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Abstract—Structure-from-motion (SFM) is widely utilized to
generate 3D reconstructions from unordered photo-collections.
However, in the presence of non unique, symmetric, or other-
wise indistinguishable structure, SFM techniques often incor-
rectly reconstruct the final model. We propose a method that
not only determines if an error is present, but automatically
corrects the error in order to produce a correct representation
of the scene. We find that by exploiting the co-occurrence
information present in the scene’s geometry, we can successfully
isolate the 3D points causing the incorrect result. This allows us
to split an incorrect reconstruction into error-free sub-models
that we then correctly merge back together. Our experimental
results show that our technique is efficient, robust to a variety
of scenes, and outperforms existing methods.

Keywords-3D scene correction; duplicate structure disam-
biguation; structure from motion; local clustering coefficient

I. INTRODUCTION

Structure-from-motion (SFM) systems seek to recover
both the camera poses and 3D scene structure given a set
of images. Implicit assumptions of these systems include: 1)
each image represents a unique and distinguishable view of
the scene, and 2) the set of images provides both sufficient
overlap as well as vast coverage of the scene. While modern
SFM strategies are robust to uneven coverage, many real-
world datasets contain non-unique or symmetric structures
that hinder the distinguishment of their views. Accordingly,
disjoint scene elements with common local appearance and
structure may be merged into a single datum, resulting in
either incomplete or corrupted 3D models. We propose a
post-processing framework to identify and mitigate these
scenarios by analyzing the output of an SFM pipeline.

Crowd-sourced image-sets commonly contain many im-
ages of one or more scenes, taken by a large number
of users. The wealth of content in these collections has
been leveraged for 3D modeling by recent SFM systems
[1], [2], [3], [4]. Given the size and variability of these
datasets, it is expected that they provide sufficient scene
coverage and enable scene disambiguation. While in many
instances this is the case, the reduced scope of pairwise
geometric verification and the greedy nature of feature-based
robust estimators (e.g. RANSAC) may obfuscate relevant
relationships among SFM estimates. Our method seeks out

these higher-level relationships and explores their potential
for disambiguating instances of indistinguishable geometry.

Considering Fig. 1, even though these images are from
orthogonal views, SFM may erroneously estimate a pair-
wise camera motion under the assumption that both images
observe the same side of the tower. The cause of such
misdirection can be traced back to the feature-based robust
estimation. Namely, in geometric verification, the goal is to
identify a camera motion with the largest supporting set of
putative feature matches. For the image pair in Fig. 1, the
subset of features on the side of the tower in each image will
provide the largest support for a camera motion model. One
can readily observe the conflicting scene content surrounding
the erroneous “inlier set”. This erroneous inlier set, once
processed within an SFM pipeline, typically leads to the
common structure being fused while the conflicting structure
may be jointly reconstructed and superimposed.

Additionally, a lack of sufficient coverage of the scene
by distinct viewpoints may also distort the final model. In
a typical environment, there will be one or more promi-
nent viewpoints that capture the photographers’ attention
(Fig. 7.1), or physical constraints limiting the possible
viewing positions [5]. Referring again to Fig. 1, consider
the case where all available images are clustered around
these two viewpoints. As previously discussed, a corrupted
3D model will be attained. However, in the absence of
viewpoints “bridging” the spatial sensing gap between these
two views, no unique correct model can be ascertained from
the data. In this scenario, the desired output is to segregate
the corrupted 3D model into independent sub-models free
from conflict and identify whether or not the conflicting 3D
reconstructions can be reconciled.

The input to our system (the output of SFM) is comprised
of the estimated camera parameters, 2D image correspon-
dences, and (possibly implicit) 3D points. We refer to
the aggregation of this data as a 3D model. Our method
leverages the fact that indistinguishable points incorrectly
link non-unique or symmetric scene parts. The identification
and segregation of these points enables partitioning an ex-
isting 3D model into disjoint structures. Model partitioning
is achieved through the analysis and manipulation of the
linkage relationships between the set of indistinguishable
points and the rest of the model. Once a valid partition is



Figure 1. Example of two images that would have a high number of inlier
matches even though they are from orthogonal views.

achieved, linkage relationships among distinguishable points
belonging to different partitions are analyzed to identify
possible reconciliation among now disjoint sub-models.

