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Preface/Disclaimer 

!   This is meant to be a short (2-3 hours), overview/summary style 
lecture on some major topics and trends in NLP, with plenty of 
resource pointers (demos, software, references) 

 
!   Hence, it only covers 4-5 topics in some detail, e.g., tagging, 

parsing, coreference, and semantics (distributional, 
compositional, semantic parsing, Q&A) 

 
!   For some remaining topics, citations and pointers are provided; 

also, please refer to the full NLP courses and books cited at the 
end for detailed material 

!   Inline cites can be matched with full references at the end 

!   Comments/suggestions welcome: mbansal@ttic.edu 



NLP Examples 

!   Question Answering 



NLP Examples 

!   Machine Translation 



NLP Examples 

!   Automatic Speech Recognition 



Contents 

!   Part-of-Speech Tagging 

!   Syntactic Parsing: Constituent, Dependency, CCG, others 

!   Coreference Resolution 

!   Distributional Semantics: PMI, NNs, CCA 

!   Compositional Semantics I: Vector-form, Deep Learning 

!   Compositional Semantics II: Logic-form, Semantic Parsing, Q&A 

!   Other Topics: Sentiment Analysis, Machine Translation, Taxonomies, WSI/

WSD, NER, Diachronics, Summarization, Generation, Multimodal, ... 

!   Some Next Topics: Humor, Sarcasm, Idioms, Human-like Dialog, Poetry 



Part-of-Speech Tagging 

!   Tag sequence of words with syntactic categories (noun, 
verb, preposition, …) 

!   Useful in itself: 
!   Text-to-speech: read, lead, record  
!   Lemmatization: saw[v] → see, saw[n] → saw	


!   Shallow Chunking: grep {JJ | NN}* {NN | NNS}	



!   Useful for downstream tasks (e.g., in parsing, and as 
features in various word/text classification tasks) 

!   Demos: http://nlp.stanford.edu:8080/corenlp/  



Penn Treebank Tagset 

4

CC conjunction, coordinating and both but either or
CD numeral, cardinal mid-1890 nine-thirty 0.5 one
DT determiner a all an every no that the
EX existential there there 
FW foreign word gemeinschaft hund ich jeux
IN preposition or conjunction, subordinating among whether out on by if
JJ adjective or numeral, ordinal third ill-mannered regrettable

JJR adjective, comparative braver cheaper taller
JJS adjective, superlative bravest cheapest tallest
MD modal auxiliary can may might will would 
NN noun, common, singular or mass cabbage thermostat investment subhumanity

NNP noun, proper, singular Motown Cougar Yvette Liverpool
NNPS noun, proper, plural Americans Materials States
NNS noun, common, plural undergraduates bric-a-brac averages
POS genitive marker ' 's 
PRP pronoun, personal hers himself it we them

PRP$ pronoun, possessive her his mine my our ours their thy your 
RB adverb occasionally maddeningly adventurously

RBR adverb, comparative further gloomier heavier less-perfectly
RBS adverb, superlative best biggest nearest worst 
RP particle aboard away back by on open through
TO "to" as preposition or infinitive marker to 
UH interjection huh howdy uh whammo shucks heck
VB verb, base form ask bring fire see take

VBD verb, past tense pleaded swiped registered saw
VBG verb, present participle or gerund stirring focusing approaching erasing
VBN verb, past participle dilapidated imitated reunifed unsettled
VBP verb, present tense, not 3rd person singular twist appear comprise mold postpone
VBZ verb, present tense, 3rd person singular bases reconstructs marks uses
WDT WH-determiner that what whatever which whichever 
WP WH-pronoun that what whatever which who whom

WP$ WH-pronoun, possessive whose 
WRB Wh-adverb however whenever where why 



Part-of-Speech Ambiguities 

!   A word can have multiple parts of speech 

!   Disambiguating features: lexical identity (word), context, 
morphology (suffixes, prefixes), capitalization, 
gazetteers (dictionaries), … 

5

PartͲofͲSpeech�Ambiguity
� Words�can�have�multiple�parts�of�speech

� Two�basic�sources�of�constraint:
� Grammatical�environment
� Identity�of�the�current�word

� Many�more�possible�features:
� Suffixes,�capitalization,�name�databases�(gazetteers),�etc…

Fed raises interest rates 0.5 percent
NNP    NNS        NN         NNS    CD      NN
VBN    VBZ        VBP        VBZ
VBD                    VB            



Classic Solution: HMMs 

 

 
 

!   Trigram HMM: states = tag-pairs 
!   Estimating Transitions: Standard smoothing w/ backoff 
!   Estimating Emissions: Use unknown word classes (affixes, 

shapes) and estimate P(t|w) and invert 

!   Inference: choose most likely (Viterbi) sequence under model  
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States
� States�encode�what�is�relevant�about�the�past
� Transitions�P(s|s’)�encode�wellͲformed�tag�sequences

� In�a�bigram�tagger,�states�=�tags

� In�a�trigram�tagger,�states�=�tag�pairs

<i,i>

s1 s2 sn

w1 w2 wn

s0

< i, t1> < t1, t2> < tn-1, tn>

<i>

s1 s2 sn

w1 w2 wn

s0

< t1> < t2> < tn>
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Classic�Solution:�HMMs
� We�want�a�model�of�sequences�s�and�observations�w

� Assumptions:
� States�are�tag�nͲgrams
� Usually�a�dedicated�start�and�end�state�/�word
� Tag/state�sequence�is�generated�by�a�markov model
� Words�are�chosen�independently,�conditioned�only�on�the�tag/state
� These�are�totally�broken�assumptions:�why?

s1 s2 sn

w1 w2 wn

s0

[Brants, 2000] 



POS Tagging: Other Models 

!   Discriminative sequence models with richer features: 
MEMMs, CRFs (SoA ~= 97%/90% known/unknown) 

 
!   Universal POS tagset for multilingual and cross-lingual 

tagging and parsing [Petrov et al., 2012] 

 12 tags: NOUN, VERB, ADJ, ADV, PRON, DET, ADP, NUM, CONJ, PRT, ., X 
 
!   Unsupervised tagging also works reasonably well! 

[Yarowsky et al., 2001; Xi and Hwa, 2005; Berg-Kirkpatrick et al., 2010; 
Christodoulopoulos et al., 2010; Das and Petrov, 2011] 

[Brill, 1995; Ratnaparkhi, 1996; Toutanova and Manning, 2000; Toutanova et al., 2003] 



Syntactic Parsing -- Constituent 

!   Phrase-structure parsing or Bracketing 

!   Demos: http://tomato.banatao.berkeley.edu:8080/parser/parser.html  

VBD	



VP 

met	



NP	



S 

NP 

 her	



PRP  John	



NNP 



Probabilistic Context-free Grammars 

!   A context-free grammar is a tuple <N, T, S, R> 
 

N : the set of non-terminals 
Phrasal categories: S, NP, VP, ADJP, etc. 
Parts-of-speech (pre-terminals): NN, JJ, DT, VB 

 

T : the set of terminals (the words) 
 

S : the start symbol 
Often written as ROOT or TOP 
Not usually the sentence non-terminal S 

 

R : the set of rules 
Of the form X → Y1 Y2 … Yk, with X, Yi ∈ N 
Examples: S → NP VP,   VP → VP CC VP 
Also called rewrites, productions, or local trees 



Probabilistic Context-free Grammars 

!   A PCFG: 

 
!   Adds a top-down production probability per rule P(Y1 Y2 … Yk | 

X) 

!   Allows us to find the ‘most probable parse’ for a sentence 

!   The probability of a parse is just the product of the 
probabilities of the individual rules 



•  Need a PCFG for broad coverage parsing 
•  Extracting a grammar right off the trees is not effective: 

 

ROOT → S   1 

S → NP VP .   1 

NP → PRP    1 

VP → VBD ADJP  1 

….. 

Treebank PCFG 

Model F1 
Baseline 72.0 

[Charniak, 1996] 3

Treebank�PCFGs
� Use�PCFGs�for�broad�coverage�parsing
� Can�take�a�grammar�right�off�the�trees�(doesn’t�work�well):

ROOT o S 1

S o NP VP . 1

NP o PRP 1

VP o VBD ADJP 1

…..

Model F1
Baseline 72.0

[Charniak 96]



Grammar Refinement 
 

 

!   Conditional independence assumptions often too strong! Not every 
NP expansion can fill every NP slot 

!   Better results by enriching the grammar e.g.,  
 

!   Lexicalization [Collins, 1999; Charniak, 2000] 
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Conditional�Independence?

� Not�every�NP�expansion�can�fill�every�NP�slot
� A�grammar�with�symbols�like�“NP”�won’t�be�contextͲfree
� Statistically,�conditional�independence�too�strong

-noise	



-She	





Grammar Refinement 
 

 

!   Conditional independence assumptions often too strong! Not every 
NP expansion can fill every NP slot 

!   Better results by enriching the grammar e.g.,  
 

!   Lexicalization [Collins, 1999; Charniak, 2000] 
 

! Markovization, Manual Tag-splitting [Johnson, 1998; Klein & Manning, 2003] 

4

Conditional�Independence?

� Not�every�NP�expansion�can�fill�every�NP�slot
� A�grammar�with�symbols�like�“NP”�won’t�be�contextͲfree
� Statistically,�conditional�independence�too�strong

^VP	



^S	





Grammar Refinement 
 

 

!   Conditional independence assumptions often too strong! Not every 
NP expansion can fill every NP slot 

!   Better results by enriching the grammar e.g.,  
 

!   Lexicalization [Collins, 1999; Charniak, 2000] 
 

! Markovization, Manual Tag-splitting [Johnson, 1998; Klein & Manning, 2003] 

!   Latent Tag-splitting [Matsuzaki et al., 2005; Petrov et al., 2006] 4

Conditional�Independence?

� Not�every�NP�expansion�can�fill�every�NP�slot
� A�grammar�with�symbols�like�“NP”�won’t�be�contextͲfree
� Statistically,�conditional�independence�too�strong

-7	
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   bestScore(s) 
 for (i : [0,n-1]) 
   for (X : tags[s[i]]) 
     score[X][i][i+1] = tagScore(X,s[i]) 
 for (diff : [2,n]) 
   for (i : [0,n-diff]) 
     j = i + diff 
     for (X->YZ : rule) 
       for (k : [i+1, j-1]) 
         score[X][i][j] = max{score[X][i][j], score(X->YZ) 
               *score[Y][i][k]  
               *score[Z][k][j]} 

Y Z 

X 

i                       k                      j 

CKY Parsing Algorithm (Bottom-up) 

[Cocke, 1970; Kasami, 1965; Younger, 1967] 



Some Results 

!   Collins, 1999 ! 88.6 F1 (generative lexical) 

! Charniak and Johnson, 2005 ! 89.7 / 91.3 F1 
(generative lexical / reranking) 

! Petrov et al., 2006 ! 90.7 F1 (generative unlexical) 

! McClosky et al., 2006 – 92.1 F1 (generative + 
reranking + self‐training) 



Syntactic Parsing -- Dependency 

!   Predicting directed head-modifier relationship pairs 

!   Demos: http://nlp.stanford.edu:8080/corenlp/  

raising         $      30      million     from     debt 
dobj pobj 

prep 

num 
num 



Syntactic Parsing -- Dependency 

!   Pure (projective, 1st order) dependency parsing is only 
cubic [Eisner, 1996] 

!   Non-projective dependency parsing useful for Czech & 
other languages – MST algorithms [McDonald et al., 2005] 



Parsing: Other Models and Methods 

!   Combinatory Categorial Grammar [Steedman, 1996, 2000; Clark and Curran, 
2004] 

!   Transition-based Dependency Parsing [Yamada and Matsumoto, 2003; Nivre, 
2003] 

 

!   Tree-Insertion Grammar, DOP [Schabes and Waters, 1995; Hwa, 1998; Scha, 
1990; Bod, 1993; Goodman, 1996; Bansal and Klein, 2010] 

 

!   Tree-Adjoining Grammar [Resnik, 1992; Joshi and Schabes, 1998; Chiang, 2000] 

!   Shift-Reduce Parser [Nivre and Scholz, 2004; Sagae and Lavie, 2005] 

!   Other: Reranking, A*, K-Best, Self-training, Co-training, System 
Combination, Cross-lingual Transfer [Sarkar, 2001; Steedman et al., 2003; 
Charniak and Johnson, 2005; Hwa et al., 2005; Huang and Chiang, 2005; McClosky et al., 
2006; Fossum and Knight, 2009; Pauls and Klein, 2009; McDonald et al., 2011] 

!   Other Demos: http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo, 
http://4.easy-ccg.appspot.com/  



World Knowledge is Important 

Clean the dishes in 
the sink.	





