we
observed in practice, cache scheduling (CS) could sched-
ule task systems with a level-B utilization of 50% more
than that of an unmanaged P-RM system (UM). By scal-
ing level-B tasks’ level-B execution times down (to account
for fewer cache misses due to cache management), we are
able to schedule task systems that previously would have
been unschedulable because they would have overutilized
the available processing cores. This effect is even more pro-
nounced with larger scaling factors. These results show that
the benefits of cache management techniques may outweigh
the increased overheads they entail.

Obs. 2. For some system configurations, unmanaged
P-RM (UM) offered improved level-B schedulability over
one or more cache management techniques. This suggests
that the cache can be managed improperly.

In the level-B schedulability results presented in in-
sets (a)-(d) of Fig. 8, unmanaged P-RM (UM) outper-
forms cache locking (CL) in many cases and in Fig. 8(d),
unmanaged P-RM (UM) outperforms cache scheduling
(CS). However, as described in Obs. 1, at least one of
our cache management solutions outperforms unmanaged
P-RM (UM). Thus, a system designer must evaluate their
task system to decide which of our cache management so-
lutions is best.

Obs. 3. In all observed cases, period splitting improved
level-B schedulability under cache locking.

This can be seen in insets (a)-(e) of Fig. 8. Henceforth,
when we refer to cache locking, we assume period splitting
(CL-PS) is used.

Obs. 4. Under color-first allocation, cache locking (CL-PS)
offered the best level-B schedulability, while under way-
first allocation, cache scheduling offered the best level-B
schedulability. This suggests that color assignment has sig-
nificant impact on level-B schedulability.

Comparing level-B schedulability using way-first and
color-first allocation in insets (b) and (d) of Fig. 8, respec-
tively, we observe that cache locking (CL-PS) performs
much better under color-first allocation. This is because the
blocking bound for cache locking is O(mr/k) where r is
the maximum number of ways of a color required, which
is minimized under color-first allocation, and k is the to-

UM CL CS CL-PS

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200L
e
v
e
l-
B

S
c
h
e
d
u
la

b
ili

ty

System Utilization (%)

Level-B Scaling Factor of 3

[CS][UM][CL-PS]

[CL]

(a) WSS 192K, HRT, Way-First

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200L
e
v
e
l-
B

S
c
h
e
d
u
la

b
ili

ty

System Utilization (%)

Level-B Scaling Factor of 5

[CS]

[UM][CL-PS][CL]

(b) WSS 256K, HRT, Way-First

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200L
e
v
e
l-
B

S
c
h
e
d
u
la

b
ili

ty

System Utilization (%)

Level-B Scaling Factor of 5

[CS]

[UM][CL-PS][CL]

(c) WSS 384K, HRT, Way-First

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200L
e
v
e
l-
B

S
c
h
e
d
u
la

b
ili

ty
System Utilization (%)

Level-B Scaling Factor of 5

[CS]

[UM]

[CL-PS][CL]

(d) WSS 256K, HRT, Color-First

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200L
e
v
e
l-
B

S
c
h
e
d
u
la

b
ili
ty

System Utilization (%)

Level-B Scaling Factor of 5

[CS]

[UM] [CL-PS][CL]

(e) WSS 256K, HRT, Best-Coloring

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100L
e
v
e
l-
C

S
c
h
e
d
u
la

b
ili

ty

System Utilization (%)

Level-B Scaling Factor of 5

[CL-PS] [UM]

[CL,CS]

(f) WSS 256K, SRT, Way-First

Figure 8: Insets (a)-(d) compare the proposed cache management approaches in terms of level-B schedulability for different scaling
factors, WSSs, and coloring algorithms. Inset (e) compares the schedulability of the proposed cache management techniques using the
coloring algorithm that provides the best schedulability for each technique, respectively. Inset (f) depicts level-C schedulability.

tal number of ways. In contrast, cache scheduling has much
better level-B schedulability under way-first allocation, but
performs comparatively worse under color-first allocation.
This is because of the pessimism of our analysis, which as-
sumes that only one task executes with a color at a time, re-
gardless of the number of ways required (recall from Sec. 3
that tighter analysis for cache scheduling is an open prob-
lem). This pessimism is particularly detrimental to level-B
schedulability using color-first allocation. However, under
way-first allocation, tasks use all of the ways of compar-
atively fewer colors, which in turn reduces the number of
cache processors, and improves schedulability. These obser-
vations demonstrate the impact that the coloring algorithms
have on level-B schedulability.