II. RELATED WORK

Dealing with non-unique, symmetric, or repetitive struc-
ture has been an important topic of research. Techniques rely
on both correct and incorrect models, where a correct model
is free from registration errors and an incorrect (corrupted)
model contains one or more mis-registered images.

A first class of approaches attempts to extract regularities
from 2D or 3D data. For instance, Mitra et al. [6] and
Pauly et al. [7] identify structural regularities within a 3D
model. Wu et al. [8] and Köser et al. [9] respectively identify
repetition and symmetry within an image, and then use that
regularity as multiple observations of a structure to generate
a reconstruction from only one image. Jiang et al. [10]
detect both repetitive and symmetric structure in an SFM
reconstruction from small-scale datasets (approximately 15
images), and use these to generate a more complete, accu-
rate, and dense final model. Cohen et al. [11] locate planes of
symmetry within a scene, and then use these as constraints in
bundle adjustment. While these techniques are useful, they
typically assume that the data is complete and devoid of
inconsistencies, and do not address the reconstruction errors
caused by the ambiguous structure. Our method is aimed
squarely at this problem, and lends itself as a preprocessing
step to many of the above approaches.

More related to this problem of handling ambiguous
structure, Zach et al. [12] utilize a concept of missing
correspondences to correct for the influence of indistin-
guishable scene elements, where the main principle is to
identify consistent camera triplets that contain a similar set
of feature observations. If an image in a triplet is missing
a substantial number of feature correspondences compared
to the other two images, then that image is suspect of being
a false match. By identifying the correct set of triplets,
and combining them together, a correct reconstruction is
obtained. However, Zach et al. [12] assume that any pair of
images identified as having an incorrect epipolar geometry
must result in those two images appearing in separate con-

nected components (final 3D models). This is a limitation,
as the two images may have actually been a part of the
same reconstruction (a case that often arises in SFM and in
our results, Fig. 7). Roberts et al. [13] also utilize missing
correspondences, but focus on scenes with large duplicate
structures. The authors utilize an expectation maximization
(EM) algorithm to combine verified camera triplets and
form a correct reconstruction that minimizes the number of
missing correspondences. However, in order to cope with
difficult scenes, a portion of their results rely on image
timestamps to resolve ambiguities, which would not be
informative or available in a crowd-sourced photo-collection.

An alternative approach, proposed by Zach et al. [14],
analyzes geometric loop constraints. This work makes the
observation that given a cycle of connected cameras and
the relative transformations between them, traversing and
accumulating the loop’s transforms should result in the
identity transform. Any loop that deviates too far from this
is identified as containing at least one inconsistent image
match. By analyzing a large number of loops, they discover
the inconsistent camera matches. However, a scene with non-
unique structure will have large number of loops that are
incorrect, but are identified as being consistent (due to the
indistinguishable features on the non-unique object) [15].
Such scenes are shown in Fig. 6 as well as in [15] (which
provides examples of the incorrect output).

Jiang et al. [15] also leverage missing correspondences
to correctly reconstruct a scene. Here, the underlying as-
sumption of the approach is that the images depict a single
complete model, and by optimizing over various possible
reconstructions, one can minimize a cost function related to
the total number of missing correspondences. In our work,
we specifically avoid the assumption of one final complete
model, as in several cases, this can simply not be achieved
(refer to the Brandenburg Gate dataset in Fig. 7.2, where
there are no views linking the front and back of the gate).

Closely related to our work is the method by Wilson and
Snavely [16] which leverages the bipartite local clustering
coefficient (blcc) to determine those 3D points that lead to
an erroneous reconstruction. The blcc metric achieves this
by analyzing a bipartite graph encoding the visibility of
3D points in each image. Then, points whose neighbors
are themselves not strongly connected to each other are
identified as having a low blcc value and are pruned from
the reconstruction. The intuition is that 3D points within
a similar part of the scene should have similar visibility
throughout the images in the reconstruction. Our method
uses a similar intuition, but adds further levels of robustness
to the analysis. Additionally, [16] assumes that the final
number of split components is known beforehand, though,
in contrast, our method does not make any such assumption.