Web Features for Syntactic Parsing 

They considered running the ad during the Super Bowl. 

VP

VBD

considered

S

VP

VBG

running

NP

the ad

PP

IN

during

NP

the Super Bowl

1

VP

VBD

considered

S

VP

VBG

running

NP

the ad

PP

IN

during

NP

the Super Bowl

2

Dependency: 

Constituent: 

[Nakov and Hearst 2005; Pitler et al., 2010; Bansal and Klein, 2011] 



Web Features for Syntactic Parsing 

count(running it during)         >          count(considered it during)	



Web Ngrams 

[Bansal and Klein, 2011] 

They considered running the ad during the Super Bowl. 

90.5 

91.5 

92.5 

McDonald & Pereira 2006 Us 

U
A

S !   7-10% relative error reduction over 90-92% parsers 



Unsup. Representations for Parsing 

!   Discrete or continuous, trained on large amounts of context 

!   BROWN (Brown et al., 1992): 

!   SKIPGRAM (Mikolov et al., 2013): 

Ms. Haag plays Elianti .*

obj
proot

nmod sbj

Figure 1: An example of a labeled dependency tree. The
tree contains a special token “*” which is always the root
of the tree. Each arc is directed from head to modifier and
has a label describing the function of the attachment.

and clustering, Section 3 describes the cluster-based
features, Section 4 presents our experimental results,
Section 5 discusses related work, and Section 6 con-
cludes with ideas for future research.

2 Background

2.1 Dependency parsing

Recent work (Buchholz and Marsi, 2006; Nivre
et al., 2007) has focused on dependency parsing.
Dependency syntax represents syntactic informa-
tion as a network of head-modifier dependency arcs,
typically restricted to be a directed tree (see Fig-
ure 1 for an example). Dependency parsing depends
critically on predicting head-modifier relationships,
which can be difficult due to the statistical sparsity
of these word-to-word interactions. Bilexical depen-
dencies are thus ideal candidates for the application
of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured
classification approach to dependency parsing. For a
given sentence x, let Y(x) denote the set of possible
dependency structures spanning x, where each y �
Y(x) decomposes into a set of “parts” r � y. In the
simplest case, these parts are the dependency arcs
themselves, yielding a first-order or “edge-factored”
dependency parsing model. In higher-order parsing
models, the parts can consist of interactions between
more than two words. For example, the parser of
McDonald and Pereira (2006) defines parts for sib-
ling interactions, such as the trio “plays”, “Elianti”,
and “.” in Figure 1. The Carreras (2007) parser
has parts for both sibling interactions and grandpar-
ent interactions, such as the trio “*”, “plays”, and
“Haag” in Figure 1. These kinds of higher-order
factorizations allow dependency parsers to obtain a
limited form of context-sensitivity.

Given a factorization of dependency structures
into parts, we restate dependency parsing as the fol-

apple pear Apple IBM bought run of in

01

100 101 110 111000 001 010 011

00

0

10

1

11

Figure 2: An example of a Brown word-cluster hierarchy.
Each node in the tree is labeled with a bit-string indicat-
ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x;w) = argmax
y�Y(x)

X

r�y

w · f(x, r)

Above, we have assumed that each part is scored
by a linear model with parameters w and feature-
mapping f(·). For many different part factoriza-
tions and structure domains Y(·), it is possible to
solve the above maximization efficiently, and several
recent efforts have concentrated on designing new
maximization algorithms with increased context-
sensitivity (Eisner, 2000; McDonald et al., 2005b;
McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-
iments, we used the Brown clustering algorithm
(Brown et al., 1992). We chose to work with the
Brown algorithm due to its simplicity and prior suc-
cess in other NLP applications (Miller et al., 2004;
Liang, 2005). However, we expect that our approach
can function with other clustering algorithms (as in,
e.g., Li and McCallum (2005)). We briefly describe
the Brown algorithm below.

The input to the algorithm is a vocabulary of
words to be clustered and a corpus of text containing
these words. Initially, each word in the vocabulary
is considered to be in its own distinct cluster. The al-
gorithm then repeatedly merges the pair of clusters
which causes the smallest decrease in the likelihood
of the text corpus, according to a class-based bigram
language model defined on the word clusters. By
tracing the pairwise merge operations, one obtains
a hierarchical clustering of the words, which can be
represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified
by its path from the root, and this path can be com-
pactly represented with a bit string, as in Figure 2.
In order to obtain a clustering of the words, we se-
lect all nodes at a certain depth from the root of the

SKIP 

Few mins. vs. days/weeks/months!! 

w(t) 

w(t-2) 

w(t-1) 

w(t+1) 

w(t+2) 

INPUT PROJECTION OUTPUT 

context  
window 

w 

Mikolov et al., 2013!

apple   !   000 
pear   !   001 

   Apple   !   010 

  apple  !  [0.65  0.15  -0.21  0.15  0.70  -0.90] 
  pear  !  [0.51  0.05  -0.32  0.20  0.80  -0.95] 
  Apple  !  [0.11  0.33  0.51  -0.05  -0.41  0.50] 

[Koo et al., 2008; Bansal et al., 2014] 



Unsup. Representations for Parsing 

[Mr., Mrs., Ms., Prof., III, Jr., Dr.] 
[Jeffrey, William, Dan, Robert, Stephen, Peter, John, Richard, ...] 
[Portugal, Iran, Cuba, Ecuador, Greece, Thailand, Indonesia, …] 

[truly, wildly, politically, financially, completely, potentially, ...] 

[his, your, her, its, their, my, our] 

[Your, Our, Its, My, His, Their, Her] 

dep label	
   dep label	
  grandparent	
   parent	
   child	
  

[PMOD<L>       regulation<G>     of       safety   PMOD<L>] 

!   Condition on dependency context instead of linear, then 
convert each dependency to a tuple: 

[Bansal et al., 2014] 

90.5 

91.5 

92.5 

McDonald & Pereira 2006 Us 

U
A

S 

!   10% rel. error reduction 
over 90-92% parsers 



Coreference Resolution 

!   Mentions to entity/event clusters 

!   Demos: h#p://nlp.stanford.edu:8080/corenlp/process 

President Barack Obama received the Serve America 
Act after congress’ vote. He signed the bill last 
Thursday. The president said it would greatly increase 
service opportunities for the American people. 



President Barack Obama   received   the   Serve America Act    after   congress’     vote .   He    signed   the bill   …  

Mention-pair Models 

ma3


(a1,  m)	
   Pair-wise 
classifier 

coref(a1,  m)
Features	
  f	
  

[Soon et al. 2001, Ng and Cardie 2002; Bengtson and Roth, 2008; Stoyanov et al., 2010] 

wTf	
  

a2
 a1


A(m)


Pair-wise classification approach:	
  



Mention-pair Model 

For each mention m, 

m


[Soon et al. 2001, Ng and Cardie 2002; Bengtson and Roth, 2008; Stoyanov et al., 2010] 



Standard features 

Type Feature Description 
LEXICAL SOON_STR Do the strings match after removing determiners ? 

GRAMMATICAL 

NUMBER Do NPi and NPj agree in number ? 

GENDER Do NPi and NPj agree in gender ? 

APPOSITIVE Are the NPs in an appositive relationship ? 

SEMANTIC 
WORDNET_CLASS Do NPi and NPj have the same WordNet class ? 

ALIAS Is one NP an alias of the other ? 
POSITIONAL SENTNUM Distance between the NPs in terms of # of sentences 

NPi NPj 

!   Weaknesses: All pairs, Transitivity/Independence errors 
(He – Obama – She), Insufficient information 

[Soon et al. 2001, Ng and Cardie 2002; Bengtson and Roth, 2008; Stoyanov et al., 2010] 



Entity-centric Models 

!   Each coreference decision is globally informed by 
previously clustered mentions and their shared attributes 

Lee et al. Deterministic Coreference Resolution Based on Entity-Centric, Precision-Ranked Rules

Figure 1
The architecture of our coreference system.

Crucially, our approach is entity-centric—that is, our architecture allows each coref-
erence decision to be globally informed by the previously clustered mentions and their
shared attributes. In particular, each deterministic rule is run on the entire discourse,
using and extending clusters (i.e., groups of mentions pointing to the same real-world
entity, built by models in previous tiers). Thus, for example, in deciding whether two
mentions i and j should corefer, our system can consider not just the local features of
i and j but also any information (head word, named entity type, gender, or number)
about the other mentions already linked to i and j in previous steps.

Finally, the architecture is highly modular, which means that additional coreference
resolution models can be easily integrated.

The two stage architecture offers a powerful way to balance both high recall and
precision in the system and make use of entity-level information with rule-based
architecture. The mention detection stage heavily favors recall, and the following sieves
favor precision. Our results here and in our earlier papers (Raghunathan et al. 2010;
Lee et al. 2011) show that this design leads to state-of-the-art performance despite the
simplicity of the individual components, and that the lack of language-specific lexical
features makes the system easy to port to other languages. The intuition is not new; in
addition to the prior coreference work mentioned earlier and discussed in Section 6, we
draw on classic ideas that have proved to be important again and again in the history of
natural language processing. The idea of beginning with the most accurate models or
starting with smaller subproblems that allow for high-precision solutions combines the
intuitions of “shaping” or “successive approximations” first proposed for learning by
Skinner (1938), and widely used in NLP (e.g., the successively trained IBM MT models
of Brown et al. [1993]) and the “islands of reliability” approaches to parsing and speech
recognition [Borghesi and Favareto 1982; Corazza et al. 1991]). The idea of beginning
with a high-recall list of candidates that are followed by a series of high-precision filters
dates back to one of the earliest architectures in natural language processing, the part of
speech tagging algorithm of the Computational Grammar Coder (Klein and Simmons

887

[Haghighi and Klein, 2009; Lee et al., 2013; Durrett et al., 2013] 

!   Lee et al., 2013’s 
deterministic (rule-based) 
system: multiple, cautious 
sieves from high to low 
precision 

 
! Durrett et al., 2013’s 

entity-level model is 
discriminative, 
probabilistic using factor 
graphs and BP 



Mention-Ranking Models (Learned) 

!   Log-linear model to select at most 1 antecedent for 
each mention or determine that it begins a new cluster 

[Denis and Baldridge, 2008; Durrett and Klein, 2013] 

1
2

New
1

New

Men9on\Ranking%Architecture

[Voters]1%agree%when%[they]1%are%given%[a%chance]2%to%decide%if%[they]1%...%

1
2

New New

3

Denis%and%Baldridge%(2008),%Durre4%et%al.%(2013)

[1STWORD=a]
[LENGTH=2]

...

[Voters;they]
[NOM\PRONOUN]

...