Obs. 5. The overheads associated with our cache-
management techniques only minimally impacted level C.

Our techniques have a profound impact at level B. How-
ever, as can be seen in Fig. 8(f), schedulability at level C
is decreased by a comparatively small amount. While this

offset means we can schedule no additional level-C work,
we could execute many more high-criticality level-B tasks
in lieu of lower-criticality level-C tasks.

Obs. 6. In all observed cases, cache scheduling under way-
first allocation provided better level-B schedulability than
any other cache management technique under either way-
first or color-first allocation.

This can be seen in insets (a)-(e) of Fig. 8. Under color-
first allocation, as in Fig. 8(d), level-B schedulability un-
der cache scheduling (CS) was less than that of cache lock-
ing (CL-PS). However, in all cases in which cache locking
(CL-PS) outperforms cache scheduling using color-first al-
location, level-B schedulability using cache scheduling un-
der way-first allocation was greater. This can be seen in
Fig. 8(e), which shows for each technique the best level-B
schedulability seen under either coloring scheme.

Cache scheduling also has practical benefits over cache
locking. Cache scheduling is easier to implement, being lit-
tle more than a multiprocessor RM algorithm with an extra

“mapping” step, while cache locking uses both partitioned
RM and a locking protocol. Additionally, cache scheduling
is more flexible than cache locking (which uses period split-
ting). For example, it can be more easily applied to schedule
non-periodic task systems. Thus, unless a system is unable
to use way-first page allocation, cache scheduling is the rec-
ommended cache-management technique.

Future work. This work opens many avenues for future
research, which we plan to pursue, ranging from systems-
level issues to theoretical scheduling problems. For exam-
ple, we plan to explore cache management techniques for
shared libraries, dynamic memory, and jobs with WSSs
larger than the cache. We also plan to evaluate, from the
perspective of rigorous timing analysis, the improvements
to calculated WCETs made possible by these cache man-
agement techniques. Additionally, we are interested in de-
veloping scheduling algorithms, schedulability tests, and re-
source allocation techniques that can support both greater
system utilizations (with respect to both the processors as
well as the cache) and more than two criticality levels.

6 Conclusion

We have presented several techniques for managing shared
caches on multicore systems within the MC2 mixed-
criticality scheduling framework. We also presented exper-
imental results obtained from an implementation of these
techniques on a quad-core ARM machine. These experi-
ments indicate that proper shared cache management can
lessen WCETs and positively impact schedulability despite
increased system overheads. In fact, in our experiments,
task systems could be scheduled successfully with cache
management that had total utilizations exceeding the capac-
ity of our test platform by 50% or greater without cache
management. The development of these cache management
techniques as well as MC2 was motivated by ongoing work
with colleagues at Northrop Grumman Corp. (NGC) on
defining useful real-time resource allocation infrastructure
for future UAVs. These UAVs represent an interesting chal-
lenge problem in work on cyber-physical systems.

Acknowledgment: We thank Prakash Sarathy, John Scoredos,
and Dan Johnson of NGC for helpful discussions concerning the
needs of future UAVs and the importance of cache management.

References
[1] B. Akesson, K. Goossens, and M. Ringhofer. Predator: A predictable

SDRAM memory controller. In CODES+ISSS ’07.
[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-

Spaccamela, S. Van Der Ster, and L. Stougie. The preemptive unipro-
cessor scheduling of mixed-criticality implicit-deadline sporadic task
systems. In ECRTS ’12.