Finally, Heinly et al. [17] propose the idea of conflicting
observations. Here, conflicting observations identify 3D
structures that when projected to an image, occupy the



same parts of the image as other existing 3D structure.
By identifying these inconsistencies, the method is able to
determine a correct division of the scene into separate sub-
models. Then, if possible, the sub-models are rearranged
in order to recover the correct arrangement of the scene.
Our method takes inspiration from [17], but makes practical
improvements to achieve greater processing efficiency.

To summarize, our method has several distinct advan-
tages over previous approaches. We are able to utilize an
already corrupted reconstruction, and we leverage images
from an unordered photo collection (devoid of timestamp or
sequence information). Our approach can handle non-unique
structures in the scene, and we allow incorrectly matched
images to be reused in the same model. Finally, we do not
make any assumptions about the number of components in
the final reconstruction.

It is also worth noting that by analyzing an already
corrupted reconstruction, we operate over 3D data, which
provide significant benefits over a purely 2D feature match
approaches [13], [16], [12], [14]. For example, a 3D recon-
struction fuses several 2D feature observations into a com-
mon 3D point, drastically simplifying the task of identifying
the indistinguishable points. Additionally, the reconstruction
provides us with relative camera geometry and 3D point lo-
cations, which allows for additional processing not possible
when only 2D information is available.

III. RECONSTRUCTION CORRECTION METHOD

The main abstraction used to characterize linkage relations
within our model is the co-occurrence of 3D points across
images. Linkage relationships are controlled through the
analysis of two dual model representations: the Camera
Connectivity Graph (CCG) and the 3D Point Co-occurrence
Graph (PCOG). We use these structures, along with the
estimated SFM geometry, to implement data driven split
and merge mechanisms aimed at identifying and mitigating
erroneous 3D structure estimates. Fig. 2 depicts an overview
of our approach. For model splitting, the local connectivity
in the PCOG is used as a steering measure for the sequential
elimination of 3D points and the consequential dual modi-
fications to the CCG. Splitting is achieved when the CCG
is partitioned into separate connected components. For sub-
model merging, we utilize geometric reasoning on the set of
distinguishable points to perform sub-model to sub-model
rigid registration.

To illustrate these concepts, consider Fig. 1 depicting
two images of Piazza San Marco. On the left image we
observe the Maricana National Library in the lower left
corner. We will refer to the features in this region as set
A, while the features on the tower’s side will be referred
to as set B. Conversely, for the right image depicting San
Marco Basilica in the lower left corner, we will denote
this feature set as C, while the features on the (orthogonal)
tower’s side will be referred to as set B′. For our considered

scenario, B and B′ will have fused during SFM through
feature correspondence into a single indistinguishable 3D
structure B(B

⋃
B′). Feature sets A and C will be mutually

exclusive (i.e. no co-occurrence), as they will not appear
jointly in our ground-based image capture, and generate
(through additional similar images) independent structures
A(A) and C(C). Each of these 3D point sets in isolation
will approximate a clique within the PCOG (i.e. high local
connectivity). Given that B(B

⋃
B′) will be co-occurrent

with both A(A) and C(C), which are mutually exclusive,
the local neighborhoods of each of the sets in the PCOG are
given by: N(A) = (A

⋃
B), N(C) = (C

⋃
B) and N(B) =

(A
⋃

B
⋃

C), where we obviate the feature dependency from
the notation. Accordingly, the neighborhood N(B) will have
relatively low local connectivity compared to N(A) and
N(C), indicating its likely denomination as indistinguish-
able scene structure. Sequential pruning (i.e. discarding) of
the points in N(B) from the PCOG will cause modifications
to the edge structure of the CCG and eventually lead to the
desired graph partitioning. Namely, as inlier feature matches
(determined through pairwise geometric verification) are
invalidated, the support for the camera motion estimates is
systematically eroded. Once the CCG has been partitioned
into disjoint sub-graphs, say GA and GC , the focus turns
to any inlier matches (resulting from pairwise geometric
verification) that correspond to 3D points that are observed
in both GA and GC . The existence of such points offers the
potential of providing a 3D registration between GA and GC
through robust estimation procedures.