A1 A2 A3 A4

Pr(Ai = a|x) / exp(w

>
f(i, a, x))



Adding Knowledge to Coref 

!   External corpora: Web, Wikipedia, YAGO, FrameNet, Gender/
Number/Person lists/classifiers, 3D Images, Videos 

!   Methods:  
!   Self-training, Bootstrapping 

!   Co-occurrence, Distributional, and Pattern-based Features 
!   Entity Linking 

!   Visual Cues from 3D Images and Videos 
 
! Daumé III and Marcu, 2005; Markert and Nissim, 2005; Bergsma 

and Lin, 2006; Ponzetto and Strube, 2006; Haghighi and Klein, 
2009; Kobdani et al., 2011; Rahman and Ng, 2011; Bansal and 
Klein, 2012; Durrett and Klein, 2014; Kong et al., 2014; 
Ramanathan et al., 2014 



Web Features for Coreference 

When Obama met Jobs , the president discussed the …	



count(Obama * president)    vs   count(Jobs * president)	



[Bansal and Klein, 2012] 



Web Features for Coreference 

[Bansal and Klein, 2012] 

When Obama met Jobs , the … He signed bills that …	



count(Obama signed bills)   vs   count(Jobs signed bills)	



Results 
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Setup: Standard train/dev/test splits on ACE 2004, 2005 

[Bansal and Klein, ACL 2012] 

Results 
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Setup: Standard train/dev/test splits on ACE 2004, 2005 

[Bansal and Klein, ACL 2012] 

Results 
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Setup: Standard train/dev/test splits on ACE 2004, 2005 

[Bansal and Klein, ACL 2012] 



Visual Cues for Coreference 

[Kong, Lin, Bansal, Urtasun, and Fidler, 2014] 

What are you talking about? Text-to-Image Coreference

Chen Kong1 Dahua Lin3 Mohit Bansal3 Raquel Urtasun2,3 Sanja Fidler2,3
1Tsinghua University, 2University of Toronto, 3TTI Chicago

kc10@mails.tsinghua.edu.cn, {dhlin,mbansal}@ttic.edu,{fidler,urtasun}@cs.toronto.edu

Abstract
In this paper we exploit natural sentential descriptions

of RGB-D scenes in order to improve 3D semantic parsing.
Importantly, in doing so, we reason about which particular
object each noun/pronoun is referring to in the image. This
allows us to utilize visual information in order to disam-
biguate the so-called coreference resolution problem that
arises in text. Towards this goal, we propose a structure
prediction model that exploits potentials computed from text
and RGB-D imagery to reason about the class of the 3D ob-
jects, the scene type, as well as to align the nouns/pronouns
with the referred visual objects. We demonstrate the effec-
tiveness of our approach on the challenging NYU-RGBD v2
dataset, which we enrich with natural lingual descriptions.
We show that our approach significantly improves 3D de-
tection and scene classification accuracy, and is able to re-
liably estimate the text-to-image alignment. Furthermore,
by using textual and visual information, we are also able to
successfully deal with coreference in text, improving upon
the state-of-the-art Stanford coreference system [15].

1. Introduction
Imagine a scenario where you wake up late on a Satur-

day morning and all you want is for your personal robot to
bring you a shot of bloody mary. You could say “It is in the
upper cabinet in the kitchen just above the stove. I think it is
hidden behind the box of cookies, which, please, bring to me
as well.” For a human, finding the mentioned items based
on this information should be an easy task. The description
tells us that there are at least two cabinets in the kitchen, one
in the upper part. There is also a stove and above it is a cab-
inet holding a box and the desired item should be behind it.
For autonomous systems, sentential descriptions can serve
as rich source of information. Text can help us parse the
visual scene in a more informed way, and can facilitate for
example new ways of active labeling and learning.

Understanding descriptions and linking them to visual
content is fundamental to enable applications such as se-
mantic visual search and human-robot interaction. Using
language to provide annotations and guide an automatic

Figure 1. Our model uses lingual descriptions (a string of depen-
dent sentences) to improve visual scene parsing as well as to de-
termine which visual objects the text is referring to. We also deal
with coreference within text (e.g., pronouns like “it” or “them”).

system is key for the deployment of such systems. To date,
however, attempts to utilize more complex natural descrip-
tions are rare. This is due to the inherent difficulties of both
natural language processing and visual recognition, as well
as the lack of datasets that contain such image descriptions
linked to visual annotations (e.g., segmentation, detection).

Most recent approaches that employ text and images fo-
cus on generation tasks, where given an image one is inter-
ested in generating a lingual description of the scene [8, 12,
21, 2], or given a sentence, retrieving related images [29].
An exception is [9], which employed nouns and preposi-
tions extracted from short sentences to boost the perfor-
mance of object detection and semantic segmentation.

In this paper we are interested in exploiting natural lin-
gual descriptions of RGB-D scenes in order to improve 3D
object detection as well as to determine which particular
object each noun/pronoun is referring to in the image. In
order to do so, we need to solve the text to image alignment

1

# sent # words min # sent max sent min words max words
3.2 39.1 1 10 6 144

# nouns of interest # pronouns # scene mentioned scene correct
3.4 0.53 0.48 83%

Table 2. Statistics per description.
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Figure 3. Scene classif. accuracy with respect to NYU annotation.
We evaluate acc. only when a scene is mentioned in a description.

4. RGB-D Dataset with Complex Descriptions

Having rich data is important in order to enable auto-
matic systems to properly ground language to visual con-
cepts. Towards this goal, we took the NYUv2 dataset [27]
that contains 1449 RGB-D images of indoor scenes, and
collected sentential descriptions for each image. We asked
the annotators (MTurkers) to describe an image to someone
who does not see it to give her/him a vivid impression of
what the scene looks like. The annotators were only shown
the image and had no idea of what the classes of interest
were. For quality control, we checked all descriptions, and
fixed those that were grammatically incorrect, while pre-
serving the content. The collected descriptions go beyond
current datasets where typically only a short sentence is
available. They vary from one to ten sentences per anno-
tator per image, and typically contain rich information and
multiple mentions to objects. Fig. 6 shows examples.

We collected two types of ground-truth annotations. The
first one is visual, where we linked the nouns and pronouns
to the visual objects they describe. This gives us ground-
truth alignments between text and images. We used in-
house annotators to ensure quality. We took a conservative
approach and labeled only the non-ambiguous referrals. For
plural forms we linked the (pro)noun to multiple objects.

The second annotation is text based. Here, the anno-
tators were shown only text and not the image, and thus
had to make a decision based on the syntactic and seman-
tic textual information alone. For all nouns that refer to the
classes of interest we annotated which object class it is, tak-
ing into account synonyms. All other nouns were marked
as background. For each noun we also annotated attributes
(i.e., color and size) that refer to it. We also annotated co-
referrals in cases where different words talk about the same
entity by linking the head (representative) noun in a descrip-
tion to all its noun/pronoun occurrences. We annotated at-

precision recall F-measure
object class 94.7% 94.2% 94.4%

scene 85.7% 85.7% 85.7%
color 64.2% 93.0% 75.9%
size 55.8% 96.0% 70.6%

Table 3. Parser accuracy (based on Stanford’s parser [31])

MUC B3

Method precision recall F1 precision recall F1
Stanford [15] 61.56 62.59 62.07 75.05 76.15 75.59
Ours 83.69 51.08 63.44 88.42 70.02 78.15

Table 4. Co-reference accuracy of [15] and our model.

tributes for the linked pronouns as well. Our annotation
was semi-automatic, where we generated candidates using
the Stanford parser [31, 15] and manually corrected the mis-
takes. We used WordNet to generate synonyms.

We analyze our dataset next. Table 2 shows simple statis-
tics: there are on average 3 sentences per description where
each description has on average 39 words. Descriptions
contain up to 10 sentences and 144 words. A pronoun be-
longing to a class of interest appears in every second de-
scription. Scene type is explicitly mentioned in half of the
descriptions. Table 1 shows per class statistics, e.g. percent-
age of times a noun refers to a visual object with respect to
the number of all visual objects of that class. Interestingly, a
“toilet” is talked about 91% of times it is visible in a scene,
while “curtains” are talked about only 23% of times. Fig. 4
shows size histograms for the mentioned objects, where
size is the square root of the number of pixels which the
linked object region contains. We separate the statistics into
whether the noun was mentioned in the first, second, third,
or fourth and higher sentence. An interesting observation
is that the sizes of mentioned objects become smaller with
the sentence ID. This is reasonable as the most salient (typ-
ically bigger) objects are described first. We also show a
plot for sizes of objects that are mentioned more than once
per description. We can see that the histogram is pushed
to the right, meaning that people corefer to bigger objects
more often. As shown in Fig. 5, people first describe the
closer and centered objects, and start describing other parts
of the scene in later sentences. Finally, in Fig. 3 we evaluate
human scene classification accuracy against NYU ground-
truth. We evaluate accuracy only when a scene is explicitly
mentioned in a description. While “bathroom” is always a
“bathroom”, there is confusion for some other scenes, e.g. a
“playroom” is typically mentioned to be a “living room”.

5. Experimental Evaluation
We test our model on the NYUv2 dataset augmented

with our descriptions. For 3D object detection we use the
same class set of 21 objects as in [18], where ground-truth
has been obtained by robust fitting of cuboids around object
regions projected to 3D via depth. For each image NYU
also has a scene label, with 13 scene classes altogether.

!   Joint coreference and 3D image recognition 



Distributional Semantics 

!   Words occurring in similar context have similar 
linguistic behavior (meaning) [Harris, 1954; Firth, 1957] 

!   Traditional approach: context-counting vectors 
!   Count left and right context in window 
!   Reweight with PMI or LLR 
!   Reduce dimensionality with SVD or NNMF 
 

 [Pereira et al., 1993; Lund & Burgess, 1996; Lin, 1998; Lin and Pantel, 2001; 
 Sahlgren, 2006; Pado & Lapata, 2007; Turney and Pantel, 2010; Baroni and 
 Lenci, 2010] 

 
!   More word representations: hierarchical clustering 

based on bigram LM LL  
      [Brown et al., 1992] 

Ms. Haag plays Elianti .*

obj
proot

nmod sbj

Figure 1: An example of a labeled dependency tree. The
tree contains a special token “*” which is always the root
of the tree. Each arc is directed from head to modifier and
has a label describing the function of the attachment.

and clustering, Section 3 describes the cluster-based
features, Section 4 presents our experimental results,
Section 5 discusses related work, and Section 6 con-
cludes with ideas for future research.

2 Background

2.1 Dependency parsing

Recent work (Buchholz and Marsi, 2006; Nivre
et al., 2007) has focused on dependency parsing.
Dependency syntax represents syntactic informa-
tion as a network of head-modifier dependency arcs,
typically restricted to be a directed tree (see Fig-
ure 1 for an example). Dependency parsing depends
critically on predicting head-modifier relationships,
which can be difficult due to the statistical sparsity
of these word-to-word interactions. Bilexical depen-
dencies are thus ideal candidates for the application
of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured
classification approach to dependency parsing. For a
given sentence x, let Y(x) denote the set of possible
dependency structures spanning x, where each y �
Y(x) decomposes into a set of “parts” r � y. In the
simplest case, these parts are the dependency arcs
themselves, yielding a first-order or “edge-factored”
dependency parsing model. In higher-order parsing
models, the parts can consist of interactions between
more than two words. For example, the parser of
McDonald and Pereira (2006) defines parts for sib-
ling interactions, such as the trio “plays”, “Elianti”,
and “.” in Figure 1. The Carreras (2007) parser
has parts for both sibling interactions and grandpar-
ent interactions, such as the trio “*”, “plays”, and
“Haag” in Figure 1. These kinds of higher-order
factorizations allow dependency parsers to obtain a
limited form of context-sensitivity.

Given a factorization of dependency structures
into parts, we restate dependency parsing as the fol-

apple pear Apple IBM bought run of in
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Figure 2: An example of a Brown word-cluster hierarchy.
Each node in the tree is labeled with a bit-string indicat-
ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x;w) = argmax
y�Y(x)

X

r�y

w · f(x, r)

Above, we have assumed that each part is scored
by a linear model with parameters w and feature-
mapping f(·). For many different part factoriza-
tions and structure domains Y(·), it is possible to
solve the above maximization efficiently, and several
recent efforts have concentrated on designing new
maximization algorithms with increased context-
sensitivity (Eisner, 2000; McDonald et al., 2005b;
McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-
iments, we used the Brown clustering algorithm
(Brown et al., 1992). We chose to work with the
Brown algorithm due to its simplicity and prior suc-
cess in other NLP applications (Miller et al., 2004;
Liang, 2005). However, we expect that our approach
can function with other clustering algorithms (as in,
e.g., Li and McCallum (2005)). We briefly describe
the Brown algorithm below.