[3] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable
mixed-criticality systems. In RTAS ’10.

[4] B. Brandenburg. Scheduling and Locking in Multiprocessor Real-
Time Operating Systems. PhD thesis, University of North Carolina,
Chapel Hill, NC, 2011.

[5] B. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of cache par-

titioning on multi-tasking real time embedded systems. In RTCSA
’08.

[6] M. Campoy, A.P. Ivars, and J.V.B. Mataix. Static use of locking
caches in multitask preemptive real-time systems. In IEEE/IEE Real-
Time Embedded Sys. Workshop, 2001.

[7] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis,
University of North Carolina, Chapel Hill, NC, 2006.

[8] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-
criticality sporadic tasks. In ECRTS ’12.

[9] M. Fernàndez, R. Gioiosa, E. Quiñones, L. Fossati, and F. Cazorla.
Assessing the suitability of the NGMP multi-core processor in the
space domain. In EMSOFT ’12.

[10] K. Goossens, J. Dielissen, and A. Radulescu. Aethereal network on
chip: Concepts, architectures, and implementations. IEEE Des. Test,
22:414–421, 2005.

[11] D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET
estimates for multi-core processors with shared instruction caches.
In RTSS ’09.

[12] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. Johnson.
RTOS support for multicore mixed-criticality systems. In RTAS ’12.

[13] S. Kato and Y. Ishikawa. Gang EDF scheduling of parallel task sys-
tems. In RTSS ’09.

[14] D. Kirk. SMART (strategic memory allocation for real-time) cache
design. In RTSS ’89.

[15] B. Lesage, D. Hardy, and I. Puaut. WCET analysis of multi-level set-
associative data caches. In 9th Int’l Workshop on WCET Analysis.

[16] J.Y.-T. Leung and C.-L. Li. Scheduling with processing set restric-
tions: A survey. International Journal of Production Economics,
116:251–262, Dec. 2008.

[17] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled cache pre-
dictability for real-time systems. In RTAS ’97.

[18] LITMUSRT Project. http://www.litmus-rt.org/.
[19] R. Mancuso, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni.

Real-time colored lockdown for cache-based multi-core architec-
tures. In RTAS ’13.

[20] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Score-
dos. Mixed criticality real-time scheduling for multicore systems.
In ICESS ’10.

[21] F. Mueller. Compiler support for software-based cache partitioning.
In LCTRTS ’95.

[22] J. Nowotsch and M. Paulitsch. Leveraging multi-core computing ar-
chitectures in avionics. In EDCC ’12.

[23] M. Paolieri, E. Quiñones, F. Cazorla, G. Bernat, and M. Valero. Hard-
ware support for WCET analysis of hard real-time multicore systems.
In ISCA ’09.

[24] M. Paolieri, E. Quiñones, F. Cazorla, R. Davis, and M. Valero. IA3:
An interference aware allocation algorithm for multicore hard real-
time systems. In RTAS ’11.

[25] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley. A predictable execution model for COTS-based embed-
ded systems. In RTAS ’11.

[26] H. Ramaprasad and F. Mueller. Bounding preemption delay within
data cache reference patterns for real-time tasks. In RTAS ’06.

[27] J. Reineke, I. Liu, H. Patel, S. Kim, and E. Lee. PRET DRAM con-
troller: Bank privatization for predictability and temporal isolation.
In CODES+ISSS ’11.

[28] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens. A TDM NoC
supporting QoS, multicast, and fast connection set-up. In DATE ’12.

[29] S. Vestal. Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance. In RTSS ’07.

[30] B. Ward and J. Anderson. Supporting nested locking in multiproces-
sor real-time systems. In ECRTS ’12.

[31] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. Memory-
centric scheduling for multicore hard real-time systems. Real-Time
Systems, 48:681–715, 2012.