A. Initial SFM Reconstruction
We take as input the standard computed output of a

generic SFM pipeline: the camera poses, focal lengths, 3D
point locations, a list of the 3D points observed in each
image, and the original two-view geometric verification
inlier information. To generate the reconstructions we used
VisualSFM [4]. However, with indistinguishable structure,
it, as well as other SFM approaches, falls victim to the
ambiguity and can generate incorrect final models.

B. Identify Indistinguishable Points
The next step is to identify those indistinguishable 3D

points that are most suspect for causing the corruption.
Co-occurrence Matrix. We seek to find those 3D points

that incorrectly connect separate parts of a model. To enable
this identification, we construct an n×n point co-occurrence
matrix C (where n is the number of 3D points). This co-
occurrence matrix stores boolean values indicating whether
or not two 3D points were observed in the same image. A
co-occurrence element Cij is:

Cij =

{
true, ∃k such that oik, ojk ∈ O
false, otherwise (1)

for points i, j, image k, individual observations oik, ojk, and
the set of all observations O (which stores a list of the 3D
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Figure 2. Graphical overview of the steps in our pipeline. The steps are 1) input original incorrect reconstruction, 2) identify indistinguishable points, 3)
split original model into sub-models, and 4) merge sub-models together to form a correct reconstruction.

Figure 3. Example of two images that observe the same features, but at
widely differing scales.

points that have been observed at the same time in the same
image). For larger scenes, we store the co-occurrence matrix
using a sparse matrix representation.

Smooth Co-occurrences. Ideally, each 3D point should
correspond to its own unique visual feature, and features
that lie near each other on the same surface should be
detected in the same sets of images. However, due to
mismatches or other artifacts, these ideal conditions are
rarely satisfied, leaving co-occurrences that do not represent
the ideal connectivity between the 3D points. This issue was
partially addressed in [16] by leveraging a covering subgraph
(a minimal set of cameras that observe a large fraction of
the 3D points). However, this was primarily proposed to deal
with uneven scene coverage, and does not fully address the
lower-level issue of feature repeatability and observation.
To combat this issue, we introduce the idea of smoothing
the co-occurrence matrix. Both [13] and [12] mention the
usefulness of considering nearby 2D correspondences, with
the intuition that features near each other on a surface
should exhibit similar observation behavior. So, a missing
correspondence in the middle of found correspondences has
less significance than one that is spatially distant.

The co-occurrence matrix stores information about 3D
point observations, so we first determine which 3D points
have projections close to each other by leveraging 2D
observations of those points in each image. For each pair
of observations that are near each other in an image we
compute the union of their co-occurrence entries. This
allows nearby observations to share their co-occurrence
information, thus reducing the impact of mismatches.

To motivate our metric to determine nearby observations,
we refer to Fig. 3, where two images observe a similar

set of 3D points at very different scales. In this case, a
fixed viewing angle smoothing scheme does not serve our
purpose, as the same radius applied to both images would
result in vastly different sizes in the physical scene. We
would like the smoothing radii to have a common physical
meaning, e.g. a larger smoothing radius must be used in the
right image (close-up view). Computing a unique scale for
each 3D point observation affords the effect of an adaptive
smoothing radius. A feature observed from farther away
will be associated with a larger overall scale, so that when
observed from a closer distance, that scale will correspond
to a larger smoothing radius. To this end, we leverage
the available 3D information (up to scale) from the initial
reconstruction (as opposed to 2D observations only). For
each 3D point i, camera j (1 ≤ j ≤ n), camera position
cj , horizontal field-of-view θj , and 3D point location pi, we
compute an initial scale sij and final smoothing radius rij :

sij = ||pi − cj || tan
(θj
2

)
, rij = ρ

max(si1, ..., sin)
sij

(2)

where ρ is a constant factor. Any two point observations that
occur within radius rij are considered to be similar and are
updated to have the union of their co-occurrences.