The input to the algorithm is a vocabulary of
words to be clustered and a corpus of text containing
these words. Initially, each word in the vocabulary
is considered to be in its own distinct cluster. The al-
gorithm then repeatedly merges the pair of clusters
which causes the smallest decrease in the likelihood
of the text corpus, according to a class-based bigram
language model defined on the word clusters. By
tracing the pairwise merge operations, one obtains
a hierarchical clustering of the words, which can be
represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified
by its path from the root, and this path can be com-
pactly represented with a bit string, as in Figure 2.
In order to obtain a clustering of the words, we se-
lect all nodes at a certain depth from the root of the



Distributional Semantics -- NNs 

!   Newer approach: context-predicting vectors (NNs) 
!   SENNA [Collobert and Weston, 2008; Collobert et al., 2011]: Multi-layer 

DNN w/ ranking-loss objective; BoW and sentence-level feature 
layers, followed by std. NN layers. Similar to [Bengio et al., 2003]. 

BENGIO, DUCHARME, VINCENT AND JAUVIN
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C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.
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!   HUANG [Huang et al., 2012]: Add global, document-level context 



Distributional Semantics -- NNs 

!   CBOW, SKIP, word2vec [Mikolov et al., 2013]: Simple, super-fast NN w/ no 
hidden layer. Continuous BoW model predicts word given context, skip-
gram model predicts surrounding words given current word 

 
 

!   Other: [Mnih and Hinton, 2007; Turian et al., 2010] 

!   Demos: h#ps://code.google.com/p/word2vec,	
  
h#p://metaop<mize.com/projects/wordreprs/, h#p://ml.nec-­‐labs.com/senna/	
  

!   Comparison of count vs. predict (winner) [Baroni et al., 2014] 

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

       INPUT         PROJECTION         OUTPUT

w(t)

          INPUT         PROJECTION      OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

                   CBOW                                                   Skip-gram

Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5
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!   Other approaches: spectral methods, e.g., CCA 
!   Word-context correlation [Dhillon et al., 2011, 2012] 

!   Multilingual correlation [Faruqui and Dyer, 2014] 

 
!   Some current/next directions: Train task-tailored 

embeddings to capture specific types of similarity/
semantics, e.g., 

!   Dependency context [Bansal et al., 2014, Levy and Goldberg, 2014] 

!   Predicate-argument structures [Hashimoto et al., 2014; 

Madhyastha et al., 2014] 

!   Lexicon evidence (PPDB, WordNet, FrameNet) [Xu et 

al., 2014; Yu and Dredze, 2014; Faruqui et al., 2014] 



Compositional Semantics I: NNs 

!   Composing, combining word vectors to representations 
for longer units: phrases, sentences, paragraphs, … 

!   Initial approaches: point-wise sum, multiplication    
[Mitchell and Lapata, 2010; Blacoe and Lapata, 2012] 

!   Vector-matrix compositionality [Baroni and Zamparelli, 2010; 
Zanzotto et al., 2010; Grefenstette and Sadrzadeh, 2011; Socher et al., 2011; 
Yessenalina and Cardie, 2011] 

!   Linguistic information added via say parses [Socher et al., 
2011b, 2012, 2013a, 2013b, 2014; Hermann and Blunsom, 2013] 



Compositional Semantics I: NNs 

! Socher et al., 2011: Recursive autoencoders 
(unsupervised) on constituent parse trees 

 
!   The unfolding autoencoder which tries to reconstruct all 

leaf nodes underneath each node.  



Compositional Semantics I: NNs 

! Socher et al., 2013a, 2014: RNNs on constituent and 
dependency parse trees 

Figure 2: An example tree with a simple Recursive
Neural Network: The same weight matrix is repli-
cated and used to compute all non-terminal node
representations. Leaf nodes are n-dimensional
vector representations of words.

In order to compute a score of how plausible of
a syntactic constituent a parent is the RNN uses a
single-unit linear layer for all i:

s(p

(i)

) = v

T

p

(i)

,

where v 2 Rn is a vector of parameters that need
to be trained. This score will be used to find the
highest scoring tree. For more details on how stan-
dard RNNs can be used for parsing, see Socher et
al. (2011b).

The standard RNN requires a single composi-
tion function to capture all types of compositions:
adjectives and nouns, verbs and nouns, adverbs
and adjectives, etc. Even though this function is
a powerful one, we find a single neural network
weight matrix cannot fully capture the richness of
compositionality. Several extensions are possible:
A two-layered RNN would provide more expres-
sive power, however, it is much harder to train be-
cause the resulting neural network becomes very
deep and suffers from vanishing gradient prob-
lems. Socher et al. (2012) proposed to give ev-
ery single word a matrix and a vector. The ma-
trix is then applied to the sibling node’s vector
during the composition. While this results in a
powerful composition function that essentially de-
pends on the words being combined, the number
of model parameters explodes and the composi-
tion functions do not capture the syntactic com-
monalities between similar POS tags or syntactic
categories.

Based on the above considerations, we propose
the Compositional Vector Grammar (CVG) that
conditions the composition function at each node
on discrete syntactic categories extracted from a

(A, a=       )        (B, b=       )       (C, c=       )

P(1), p(1)=       

 P(2), p(2)=        

= f   W(B,C) b
c

= f   W(A,P  ) a
p(1)

(1)

Figure 3: Example of a syntactically untied RNN
in which the function to compute a parent vector
depends on the syntactic categories of its children
which we assume are given for now.

PCFG. Hence, CVGs combine discrete, syntactic
rule probabilities and continuous vector composi-
tions. The idea is that the syntactic categories of
the children determine what composition function
to use for computing the vector of their parents.
While not perfect, a dedicated composition func-
tion for each rule RHS can well capture common
composition processes such as adjective or adverb
modification versus noun or clausal complementa-
tion. For instance, it could learn that an NP should
be similar to its head noun and little influenced by
a determiner, whereas in an adjective modification
both words considerably determine the meaning of
a phrase. The original RNN is parameterized by a
single weight matrix W . In contrast, the CVG uses
a syntactically untied RNN (SU-RNN) which has
a set of such weights. The size of this set depends
on the number of sibling category combinations in
the PCFG.

Fig. 3 shows an example SU-RNN that com-
putes parent vectors with syntactically untied
weights. The CVG computes the first parent vec-
tor via the SU-RNN:

p

(1)

= f

✓
W

(B,C)


b

c

�◆
,

where W

(B,C) 2 Rn⇥2n is now a matrix that de-
pends on the categories of the two children. In
this bottom up procedure, the score for each node
consists of summing two elements: First, a single
linear unit that scores the parent vector and sec-
ond, the log probability of the PCFG for the rule
that combines these two children:

s

⇣
p

(1)

⌘
=

�
v

(B,C)

�
T

p

(1)

+ logP (P

1

! B C),

(4)

A man wearing a helmet jumps on his bike near a beach
det

nsubj

partmod det
dobj

root

prep poss
pobj

prep

det
pobj

Figure 2: Example of a full dependency tree for a longer sentence. The DT-RNN will compute vector representations
at every word that represents that word and an arbitrary number of child nodes. The final representation is computed
at the root node, here at the verb jumps. Note that more important activity and object words are higher up in this tree
structure.

supervised model of Huang et al. (2012) which can
learn single word vector representations from both
local and global contexts. The idea is to construct a
neural network that outputs high scores for windows
and documents that occur in a large unlabeled corpus
and low scores for window-document pairs where
one word is replaced by a random word. When
such a network is optimized via gradient descent the
derivatives backpropagate into a word embedding
matrix A which stores word vectors as columns. In
order to predict correct scores the vectors in the ma-
trix capture co-occurrence statistics. We use d = 50

in all our experiments. The embedding matrix X

is then used by finding the column index i of each
word: [w] = i and retrieving the corresponding col-
umn x

w

from X . Henceforth, we represent an input
sentence s as an ordered list of (word,vector) pairs:
s = ((w1, xw1), . . . , (wm

, x

wm)).
Next, the sequence of words (w1, . . . , wm

) is
parsed by the dependency parser of de Marneffe
et al. (2006). Fig. 2 shows an example. We can
represent a dependency tree d of a sentence s as
an ordered list of (child,parent) indices: d(s) =

{(i, j)}, where every child word in the sequence
i = 1, . . . ,m is present and has any word j 2
{1, . . . ,m} [ {0} as its parent. The root word has
as its parent 0 and we notice that the same word can
be a parent between zero and m number of times.
Without loss of generality, we assume that these in-
dices form a tree structure. To summarize, the input
to the DT-RNN for each sentence is the pair (s, d):
the words and their vectors and the dependency tree.

3.2 Forward Propagation in DT-RNNs

Given these two inputs, we now illustrate how the
DT-RNN computes parent vectors. We will use the
following sentence as a running example: Students1
ride2 bikes3 at4 night5. Fig. 3 shows its tree
and computed vector representations. The depen-

Students                 bikes           night

ride 
at          x1

x2

x3

x4
x5

h1

h2

h3

h4

h5

Figure 3: Example of a DT-RNN tree structure for com-
puting a sentence representation in a bottom up fashion.

dency tree for this sentence can be summarized by
the following set of (child, parent) edges: d =

{(1, 2), (2, 0), (3, 2), (4, 2), (5, 4)}.
The DT-RNN model will compute parent vectors

at each word that include all the dependent (chil-
dren) nodes in a bottom up fashion using a com-
positionality function g

✓

which is parameterized by
all the model parameters ✓. To this end, the algo-
rithm searches for nodes in a tree that have either
(i) no children or (ii) whose children have already
been computed and then computes the correspond-
ing vector.

In our example, the words x1, x3, x5 are leaf
nodes and hence, we can compute their correspond-
ing hidden nodes via:

h

c

= g

✓

(x

c

) = f(W

v

x

c

) for c = 1, 3, 5, (1)

where we compute the hidden vector at position c

via our general composition function g

✓

. In the case
of leaf nodes, this composition function becomes
simply a linear layer, parameterized by W

v

2 Rn⇥d,
followed by a nonlinearity. We cross-validate over
using no nonlinearity (f = id), tanh, sigmoid or
rectified linear units (f = max(0, x), but generally
find tanh to perform best.

The final sentence representation we want to com-
pute is at h2, however, since we still do not have h4,



Compositional Semantics I: NNs 

! Socher et al., 2013b: Sentiment compositionality 

Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng and Christopher Potts

Stanford University, Stanford, CA 94305, USA
richard@socher.org,{aperelyg,jcchuang,ang}@cs.stanford.edu

{jeaneis,manning,cgpotts}@stanford.edu

Abstract

Semantic word spaces have been very use-
ful but cannot express the meaning of longer
phrases in a principled way. Further progress
towards understanding compositionality in
tasks such as sentiment detection requires
richer supervised training and evaluation re-
sources and more powerful models of com-
position. To remedy this, we introduce a
Sentiment Treebank. It includes fine grained
sentiment labels for 215,154 phrases in the
parse trees of 11,855 sentences and presents
new challenges for sentiment composition-
ality. To address them, we introduce the
Recursive Neural Tensor Network. When
trained on the new treebank, this model out-
performs all previous methods on several met-
rics. It pushes the state of the art in single
sentence positive/negative classification from
80% up to 85.4%. The accuracy of predicting
fine-grained sentiment labels for all phrases
reaches 80.7%, an improvement of 9.7% over
bag of features baselines. Lastly, it is the only
model that can accurately capture the effects
of negation and its scope at various tree levels
for both positive and negative phrases.

1 Introduction

Semantic vector spaces for single words have been
widely used as features (Turney and Pantel, 2010).
Because they cannot capture the meaning of longer
phrases properly, compositionality in semantic vec-
tor spaces has recently received a lot of attention
(Mitchell and Lapata, 2010; Socher et al., 2010;
Zanzotto et al., 2010; Yessenalina and Cardie, 2011;
Socher et al., 2012; Grefenstette et al., 2013). How-
ever, progress is held back by the current lack of
large and labeled compositionality resources and
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Figure 1: Example of the Recursive Neural Tensor Net-
work accurately predicting 5 sentiment classes, very neg-
ative to very positive (– –, –, 0, +, + +), at every node of a
parse tree and capturing the negation and its scope in this
sentence.

models to accurately capture the underlying phe-
nomena presented in such data. To address this need,
we introduce the Stanford Sentiment Treebank and
a powerful Recursive Neural Tensor Network that
can accurately predict the compositional semantic
effects present in this new corpus.

The Stanford Sentiment Treebank is the first cor-
pus with fully labeled parse trees that allows for a
complete analysis of the compositional effects of
sentiment in language. The corpus is based on
the dataset introduced by Pang and Lee (2005) and
consists of 11,855 single sentences extracted from
movie reviews. It was parsed with the Stanford
parser (Klein and Manning, 2003) and includes a
total of 215,154 unique phrases from those parse
trees, each annotated by 3 human judges. This new
dataset allows us to analyze the intricacies of senti-
ment and to capture complex linguistic phenomena.
Fig. 1 shows one of the many examples with clear
compositional structure. The granularity and size of

!   Demos: h#p://nlp.stanford.edu:8080/sen<ment/rntnDemo.html 
[Yessenalina and Cardie, 2011; Socher et al., 2013b] 



Compositional Semantics I: NNs 

!   Various other approaches: [Das and Smith, 2009; Collobert et al., 
2011; Grefenstette et al., 2013; Hashimoto et al., 2014; Madhyastha et al., 2014; 
Chen and Manning, 2014] 

 
!   New Deep Learning based Generation: End-to-end MT, 

Parsing, Caption generation for images, videos [Sutskever 
et al., 2014; Vinyals et al., 2014a, 2014b; Karpathy and Fei-Fei, 2014; Kiros et al., 
2014; Donahue et al., 2014; Fang et al., 2014; Venugopalan et al., 2014] 

!   Demos: h#p://deeplearning.net/demos/,	
  
h#p://cs.stanford.edu/people/karpathy/deepimagesent/rankingdemo/,	
  
h#ps://www.metamind.io/ 



Compositional Semantics II: Logic form 

!   Logic-based, Semantic Parsing 

!   Useful for Q&A, IE, grounding, comprehension tasks 
(summarization, reading tasks) 

!   A lot of focus on Question Answering 

!   Demos: h#p://demo.ark.cs.cmu.edu/parse,	
  www.google.com,	
  Facebook	
  
graph	
  search 



Question Answering 

!   Initial approaches to Q&A: pattern matching, pattern 
learning, query rewriting, information extraction 

!   Next came a large-scale, open-domain IE system like 
IBM Watson	
  

provide a bit more detail about the various archi-
tectural roles.

Content Acquisition
The first step in any application of DeepQA to
solve a QA problem is content acquisition, or iden-
tifying and gathering the content to use for the
answer and evidence sources shown in figure 6. 

Content acquisition is a combination of manu-
al and automatic steps. The first step is to analyze
example questions from the problem space to pro-
duce a description of the kinds of questions that
must be answered and a characterization of the
application domain. Analyzing example questions
is primarily a manual task, while domain analysis
may be informed by automatic or statistical analy-
ses, such as the LAT analysis shown in figure 1.
Given the kinds of questions and broad domain of
the Jeopardy Challenge, the sources for Watson
include a wide range of encyclopedias, dictionar-
ies, thesauri, newswire articles, literary works, and
so on. 

Given a reasonable baseline corpus, DeepQA
then applies an automatic corpus expansion
process. The process involves four high-level steps:
(1) identify seed documents and retrieve related
documents from the web; (2) extract self-contained
text nuggets from the related web documents; (3)
score the nuggets based on whether they are

informative with respect to the original seed docu-
ment; and (4) merge the most informative nuggets
into the expanded corpus. The live system itself
uses this expanded corpus and does not have
access to the web during play.

In addition to the content for the answer and
evidence sources, DeepQA leverages other kinds of
semistructured and structured content. Another
step in the content-acquisition process is to identi-
fy and collect these resources, which include data-
bases, taxonomies, and ontologies, such as dbPe-
dia,7 WordNet (Miller 1995), and the Yago8

ontology.

Question Analysis
The first step in the run-time question-answering
process is question analysis. During question
analysis the system attempts to understand what
the question is asking and performs the initial
analyses that determine how the question will be
processed by the rest of the system. The DeepQA
approach encourages a mixture of experts at this
stage, and in the Watson system we produce shal-
low parses, deep parses (McCord 1990), logical
forms, semantic role labels, coreference, relations,
named entities, and so on, as well as specific kinds
of analysis for question answering. Most of these
technologies are well understood and are not dis-
cussed here, but a few require some elaboration.

Articles

FALL 2010  69

Figure 6. DeepQA High-Level Architecture.

[Ferrucci et al., 2010] 



Deep Q&A: Semantic Parsing 

!   Complex, free-form, multi-clause questions 



Deep Q&A: Semantic Parsing 

!   Complex, free-form, multi-clause questions 



Semantic Parsing: Logic forms 

!   Parsing with logic (booleans, individuals, functions) and 
lambda forms 

Sentence 
loves(john,mary) 

Noun Phrase 
john 

Verb Phrase 
λx.loves(x,mary) 

Name 
john 

Verb 
λy.λx.loves(x,y) 

Noun Phrase 

Name 
mary 

“John” 
john 

“loves” 
λy.λx.loves(x,y) “Mary” 

mary 

Parse tree with associated 
semantics 

[Wong and Mooney, 2007; Zettlemoyer and Collins, 2007; Poon and Domingos, 2009;  
Artzi and Zettlemoyer, 2011, 2013; Kwiatkowski et al., 2013; Cai and Yates, 2013;  

Berant et al., 2013; Poon 2013; Berant and Liang, 2014; Iyyer et al., 2014] 



Semantic Parsing Ideas 

!   Various recent ideas/extensions:  

!   unsupervised SP (clustering lambda forms) 
!   grounded USP (via databases) 
!   Dependency-based compositional semantics (DCS) 
!   CCG 
!   Bootstrapping w/ conversations 
!   On-the-fly ontology matching 
!   Question answering on Freebase 
!   Paraphrasing 
!   RNNs for Q&A 
!   Comparison with IE approaches 

[Wong and Mooney, 2007; Zettlemoyer and Collins, 2007; Poon and Domingos, 2009;  
Artzi and Zettlemoyer, 2011, 2013; Kwiatkowski et al., 2013; Cai and Yates, 2013;  

Berant et al., 2013; Poon 2013; Berant and Liang, 2014; Iyyer et al., 2014; Yao and Van Durne, 2014] 



Semantic Parsing on Freebase 

 

 
 
 
 
 
 
 
 
 
Mapping questions to answers via latent logical forms. To narrow down the logical 
predicate space, they use a (i) coarse alignment based on Freebase and a text corpus and 
(ii) a bridging operation that generates predicates compatible with neighboring predicates.  

[Berant et al., 2013] 

Semantic Parsing on Freebase from Question-Answer Pairs

Jonathan Berant Andrew Chou Roy Frostig Percy Liang
Computer Science Department, Stanford University

{joberant,akchou}@stanford.edu {rf,pliang}@cs.stanford.edu

Abstract

In this paper, we train a semantic parser that
scales up to Freebase. Instead of relying on
annotated logical forms, which is especially
expensive to obtain at large scale, we learn
from question-answer pairs. The main chal-
lenge in this setting is narrowing down the
huge number of possible logical predicates for
a given question. We tackle this problem in
two ways: First, we build a coarse mapping
from phrases to predicates using a knowledge
base and a large text corpus. Second, we
use a bridging operation to generate additional
predicates based on neighboring predicates.
On the dataset of Cai and Yates (2013), despite
not having annotated logical forms, our sys-
tem outperforms their state-of-the-art parser.
Additionally, we collected a more realistic and
challenging dataset of question-answer pairs
and improves over a natural baseline.

1 Introduction

We focus on the problem of semantic parsing nat-
ural language utterances into logical forms that can
be executed to produce denotations. Traditional se-
mantic parsers (Zelle and Mooney, 1996; Zettle-
moyer and Collins, 2005; Wong and Mooney, 2007;
Kwiatkowski et al., 2010) have two limitations: (i)
they require annotated logical forms as supervision,
and (ii) they operate in limited domains with a small
number of logical predicates. Recent developments
aim to lift these limitations, either by reducing the
amount of supervision (Clarke et al., 2010; Liang et
al., 2011; Goldwasser et al., 2011; Artzi and Zettle-
moyer, 2011) or by increasing the number of logical

Occidental College, Columbia University

Execute on Database

Type.University u Education.BarackObama

Type.University

Education

BarackObama

Which college did Obama go to ?

alignment

alignment

bridging

Figure 1: Our task is to map questions to answers via la-
tent logical forms. To narrow down the space of logical
predicates, we use a (i) coarse alignment based on Free-
base and a text corpus and (ii) a bridging operation that
generates predicates compatible with neighboring predi-
cates.

predicates (Cai and Yates, 2013). The goal of this
paper is to do both: learn a semantic parser with-
out annotated logical forms that scales to the large
number of predicates on Freebase.

At the lexical level, a major challenge in semantic
parsing is mapping natural language phrases (e.g.,
“attend”) to logical predicates (e.g., Education).
While limited-domain semantic parsers are able
to learn the lexicon from per-example supervision
(Kwiatkowski et al., 2011; Liang et al., 2011), at
large scale they have inadequate coverage (Cai and
Yates, 2013). Previous work on semantic parsing on
Freebase uses a combination of manual rules (Yahya
et al., 2012; Unger et al., 2012), distant supervision
(Krishnamurthy and Mitchell, 2012), and schema



Semantic Parsing via Paraphrasing 

 

 
 
 
 
 
 
 
 
For each candidate logical form (red), they generate canonical utterances (purple). The 
model is trained to paraphrase the input utterance (green) into the canonical utterances 
associated with the correct denotation (blue).  

[Berant and Liang, 2014] 

Semantic Parsing via Paraphrasing

Jonathan Berant

Stanford University
joberant@stanford.edu

Percy Liang

Stanford University
pliang@cs.stanford.edu

Abstract

A central challenge in semantic parsing is
handling the myriad ways in which knowl-
edge base predicates can be expressed.
Traditionally, semantic parsers are trained
primarily from text paired with knowledge
base information. Our goal is to exploit
the much larger amounts of raw text not
tied to any knowledge base. In this pa-
per, we turn semantic parsing on its head.
Given an input utterance, we first use a
simple method to deterministically gener-
ate a set of candidate logical forms with
a canonical realization in natural language
for each. Then, we use a paraphrase model
to choose the realization that best para-
phrases the input, and output the corre-
sponding logical form. We present two
simple paraphrase models, an association
model and a vector space model, and train
them jointly from question-answer pairs.
Our system PARASEMPRE improves state-
of-the-art accuracies on two recently re-
leased question-answering datasets.

1 Introduction

We consider the semantic parsing problem of map-
ping natural language utterances into logical forms
to be executed on a knowledge base (KB) (Zelle
and Mooney, 1996; Zettlemoyer and Collins,
2005; Wong and Mooney, 2007; Kwiatkowski
et al., 2010). Scaling semantic parsers to large
knowledge bases has attracted substantial atten-
tion recently (Cai and Yates, 2013; Berant et al.,
2013; Kwiatkowski et al., 2013), since it drives
applications such as question answering (QA) and
information extraction (IE).

Semantic parsers need to somehow associate
natural language phrases with logical predicates,
e.g., they must learn that the constructions “What

What party did Clay establish?

paraphrase model

What political party founded by Henry Clay?
...

What event involved the people Henry Clay?

Type.PoliticalParty u Founder.HenryClay ... Type.Event u Involved.HenryClay

Whig Party

Figure 1: Semantic parsing via paraphrasing: For each
candidate logical form (in red), we generate canonical utter-
ances (in purple). The model is trained to paraphrase the in-
put utterance (in green) into the canonical utterances associ-
ated with the correct denotation (in blue).

does X do for a living?”, “What is X’s profes-
sion?”, and “Who is X?”, should all map to the
logical predicate Profession. To learn these map-
pings, traditional semantic parsers use data which
pairs natural language with the KB. However, this
leaves untapped a vast amount of text not related
to the KB. For instance, the utterances “Where is
ACL in 2014?” and “What is the location of ACL
2014?” cannot be used in traditional semantic
parsing methods, since the KB does not contain
an entity ACL2014, but this pair clearly contains
valuable linguistic information. As another refer-
ence point, out of 500,000 relations extracted by
the ReVerb Open IE system (Fader et al., 2011),
only about 10,000 can be aligned to Freebase (Be-
rant et al., 2013).