Co-occurrence Analysis. Given the computed point co-
occurrence matrix, we want to identify the indistinguishable
3D points responsible for reconstruction inconsistencies. The
intuition is that indistinguishable features will potentially
incorrectly link (via co-occurrences) two disjoint parts of
the model, where those disjoint parts are never viewed at the
same time. Alternatively, a normal, distinguishable feature
will be connected to points that are frequently seen with
each other, as they are all from the same part of the scene.

By interpreting the co-occurrence matrix as an adjacency
matrix defining a PCOG (where 3D points are nodes and co-
occurrences are edges), we utilize graph theory to analyze
precisely this property. The local clustering coefficient [18]
(lcc) measures how close a vertex’s neighbors are to being
a complete (fully connected) graph and is defined as:

lcc =
2 (# of edges between neighbors)

(# of neighbors)(# of neighbors− 1)
(3)

where a value of 1 signifies a fully connected set of neigh-
bors, and a value close to 0 indicates reduced connectivity.
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Figure 4. Diagram of the relationship between the camera connectivity
(CCG) and point co-ocurrence (PCOG) graphs. Edges in the CCG represent
shared 3D point observations between two images, whereas edges in the
PCOG indicate that two points were observed together. The dashed arrows
show which 3D points correspond to the inliers between two images.

Points with low lcc values are more likely to be the in-
distinguishable structure causing the reconstruction artifacts,
while higher lcc values denote more typical behavior. This
is highly similar to the blcc metric in [16], though blcc
is designed to operate over bipartite graphs. In [16], blcc
was computed on the original (unsmoothed) co-occurrence
matrix of their covering subgraph. In contrast, our approach
operates on the full camera and point sets, and leverages a
scale-aware adaptive smoothing for added robustness.

Computation of the lcc values is inherently a O(n3)
operation, where n is the number of 3D points. In practice,
lcc is typically not computed on a fully connected PCOG,
though it is still a computational bottleneck. To mitigate
this issue, we leverage a random sampling based approach
(similar to [16]) to compute approximate lcc values. While
not explicitly mentioned in [16], their reference implementa-
tion employs a sampling scheme to achieve high efficiency.
Here, sampling the PCOG for a specific 3D point can be
modeled as sampling a binomial distribution, therefore we
compute the number of samples required to achieve a 99.7%
confidence of being within 0.01 of the actual lcc value. We
verified our method using the exact and approximated lcc
values, and both resulted in the same final 3D models.

PCOG and CCG Pruning. Given the lcc values for each
3D point, we now seek to remove the contribution of the
indistinguishable features. We accomplish this by iteratively
removing the 3D points with the lowest lcc values, and then
inspecting the connectedness of the CCG, where each image
is a node and edges between nodes exist as long as there
are a sufficient number (τ ) of shared 3D points between
them. A diagram of this relationship is illustrated in Fig. 4.
By removing an increasing number of 3D points, edges in
the CCG are removed (because their shared 3D points have
been removed) such that, eventually, independent connected
components are generated.

We strive to separate the CCG into a minimal number
of error-free connected components. The global cost metric
proposed in [15] addresses the determination of the correct
number of splits assuming the final reconstruction to be a
single model. We aim to allow independent scenes that were
incorrectly combined to be split and remain separate. Hence,

we assume there is one primary ambiguous element in a
corrupted model (empirically, it is a viable assumption).

To identify this primary ambiguous element, we continue
to remove the most indistinguishable 3D points until the
CCG splits into two main groups (sub-models of size greater
than 1). Then, the points in common (the intersection)
between these two groups are taken as points belonging to
the ambiguous structure. The necessity of the intersection
computation stems from the possibility that some of the
points with low lcc values may not have actually contributed
to the incorrect reconstruction. Therefore, by computing the
intersection of the two groups, we obtain the set of points
that actually linked the two sub-models.

We again enforce spatial smoothness, such that when
counting the number of shared points between two images,
we exclude any point within a radius (3ρ) of an observation
of a 3D point that has been removed due to its low lcc.