In this paper, we present a novel approach for
semantic parsing based on paraphrasing that can
exploit large amounts of text not covered by the
KB (Figure 1). Our approach targets factoid ques-
tions with a modest amount of compositionality.
Given an input utterance, we first use a simple de-
terministic procedure to construct a manageable
set of candidate logical forms (ideally, we would
generate canonical utterances for all possible logi-
cal forms, but this is intractable). Next, we heuris-



Semantic Parsing via Ontology Matching 

 

 
 
 
 
 
 
 
The main challenge in semantic parsing is the mismatch between language and the 
knowledge base. (a) Traditional: map utterances directly to logical forms, (b) Kwiatkowski 
et al. (2013): map utterance to intermediate, underspecified logical form, then perform 
ontology matching to handle the mismatch, (c) Berant and Liang (2014): generate 
intermediate, canonical text utterances for logical forms, then use paraphrase models. 

[Kwiatkowski et al., 2013; Berant and Liang, 2014] 

utterance

underspecified

logical

form

canonical

utterance

logical

form

ontology

matching

paraphrase

direct

(traditional)

(Kwiatkowski et al. 2013)

(this work)

Figure 2: The main challenge in semantic parsing is cop-
ing with the mismatch between language and the KB. (a)
Traditionally, semantic parsing maps utterances directly to
logical forms. (b) Kwiatkowski et al. (2013) map the utter-
ance to an underspecified logical form, and perform ontology
matching to handle the mismatch. (c) We approach the prob-
lem in the other direction, generating canonical utterances for
logical forms, and use paraphrase models to handle the mis-
match.

tically generate canonical utterances for each log-
ical form based on the text descriptions of predi-
cates from the KB. Finally, we choose the canoni-
cal utterance that best paraphrases the input utter-
ance, and thereby the logical form that generated
it. We use two complementary paraphrase mod-
els: an association model based on aligned phrase
pairs extracted from a monolingual parallel cor-
pus, and a vector space model, which represents
each utterance as a vector and learns a similarity
score between them. The entire system is trained
jointly from question-answer pairs only.

Our work relates to recent lines of research
in semantic parsing and question answering.
Kwiatkowski et al. (2013) first maps utterances to
a domain-independent intermediate logical form,
and then performs ontology matching to produce
the final logical form. In some sense, we ap-
proach the problem from the opposite end, using
an intermediate utterance, which allows us to em-
ploy paraphrasing methods (Figure 2). Fader et
al. (2013) presented a QA system that maps ques-
tions onto simple queries against Open IE extrac-
tions, by learning paraphrases from a large mono-
lingual parallel corpus, and performing a single
paraphrasing step. We adopt the idea of using
paraphrasing for QA, but suggest a more general
paraphrase model and work against a formal KB
(Freebase).

We apply our semantic parser on two datasets:
WEBQUESTIONS (Berant et al., 2013), which
contains 5,810 question-answer pairs with
common questions asked by web users; and

FREE917 (Cai and Yates, 2013), which has
917 questions manually authored by annota-
tors. On WEBQUESTIONS, we obtain a relative
improvement of 12% in accuracy over the
state-of-the-art, and on FREE917 we match the
current best performing system. The source
code of our system PARASEMPRE is released
at http://www-nlp.stanford.edu/
software/sempre/.

2 Setup

Our task is as follows: Given (i) a knowledge
base K, and (ii) a training set of question-answer
pairs {(x

i

, y

i

)}n
i=1, output a semantic parser that

maps new questions x to answers y via latent log-
ical forms z. Let E denote a set of entities (e.g.,
BillGates), and let P denote a set of properties
(e.g., PlaceOfBirth). A knowledge base K is a
set of assertions (e1, p, e2) 2 E ⇥ P ⇥ E (e.g.,
(BillGates, PlaceOfBirth, Seattle)). We use
the Freebase KB (Google, 2013), which has 41M
entities, 19K properties, and 596M assertions.

To query the KB, we use a logical language
called simple �-DCS. In simple �-DCS, an
entity (e.g., Seattle) is a unary predicate
(i.e., a subset of E) denoting a singleton set
containing that entity. A property (which is a
binary predicate) can be joined with a unary
predicate; e.g., Founded.Microsoft denotes
the entities that are Microsoft founders. In
PlaceOfBirth.Seattle u Founded.Microsoft,
an intersection operator allows us to denote
the set of Seattle-born Microsoft founders.
A reverse operator reverses the order of ar-
guments: R[PlaceOfBirth].BillGates

denotes Bill Gates’s birthplace (in con-
trast to PlaceOfBirth.Seattle). Lastly,
count(Founded.Microsoft) denotes set cardinal-
ity, in this case, the number of Microsoft founders.
The denotation of a logical form z with respect to
a KB K is given by JzKK. For a formal description
of simple �-DCS, see Liang (2013) and Berant et
al. (2013).

3 Model overview

We now present the general framework for seman-
tic parsing via paraphrasing, including the model
and the learning algorithm. In Sections 4 and 5,
we provide the details of our implementation.

Canonical utterance construction Given an ut-
terance x and the KB, we construct a set of candi-

(Berant and Liang, 2014) 



Other Topics 

!   Machine Translation [Brown et al., 1990, 1993; Vogel et al., 1996; Wu, 1997; Papineni et al., 
2002; Och and Ney, 2002; Och, 2003; Galley et al., 2004; Koehn, 2004; Chiang et al., 2005; Liang et al., 2006a, 
2006b; Marcu et al., 2006; Koehn et al., 2007; Gimpel and Smith, 2008; Mi et al., 2008; Chiang, 2010; Galley and 
Manning, 2010; Bansal et al., 2011; Kalchbrenner and Blunsom, 2013; Vaswani et al., 2013; Auli et al., 2013; 
Devlin et al., 2014; Sutskever et al., 2014, …many more] 
 (Demos: h#p://www.statmt.org/moses/?n=public.demos,	
  h#p://lisa.iro.umontreal.ca/mt-­‐demo,	
   	
   	
  
	
  h#ps://translate.google.com/)	
  

 

!   Sentiment Analysis [Hatzivassiloglou and McKeown, 1997; Das and Chen, 2001; Tong, 2001; 
Turney, 2002; Pang et al., 2002; Nenkova and Passonneau, 2004; Wiebe et al., 2005; Thomas et al., 2006; 
Snyder and Barzilay, 2007; Ding et al., 2008; Pang and Lee, 2008; Bansal et al., 2008; Nakagawa et al., 2010; 
Liu, 2012; Socher et al., 2011, 2013; ...] 
 (Demos: h#p://nlp.stanford.edu:8080/sen<ment/rntnDemo.html,	
  h#p://text-­‐processing.com/demo/sen<ment/) 

 

!   Summarization [Teufel and Moens, 1997; Carbonell and Goldstein, 1998; Knight and Marcu, 
2001; White et al., 2001; Lin, 2003, 2004; Daumé III, 2006; Zajic, et al., 2006; Shen et al., 2007; Yih et al., 2007; 
Schilder and Kondadadi, 2008; Martins and Smith, 2009; Gillick and Favre, 2009; Woodsend and Lapata, 2010; 
Wang and Cardie, 2012; Hong and Nenkova, 2014; …] 
 (Demos: https://semantria.com/demo, http://www.summly.com/) 

!   Taxonomy/Ontology Induction [Widdows, 2003; Snow et al., 2006; Yang and 
Callan, 2009; Kozareva and Hovy, 2010; Poon and Domingos, 2010; Navigli et al., 2011; Lao et al., 2012; 
Fountain and Lapata, 2012; Bansal et al., 2014; …] 

[*Not exhaustive, various other references] 



Many Other Topics … 

!   Language Modeling 
 
!   Word Sense Disambiguation/Induction, NER 

!   Topic Modeling and Text Classification/Categorization 

!   Discourse 
 
! Diachronics (Historical Linguistics, Language 

Reconstruction) 

!   Decipherment and OCR 



Some Next Topics 

!   Metaphors, Idioms 

 

!   Sarcasm, Insult, Irony, Humor 
 
!   Generating realistic stories, poetry, … 

!   Human-like dialog systems (Turing test) 

You:  I am under the weather today.	


Siri:  The weather’s looking good today … 	





Resources: Software and Demos 

!   POS tagging: http://nlp.stanford.edu/software/tagger.shtml, https://code.google.com/p/universal-pos-tags/, 
http://www.ark.cs.cmu.edu/TweetNLP/, … 

!   Parsing: https://code.google.com/p/berkeleyparser/, http://nlp.stanford.edu/software/lex-parser.shtml, 
https://github.com/BLLIP/bllip-parser, http://www.cs.columbia.edu/~mcollins/code.html,  
http://www.ark.cs.cmu.edu/TurboParser/ 

!   Coreference: http://nlp.stanford.edu/software/dcoref.shtml, http://nlp.cs.berkeley.edu/projects/coref.shtml, 
http://www.cs.utah.edu/nlp/reconcile/, http://www.bart-coref.org/, 
http://cogcomp.cs.illinois.edu/page/software_view/Coref 

 

!   Word embeddings: https://code.google.com/p/word2vec, http://metaoptimize.com/projects/wordreprs/, 
http://ml.nec-labs.com/senna/, http://nlp.stanford.edu/projects/glove/, 
http://ttic.uchicago.edu/~mbansal/data/syntacticEmbeddings.zip, 
http://www.socher.org/index.php/Main/
ImprovingWordRepresentationsViaGlobalContextAndMultipleWordPrototypes, 
http://www.wordvectors.org/web-eacl14-vectors/de-projected-en-512.txt.gz 

 

!   Compositional embeddings: http://nlp.stanford.edu/sentiment/, http://nal.co/DCNN, 
http://www.socher.org/index.php/Main/ParsingWithCompositionalVectorGrammars, 
http://www.socher.org/index.php/Main/
DynamicPoolingAndUnfoldingRecursiveAutoencodersForParaphraseDetection 

!   Semantic Paring, Q&A (Compositional Semantics II): http://www-nlp.stanford.edu/software/sempre/, 
https://bitbucket.org/yoavartzi/spf, https://code.google.com/p/jacana/, http://cs.umd.edu/~miyyer/qblearn/, 
http://alchemy.cs.washington.edu/usp/, http://www.ark.cs.cmu.edu/SEMAFOR/,  

!   Most of the demo links are inline with each topic’s slides 



Resources: Courses and Books 

!   Berkeley NLP course: http://www.cs.berkeley.edu/~klein/cs288/fa14/ 

!   CMU NLP course: www.ark.cs.cmu.edu/NLP 
 

!   Stanford NLP course: http://web.stanford.edu/class/cs224n 
 

!   Many others: Brown, Columbia, Cornell, JHU, MIT, Maryland, UPenn, … 
 

!   Books:  
! Jurafsky and Martin, Speech and Language Processing, 2nd edition, 

2009 
!   Manning and Shuetze, Foundations of Statistical Natural Language 

Processing 

!   Many others references (in the material above) … 



References 

Artzi, Yoav, and Luke Zettlemoyer. "Bootstrapping semantic parsers from conversations." Proceedings of the conference on empirical methods 
in natural language processing. Association for Computational Linguistics, 2011. 
 
Artzi, Yoav, and Luke Zettlemoyer. "Weakly Supervised Learning of Semantic Parsers for Mapping Instructions to Actions." TACL 1 (2013): 
49-62. 
 
Auli, Michael, Michel Galley, Chris Quirk, and Geoffrey Zweig. "Joint Language and Translation Modeling with Recurrent Neural Networks." In 
EMNLP, pp. 1044-1054. 2013. 
 
Bansal, Mohit, Claire Cardie, and Lillian Lee. "The Power of Negative Thinking: Exploiting Label Disagreement in the Min-cut Classification 
Framework." InCOLING (Posters), pp. 15-18. 2008. 
 
Bansal, Mohit, and Dan Klein. "Simple, accurate parsing with an all-fragments grammar." Proceedings of the 48th annual meeting of the 
Association for Computational Linguistics. Association for Computational Linguistics, 2010. 
 
Bansal, Mohit, and Dan Klein. "Web-scale features for full-scale parsing."Proceedings of the 49th Annual Meeting of the Association for 
Computational Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011. 
 
Bansal, Mohit, Chris Quirk, and Robert C. Moore. "Gappy phrasal alignment by agreement." In Proceedings of the 49th Annual Meeting of the 
Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 1308-1317. Association for Computational 
Linguistics, 2011. 
 
Bansal, Mohit, and Dan Klein. "Coreference semantics from web features."Proceedings of the 50th Annual Meeting of the Association for 
Computational Linguistics: Long Papers-Volume 1. Association for Computational Linguistics, 2012. 
 
Bansal, Mohit, David Burkett, Gerard de Melo, and Dan Klein. "Structured Learning for Taxonomy Induction with Belief Propagation." ACL, 2014 
 
Bansal, Mohit, Kevin Gimpel, and Karen Livescu. "Tailoring Continuous Word Representations for Dependency Parsing." Proceedings of the 
Annual Meeting of the Association for Computational Linguistics. 2014. 
 
Baroni, Marco, and Alessandro Lenci. "Distributional memory: A general framework for corpus-based semantics." Computational Linguistics 
36.4 (2010): 673-721. 
 



References 

Baroni, Marco, and Roberto Zamparelli. "Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic 
space."Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 
2010. 
 
Baroni, Marco, Georgiana Dinu, and Germán Kruszewski. "Don’t count, predict! A systematic comparison of context-counting vs. context-
predicting semantic vectors." Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. Vol. 1. 2014. 
 
Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. "A Neural Probabilistic Language Model." Journal of Machine 
Learning Research 3 (2003): 1137-1155. 
 
Bengtson, Eric, and Dan Roth. "Understanding the value of features for coreference resolution." Proceedings of the Conference on Empirical 
Methods in Natural Language Processing. Association for Computational Linguistics, 2008. 
 
Berant, Jonathan, Andrew Chou, Roy Frostig, and Percy Liang. "Semantic Parsing on Freebase from Question-Answer Pairs." In EMNLP, pp. 
1533-1544. 2013. 
 
Berant, Jonathan, and Percy Liang. "Semantic parsing via paraphrasing."Proceedings of ACL. 2014. 
 
Berg-Kirkpatrick, Taylor, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. "Painless unsupervised learning with features."Human 
Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. 
Association for Computational Linguistics, 2010. 
 
Bergsma, Shane, and Dekang Lin. "Bootstrapping path-based pronoun resolution." Proceedings of the 21st International Conference on 
Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics. Association for Computational 
Linguistics, 2006. 
 
Blacoe, William, and Mirella Lapata. "A comparison of vector-based representations for semantic composition." Proceedings of the 2012 Joint 
Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Association for 
Computational Linguistics, 2012. 
 
Bod, Rens. "Using an annotated corpus as a stochastic grammar." Proceedings of the sixth conference on European chapter of the Association 
for Computational Linguistics. Association for Computational Linguistics, 1993. 
 



References 

Brants, Thorsten. "TnT: a statistical part-of-speech tagger." Proceedings of the sixth conference on Applied natural language processing. 
Association for Computational Linguistics, 2000. 
 
Brill, Eric. "Transformation-based error-driven learning and natural language processing: A case study in part-of-speech tagging." 
Computational linguistics21.4 (1995): 543-565. 
 
Brown, Peter F., Peter V. Desouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai. "Class-based n-gram models of natural 
language."Computational linguistics 18.4 (1992): 467-479. 
 
Brown, Peter F., Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. "The mathematics of statistical machine translation: 
Parameter estimation." Computational linguistics 19, no. 2 (1993): 263-311. 
 
Cai, Qingqing, and Alexander Yates. "Large-scale Semantic Parsing via Schema Matching and Lexicon Extension." In ACL (1), pp. 423-433. 
2013. 
 
Charniak, Eugene. "Tree-bank grammars." Proceedings of the National Conference on Artificial Intelligence. 1996. 
 
Charniak, Eugene. "A maximum-entropy-inspired parser." Proceedings of the 1st North American chapter of the Association for Computational 
Linguistics conference. Association for Computational Linguistics, 2000. 
 
Charniak, Eugene, and Mark Johnson. "Coarse-to-fine n-best parsing and MaxEnt discriminative reranking." Proceedings of the 43rd Annual 
Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005. 
 
Chen, Danqi, and Christopher D. Manning. "A fast and accurate dependency parser using neural networks." Proceedings of the 2014 
Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014. 
 
Chiang, David. "Statistical parsing with an automatically-extracted tree adjoining grammar." Proceedings of the 38th Annual Meeting on 
Association for Computational Linguistics. Association for Computational Linguistics, 2000. 
 
Chiang, David. "A hierarchical phrase-based model for statistical machine translation." In Proceedings of the 43rd Annual Meeting on 
Association for Computational Linguistics, pp. 263-270. Association for Computational Linguistics, 2005. 
 
Chiang, David. "Learning to translate with source and target syntax." InProceedings of the 48th Annual Meeting of the Association for 
Computational Linguistics, pp. 1443-1452. Association for Computational Linguistics, 2010. 



References 

Christodoulopoulos, Christos, Sharon Goldwater, and Mark Steedman. "Two Decades of Unsupervised POS induction: How far have we 
come?."Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 
2010. 
 
Clark, Stephen, and James R. Curran. "Parsing the WSJ using CCG and log-linear models." Proceedings of the 42nd Annual Meeting on 
Association for Computational Linguistics. Association for Computational Linguistics, 2004. 
 
Cocke, John. "Programming languages and their compilers." Preliminary notes (Technical report) (2nd revised ed.). CIMS, NYU., 1970. 
 
Collins, Michael. “Head-Driven Statistical Models for Natural Language Parsing”. Diss. University of Pennsylvania, 1999. 
 
Collobert, Ronan, and Jason Weston. "A unified architecture for natural language processing: Deep neural networks with multitask 
learning."Proceedings of the 25th international conference on Machine learning. ACM, 2008. 
 
Collobert, Ronan, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. "Natural language processing (almost) 
from scratch."The Journal of Machine Learning Research 12 (2011): 2493-2537. 
 
Das, Dipanjan, and Noah A. Smith. "Paraphrase identification as probabilistic quasi-synchronous recognition." Proceedings of the Joint 
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: 
Volume 1-Volume 1. Association for Computational Linguistics, 2009. 
 
Das, Dipanjan, and Slav Petrov. "Unsupervised part-of-speech tagging with bilingual graph-based projections." Proceedings of the 49th Annual 
Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 
2011. 
 
Das, Sanjiv, and Mike Chen. "Yahoo! for Amazon: Extracting market sentiment from stock message boards." In Proceedings of the Asia Pacific 
finance association annual conference (APFA), vol. 35, p. 43. 2001. 
 
Daumé III, Hal, and Daniel Marcu. "A large-scale exploration of effective global features for a joint entity detection and tracking model." 
Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing. Association for 
Computational Linguistics, 2005. 
 
Denis, Pascal, and Jason Baldridge. "Specialized models and ranking for coreference resolution." Proceedings of the Conference on Empirical 
Methods in Natural Language Processing. Association for Computational Linguistics, 2008. 



References 

Devlin, Jacob, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John Makhoul. "Fast and robust neural network joint 
models for statistical machine translation." In 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, MD, USA, June. 
2014. 
 
Dhillon, Paramveer, Dean P. Foster, and Lyle H. Ungar. "Multi-view learning of word embeddings via cca." Advances in Neural Information 
Processing Systems. 2011. 
 
Dhillon, Paramveer, Jordan Rodu, Dean Foster, and Lyle Ungar. "Two Step CCA: A new spectral method for estimating vector models of 
words." Proceedings of the 29th International Conference on Machine Learning (ICML-12). 2012. 
 
Ding, Xiaowen, Bing Liu, and Philip S. Yu. "A holistic lexicon-based approach to opinion mining." In Proceedings of the 2008 International 
Conference on Web Search and Data Mining, pp. 231-240. ACM, 2008. 
 
Donahue, Jeff, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. 
"Long-term recurrent convolutional networks for visual recognition and description." arXiv preprint arXiv:1411.4389 (2014). 
 
Durrett, Greg, David Leo Wright Hall, and Dan Klein. "Decentralized Entity-Level Modeling for Coreference Resolution." ACL (1). 2013. 
 
Durrett, Greg, and Dan Klein. "Easy Victories and Uphill Battles in Coreference Resolution." EMNLP. 2013. 
 
Durrett, Greg, and Dan Klein. "A Joint Model for Entity Analysis: Coreference, Typing, and Linking." Transactions of the Association for 
Computational Linguistics 2 (2014): 477-490. 
 
Eisner, Jason M. "Three new probabilistic models for dependency parsing: An exploration." Proceedings of the 16th conference on 
Computational linguistics-Volume 1. Association for Computational Linguistics, 1996. 
 
Fang, Hao, Saurabh Gupta, Forrest Iandola, Rupesh Srivastava, Li Deng, Piotr Dollár, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C. 
Platt, Lawrence Zitnick, and Geoffrey Zweig. "From captions to visual concepts and back." arXiv preprint arXiv:1411.4952 (2014). 
 
Faruqui, Manaal, and Chris Dyer. "Improving vector space word representations using multilingual correlation." Proc. of EACL. Association for 
Computational Linguistics (2014). 
 
Faruqui, Manaal, Jesse Dodge, Sujay K. Jauhar, Chris Dyer, Eduard Hovy, and Noah A. Smith. "Retrofitting Word Vectors to Semantic 
Lexicons." arXiv preprint arXiv:1411.4166 (2014). 



References 

Ferrucci, David, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek, Aditya A. Kalyanpur, Adam Lally, J. William Murdock, Eric 
Nyberg, John Prager, Nico Schlaefer, and Chris Welty. "Building Watson: An overview of the DeepQA project." AI magazine 31.3 (2010): 59-79. 
 
Firth, John R. "A Synopsis of Linguistic Theory 1930–55 (Special Volume of the Philological Society)." (1957). 
 
Fossum, Victoria, and Kevin Knight. "Combining constituent parsers."Proceedings of Human Language Technologies: The 2009 Annual 
Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers. Association for 
Computational Linguistics, 2009. 
 
Fountain, Trevor, and Mirella Lapata. "Taxonomy induction using hierarchical random graphs." In Proceedings of the 2012 Conference of the 
North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 466-476. Association for 
Computational Linguistics, 2012. 
 
Galley, Michel, Mark Hopkins, Kevin Knight, and Daniel Marcu. What's in a translation rule. NAACL, 2004. 
 
Galley, Michel, and Christopher D. Manning. "Accurate non-hierarchical phrase-based translation." In Human Language Technologies: The 
2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 966-974. Association for 
Computational Linguistics, 2010. 
 
Gillick, Dan, and Benoit Favre. "A scalable global model for summarization." InProceedings of the Workshop on Integer Linear Programming for 
Natural Langauge Processing, pp. 10-18. Association for Computational Linguistics, 2009. 
 
Gimpel, Kevin, and Noah A. Smith. "Rich source-side context for statistical machine translation." In Proceedings of the Third Workshop on 
Statistical Machine Translation, pp. 9-17. Association for Computational Linguistics, 2008. 
 
Goodman, Joshua. "Efficient algorithms for parsing the DOP model." arXiv preprint cmp-lg/9604008 (1996). 
 
Grefenstette, Edward, and Mehrnoosh Sadrzadeh. "Experimental support for a categorical compositional distributional model of meaning." 
Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2011. 
 
Grefenstette, E., G. Dinu, Y. Zhang, M. Sadrzadeh, and M. Baroni. "Multi-Step Regression Learning for Compositional Distributional 
Semantics." Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013). 2013. 
 



References 

Haghighi, Aria, and Dan Klein. "Simple coreference resolution with rich syntactic and semantic features." Proceedings of the 2009 Conference 
on Empirical Methods in Natural Language Processing: Volume 3-Volume 3. Association for Computational Linguistics, 2009. 
 
Hashimoto, Kazuma, Pontus Stenetorp, Makoto Miwa, and Yoshimasa Tsuruoka. "Jointly learning word representations and composition 
functions using predicate-argument structures." Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing 
(EMNLP). 2014. 
 