Correct Reconstruction Detection. By removing 3D
points until the reconstruction splits in two, even an initially
correct model will be split. To avoid decimation of a correct
model, we evaluate the validity of the proposed split by
taking inspiration from [17], but with a focus on efficiency.

We first generate a list of all image pairs that had 3D
points in common, but were assigned to the two different
sub-models. Then, we determine the set of 3D points unique
to each of the two models, which are those points not
observed in the opposing model (let us denote these as
P1 and P2). By analyzing the 2D projections of P1 and
P2 in the images from disjoint sub-models, we develop a
notion of overlapping correspondences (similar to conflicting
observations from [17]). The intuition is that in a correct
reconstruction, the 2D projections of the opposing model’s
points would not overlap (have a close spatial proximity)
with an image’s existing observations of the points from its
own model. If the observations did overlap, that would indi-
cate the presence of two different reconstructed structures at
a similar location within the scene. Therefore, if we detect
a large amount of overlap between images from disjoint
models, the reconstruction is incorrect and we continue our
pipeline. Otherwise, with a lack of overlap, we identify the
original model as correct and terminate execution.

Measuring Overlap. To mitigate the effect of scene
occlusions and increased feature mismatches for images
with wide viewpoint differences, we only consider image
pairs with similar viewing directions (at most 10 degrees of
difference). Also, we suppress overlapping correspondences
occurring near the shared 3D points between the images, as
these are more likely a result of noise or detection artifacts
(also noted in [13] and [12]). Instead of counting the raw
number of overlapping correspondences (as in [17]), our
metric computes the area of overlap, which normalizes the
result against a scene’s 3D point density. Here, each point
projects to a circle within the image, and we compute the
overlap between the respective circles. Each circle’s radius,



as well as the radius in which observations are ignored
around shared 3D points, was chosen to be 0.1 in normalized
image coordinates (when the image is inscribed in a circle
of radius = 1). To compute a final value, we average the
ratios of conflicting coverage for each of the image pairs,
and threshold the result (treating any model with less than
1% of overlapping correspondences as correct).

Instead of using normalized image coordinates, we could
instead have used multiple superpixel segmentations to de-
termine the local neighborhood of a projected 3D point as
in [17]. However, superpixel computation is costly (around
10-15 seconds per image for eight different segmentations
[17]). Therefore, to achieve greater efficiency, we opted for
the normalized image coordinate approach described above.

C. Model Splitting

Given a partition of the CCG into two components, we
seek to determine the correct number of groups in which
to split the final model. The intuition is that the first split
will identify the indistinguishable region of the scene, but
the final model may have to be split into a larger number
of sub-models depending on the characteristics of the scene
(number of ambiguous objects, symmetric facades, etc).

We first expand the set of indistinguishable points by
including any other 3D point found to be an inlier (according
to the 2D feature matches from the SFM pipeline) to any
of the initial indistinguishable 3D points. Typically, only
a subset of the indistinguishable structure may have been
initially identified, so by leveraging matching and spatial
proximity constraints, we dilate the indistinguishable set
to better improve our estimate. For the spatial constraint,
we analyze 2D point observations and include into our
indistinguishable set any point that occurs within a fixed
pixel distance of an already identified indistinguishable point
(we do two passes using the previously used radius of 3ρ).

With this expanded set of indistinguishable points, we
repeat a similar process to PCOG pruning, where we re-
move the points from the reconstruction, and then inspect
the CCG. We eliminate camera connections not sharing a
minimum number of points γ, and the final set of connected
components are the final camera groups for the model.

D. Model Merging

For some scenes, the set of sub-models from the previous
step may in fact be the correct final solution. However,
in many cases, the correct final solution is a merging of
the split components, such that they correctly resemble the
scene. To this end, we identify original 2D inlier feature
matches corresponding to observations of different final 3D
points after splitting (disconnected inliers from [17]). At
some point during the matching phase, two images may have
been correctly matched, but ended up in different groups due
to the dominant indistinguishable structure in the scene. By

Table I
SUMMARY OF THE DATASETS USED IN OUR EVALUATION.

Dataset Name # Cams # Points Timea Time [17]a

Piazza San Marco 3372 410592 3.0 m 5.6 m
Brandenburg Gate 50 8046 18 s 12 s
Arc de Triomphe 192 32708 1.7 m 2.7 m

Giotto’s Campanile 211 52620 4.4 m 22.5 m
a Runtime of our method and [17] in minutes or seconds.

identifying these disconnected inliers, we have a basis to
correctly merge the models back together.

For the identification of disconnected inliers, we ignore
inlier matches occurring near the final set of indistinguish-
able features (leveraging the spatial smoothness constraint).
The final set of indistinguishable points P is:

P =

g⋃
i=1

g⋃
j=i+1

Pi ∩ Pj (4)

where g is the number of groups and Pi are the points
observed by group i. With P, we again enforce matching and
spatial smoothness constraints, dilating the point set first to
their inliers, and then by the spatial radius ρ.

By ignoring disconnected inliers that were members of
P, the remaining set of 3D correspondences is utilized in a
similarity-estimating RANSAC technique (we seek a con-
sistent rigid transformation between any of the final camera
groups). If RANSAC finds any transform with enough inliers
(γ as from Section III-C), we align and merge together the
split models, and leave as split any unregistered models.
After identifying the indistinguishable features, we densify
and augment the final model by replicating those points
between all split models, as previously proposed [10], [7].

IV. RESULTS

We evaluated our method on a variety of unordered
photo-collections, and for all datasets our method’s input
was obtained from VisualSFM [4]. We defined ρ = 0.01,
τ = 10, and γ = 18 for all experiments. Furthermore, to
increase efficiency and robustness to noisy correspondences,
we leveraged 3D points that had a minimum of four image
observations. Table I shows statistics for our main datasets,
with Figures 5, 6, and 7 showing illustrations of our results.

To verify the correctness of our approach, we ran our
method on datasets that were already free from error (Fig. 5).
Here, the correct reconstruction detection method from
Section III-B correctly identified that the first split lacked
overlap, and thus was already a correct reconstruction. To
further verify correctness, we ran our approach on existing
benchmark datasets. The Books [15], [13], Oats [15], [13],
and Indoor [15] datasets (Fig. 6) were all used and cor-
rectly solved in previous papers. Our method also correctly
identifies the proper split and merge operations for each,
though our approach has fewer limiting assumptions when
compared to these previous works (see Section II).



Figure 5. Correct models identified by our pipeline (data from [17]). From
left: Colosseum, Trevi Fountain, Notre Dame, Stonehenge.

We also ran our method on four Internet photo collec-
tion datasets (Table I and Fig. 7). For Piazza San Marco
(Fig. 7.1), we downloaded 3372 images from Flickr, and
performed GIST-based clustering to attain an iconic scene
graph of 311 nodes (using a method similar to [2]). Each
cluster is geometrically verified and the representative iconic
cluster centers processed by VisualSFM to generate our input
data. After our method’s execution, the corrected iconic
3D model is densified by registering each clustered image
to its iconic and the surrounding images from the same
split camera group to form a complete and corrected 3D
model. For this dataset, our method correctly identified
the indistinguishable structure on the tower, and split and
merged the reconstruction into a correct final model.

For the Brandenburg Gate (Fig. 7.2), both sides of the
gate had originally been confused. Our method split them
into their respective sides and left them as separate models.
This solution is correct as there is not enough connecting
structure in the original model to allow for the two sides to
be correctly merged, due to camera viewpoint distribution.

For the Arc de Triomphe (Fig. 7.3), our method identified
three main camera groups. The largest two groups (the front
and back of the arch) were correctly merged, but the third,
smaller group failed to merge into the final model. The
primary reason for this result was that not only were the
images taken from a vantage point not entirely covered by
any of the other two groups (cameras predominantly looking
at the underside of the arch), but the points that the third
group did have in common ended up being too close to
other indistinguishable points. While this is undesirable, our
method still results in a majority of the images being used
to create a full reconstruction of the building.

The Giotto’s Campanile model (Fig. 7.4) was split into
four camera groups, two of which were merged back to-
gether. The remaining two un-merged groups had no over-
lap with the first two groups, as they were images taken
from the building’s opposite side. While these un-merged
groups observed a common structure, their vastly different
perspectives prohibited disconnected inliers.

To provide further comparison to previous work, we ran
the method of [17] on our above four datasets. Our method
typically has a faster runtime (see Table I), and note that su-
perpixel computation time is not included in Table I, further
emphasizing our greater efficiency over [17]. Additionally,
[17] failed to merge several of the datasets’ components

1.

2.

3.

Figure 6. Results for the 1) Books, 2) Oats, and 3) Indoor datasets (from
[15], [13]). See Fig. 7 for a description of what is shown.

(for instance, Piazza San Marco, the main components from
Arc de Triomphe, and the first two components of Giotto’s
Campanile). While [17] did achieve correct splits in each
of these cases, there was insufficient scene coverage for the
method of [17] to achieve successful merges.

We also ran the method of [16] on our datasets. For
Piazza San Marco, [16] outputted a correct subset of the
main plaza (red in Fig. 7), but completely discarded all
cameras from the adjoining plaza (blue). For Brandenburg
Gate, the method discarded all cameras in the reconstruction,
resulting in an empty final model. For Arc de Triomphe, [16]
correctly output a subset of the cameras facing the main
facade, but discarded all cameras from the opposite side.
Finally, for Giotto’s Campanile, it split the original model
into two components, one of which still contained errors.

For all tests our method correctly split models into
independent CCG components, each generating a correct
sub-model. Additionally, our MATLAB implementation is
highly efficient and is a natural post-processing mechanism
for SFM. Our main computational bottleneck is the worst
case O(m4) sequential CCG component analysis (m is the
number of cameras). In practice, however, significantly fewer
than m2 cuts are required to partition the CCG.

V. CONCLUSION

We have presented a novel method for correcting cor-
rupted SFM reconstructions originating from non-unique,
symmetric, or otherwise indistinguishable structure. Our
technique leverages co-occurrence information to split the
initial model into several consistent sub-models, and then
is able to correctly merge them back together if permitted
by the captured images. Furthermore, throughout the calcu-
lation, the set of 3D points causing the inconsistencies is
identified, enabling a variety of additional applications.
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Figure 7. Results for datasets from Table I. From left to right in each row: original model, our result, and example images colored to correspond to their
sub-model. For SFM models, the smallest points are 3D structure, and larger circles are camera positions.
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[9] K. Köser, C. Zach, and M. Pollefeys, “Dense 3D reconstruc-
tion of symmetric scenes from a single image,” DAGM, 2011.

[10] N. Jiang, P. Tan, and L. Cheong, “Multi-view repetitive
structure detection,” ICCV, 2011.

[11] A. Cohen, C. Zach, S. Sinha, and M. Pollefeys, “Discovering
and exploiting 3D symmetries in structure from motion,”
CVPR, 2012.

[12] C. Zach, A. Irschara, and H. Bischof, “What can missing
correspondences tell us about 3D structure and motion?”
CVPR, 2008.

[13] R. Roberts, S. N. Sinha, R. Szeliski, and D. Steedly, “Struc-
ture from motion for scenes with large duplicate structures,”
CVPR, 2011.

[14] C. Zach, M. Klopschitz, and M. Pollefeys, “Disambiguating
visual relations using loop constraints,” CVPR, 2010.

[15] N. Jiang, P. Tan, and L. Cheong, “Seeing double without con-
fusion: Structure-from-motion in highly ambiguous scenes,”
CVPR, 2012.

[16] K. Wilson and N. Snavely, “Network principles for sfm:
Disambiguating repeated structures with local context,” ICCV,
2013.

[17] J. Heinly, E. Dunn, and J.-M. Frahm, “Correcting for du-
plicate scene structure in sparse 3D reconstruction,” ECCV,
2014.

[18] D. J. Watts and S. H. Strogatz, “Collective dynamics of
‘small-world’ networks,” Nature, vol. 393, no. 6684, 1998.