Hatzivassiloglou, Vasileios, and Kathleen R. McKeown. "Predicting the semantic orientation of adjectives." In Proceedings of the 35th Annual 
Meeting of the Association for Computational Linguistics and Eighth Conference of the European Chapter of the Association for Computational 
Linguistics, pp. 174-181. Association for Computational Linguistics, 1997. 
 
Harris, Zellig S. "Distributional structure." Word (1954). 
 
Hermann, Karl Moritz, and Phil Blunsom. "The Role of Syntax in Vector Space Models of Compositional Semantics." ACL (1). 2013. 
 
Hong, Kai, and Ani Nenkova. "Improving the estimation of word importance for news multi-document summarization." In Proceedings of EACL. 
2014. 
 
Huang, Eric H., Richard Socher, Christopher D. Manning, and Andrew Y. Ng. "Improving word representations via global context and multiple 
word prototypes." Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1. Association 
for Computational Linguistics, 2012. 
 
Huang, Liang, and David Chiang. "Better k-best parsing." Proceedings of the Ninth International Workshop on Parsing Technology. Association 
for Computational Linguistics, 2005. 
 
Hwa, Rebecca. "An empirical evaluation of probabilistic lexicalized tree insertion grammars." Proceedings of the 17th international conference 
on Computational linguistics-Volume 1. Association for Computational Linguistics, 1998. 
 
Hwa, Rebecca, Philip Resnik, Amy Weinberg, Clara Cabezas, and Okan Kolak. "Bootstrapping parsers via syntactic projection across parallel 
texts." Natural language engineering 11.03 (2005): 311-325. 
 
Iyyer, Mohit, Jordan Boyd-Graber, Leonardo Claudino, Richard Socher, and Hal Daumé III. "A neural network for factoid question answering 
over paragraphs." In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 633-644. 2014. 



References 

Johnson, Mark. "PCFG models of linguistic tree representations."Computational Linguistics 24.4 (1998): 613-632. 
 
Kalchbrenner, Nal, and Phil Blunsom. "Recurrent Continuous Translation Models." In EMNLP, pp. 1700-1709. 2013. 
 
Karpathy, Andrej, and Li Fei-Fei. "Deep visual-semantic alignments for generating image descriptions." arXiv preprint arXiv:1412.2306 (2014). 
 
Kasami, T. “An efficient recognition and syntax algorithm for context-free languages”. Scientific Report AFCRL-65-758, Air Force Cambridge 
Research Laboratory, Bedford MA, 1965. 
 
Klein, Dan, and Christopher D. Manning. "Accurate unlexicalized parsing."Proceedings of the 41st Annual Meeting on Association for 
Computational Linguistics-Volume 1. Association for Computational Linguistics, 2003. 
 
Kiros, Ryan, Ruslan Salakhutdinov, and Richard S. Zemel. "Unifying visual-semantic embeddings with multimodal neural language models." 
arXiv preprint arXiv:1411.2539 (2014). 
 
Knight, Kevin, and Daniel Marcu. "Summarization beyond sentence extraction: A probabilistic approach to sentence compression." Artificial 
Intelligence 139, no. 1 (2002): 91-107. 
 
Kobdani, Hamidreza, Hinrich Schütze, Michael Schiehlen, and Hans Kamp. "Bootstrapping coreference resolution using word associations." 
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. 
Association for Computational Linguistics, 2011. 
 
Koehn, Philipp. "Pharaoh: a beam search decoder for phrase-based statistical machine translation models." In Machine translation: From real 
users to research, pp. 115-124. Springer Berlin Heidelberg, 2004. 
 
Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine 
Moran, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. "Moses: Open source toolkit for statistical machine 
translation." In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pp. 177-180. Association 
for Computational Linguistics, 2007. 
 
Kong, Chen, Dahua Lin, Mohit Bansal, Raquel Urtasun, and Sanja Fidler. "What are you talking about? text-to-image coreference."Computer 
Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014. 
 
Koo, Terry, Xavier Carreras, and Michael Collins. "Simple semi-supervised dependency parsing." (2008). 



References 

Kozareva, Zornitsa, and Eduard Hovy. "A semi-supervised method to learn and construct taxonomies using the web." In Proceedings of the 
2010 Conference on Empirical Methods in Natural Language Processing, pp. 1110-1118. Association for Computational Linguistics, 2010. 
 
Kwiatkowski, Tom, Eunsol Choi, Yoav Artzi, and Luke Zettlemoyer. "Scaling semantic parsers with on-the-fly ontology matching." In 
Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2013. 
 
Lao, Ni, Amarnag Subramanya, Fernando Pereira, and William W. Cohen. "Reading the web with learned syntactic-semantic inference rules." 
InProceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language 
Learning, pp. 1017-1026. Association for Computational Linguistics, 2012. 
 
Lee, Heeyoung, Angel Chang, Yves Peirsman, Nathanael Chambers, Mihai Surdeanu, and Dan Jurafsky. "Deterministic coreference resolution 
based on entity-centric, precision-ranked rules." Computational Linguistics 39.4 (2013): 885-916. 
 
Levy, Omer, and Yoav Goldberg. "Dependency-Based Word Embeddings."Proceedings of the 52nd Annual Meeting of the Association for 
Computational Linguistics. Vol. 2. 2014. 
 
Liang, Percy, Alexandre Bouchard-Côté, Dan Klein, and Ben Taskar. "An end-to-end discriminative approach to machine translation." In 
Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for 
Computational Linguistics, pp. 761-768. Association for Computational Linguistics, 2006. 
 
Liang, Percy, Ben Taskar, and Dan Klein. "Alignment by agreement." InProceedings of the main conference on Human Language Technology 
Conference of the North American Chapter of the Association of Computational Linguistics, pp. 104-111. Association for Computational 
Linguistics, 2006. 
 
Lin, Chin-Yew. "Improving summarization performance by sentence compression: a pilot study." In Proceedings of the sixth international 
workshop on Information retrieval with Asian languages-Volume 11, pp. 1-8. Association for Computational Linguistics, 2003. 
 
Lin, Chin-Yew. "Rouge: A package for automatic evaluation of summaries." InText Summarization Branches Out: Proceedings of the ACL-04 
Workshop, pp. 74-81. 2004. 
 
Lin, Dekang. "An information-theoretic definition of similarity." ICML. Vol. 98. 1998. 
 
Lin, Dekang, and Patrick Pantel. "Induction of semantic classes from natural language text." Proceedings of the seventh ACM SIGKDD 
international conference on Knowledge discovery and data mining. ACM, 2001. 



References 

Liu, Bing. "Sentiment analysis and opinion mining." Synthesis Lectures on Human Language Technologies 5, no. 1 (2012): 1-167. 
 
Madhyastha, Pranava S., Xavier Carreras Pérez, and Ariadna Quattoni. "Learning task-specific bilexical embeddings." COLING, 2014. 
 
Markert, Katja, and Malvina Nissim. "Comparing knowledge sources for nominal anaphora resolution." Computational Linguistics 31.3 (2005): 
367-402. 
 
Marcu, Daniel, Wei Wang, Abdessamad Echihabi, and Kevin Knight. "SPMT: Statistical machine translation with syntactified target language 
phrases." InProceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp. 44-52. Association for 
Computational Linguistics, 2006. 
 
Martins, André FT, and Noah A. Smith. "Summarization with a joint model for sentence extraction and compression." Proceedings of the 
Workshop on Integer Linear Programming for Natural Langauge Processing. Association for Computational Linguistics, 2009. 
 
Matsuzaki, Takuya, Yusuke Miyao, and Jun'ichi Tsujii. "Probabilistic CFG with latent annotations." Proceedings of the 43rd Annual Meeting on 
Association for Computational Linguistics. Association for Computational Linguistics, 2005. 
 
McClosky, David, Eugene Charniak, and Mark Johnson. "Effective self-training for parsing." Proceedings of the main conference on human 
language technology conference of the North American Chapter of the Association of Computational Linguistics. Association for Computational 
Linguistics, 2006. 
 
McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajič. "Non-projective dependency parsing using spanning tree algorithms." 
Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing. Association for 
Computational Linguistics, 2005. 
 
McDonald, Ryan, Slav Petrov, and Keith Hall. "Multi-source transfer of delexicalized dependency parsers." Proceedings of the Conference on 
Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2011. 
 
Mi, Haitao, Liang Huang, and Qun Liu. "Forest-Based Translation." In ACL, pp. 192-199. 2008. 
 
Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. "Distributed representations of words and phrases and their 
compositionality." Advances in Neural Information Processing Systems. 2013. 
 
Mitchell, Jeff, and Mirella Lapata. "Composition in distributional models of semantics." Cognitive science 34.8 (2010): 1388-1429. 



References 

Mnih, Andriy, and Geoffrey Hinton. "Three new graphical models for statistical language modelling." Proceedings of the 24th international 
conference on Machine learning. ACM, 2007. 
 
Nakagawa, Tetsuji, Kentaro Inui, and Sadao Kurohashi. "Dependency tree-based sentiment classification using CRFs with hidden variables." In 
Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 
pp. 786-794. Association for Computational Linguistics, 2010. 
 
Nakov, Preslav, and Marti Hearst. "Using the web as an implicit training set: application to structural ambiguity resolution." Proceedings of the 
conference on Human Language Technology and Empirical Methods in Natural Language Processing. Association for Computational 
Linguistics, 2005. 
 
Navigli, Roberto, Paola Velardi, and Stefano Faralli. "A graph-based algorithm for inducing lexical taxonomies from scratch." In IJCAI, pp. 
1872-1877. 2011. 
 
Ng, Vincent, and Claire Cardie. "Improving machine learning approaches to coreference resolution." Proceedings of the 40th Annual Meeting 
on Association for Computational Linguistics. Association for Computational Linguistics, 2002. 
 
Nivre, Joakim. "An efficient algorithm for projective dependency parsing."Proceedings of the 8th International Workshop on Parsing 
Technologies (IWPT. 2003. 
 
Nivre, Joakim, and Mario Scholz. "Deterministic dependency parsing of English text." Proceedings of the 20th international conference on 
Computational Linguistics. Association for Computational Linguistics, 2004. 
 
Och, Franz Josef, and Hermann Ney. "Discriminative training and maximum entropy models for statistical machine translation." In Proceedings 
of the 40th Annual Meeting on Association for Computational Linguistics, pp. 295-302. Association for Computational Linguistics, 2002. 
 
Och, Franz Josef. "Minimum error rate training in statistical machine translation." In Proceedings of the 41st Annual Meeting on Association for 
Computational Linguistics-Volume 1, pp. 160-167. Association for Computational Linguistics, 2003. 
 
Padó, Sebastian, and Mirella Lapata. "Dependency-based construction of semantic space models." Computational Linguistics 33.2 (2007): 
161-199. 



References 

Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan. "Thumbs up?: sentiment classification using machine learning techniques." In 
Proceedings of the ACL-02 conference on Empirical methods in natural language processing-Volume 10, pp. 79-86. Association for 
Computational Linguistics, 2002. 
 
Pang, Bo, and Lillian Lee. "Opinion mining and sentiment analysis."Foundations and trends in information retrieval 2, no. 1-2 (2008): 1-135. 
 
Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. "BLEU: a method for automatic evaluation of machine translation." In 
Proceedings of the 40th annual meeting on association for computational linguistics, pp. 311-318. Association for Computational Linguistics, 
2002. 
 
Pauls, Adam, and Dan Klein. "k-best A* parsing." Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th 
International Joint Conference on Natural Language Processing of the AFNLP: Volume 2-Volume 2. Association for Computational Linguistics, 
2009. 
 
Pereira, Fernando, Naftali Tishby, and Lillian Lee. "Distributional clustering of English words." Proceedings of the 31st annual meeting on 
Association for Computational Linguistics. Association for Computational Linguistics, 1993. 
 
Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan Klein. "Learning accurate, compact, and interpretable tree annotation." Proceedings of 
the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics. 
Association for Computational Linguistics, 2006. 
 
Petrov, Slav, Dipanjan Das, and Ryan McDonald. "A universal part-of-speech tagset." LREC 2012. 
 
Pitler, Emily, Shane Bergsma, Dekang Lin, and Kenneth Church. "Using web-scale N-grams to improve base NP parsing performance." 
Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics, 2010. 
 
Ponzetto, Simone Paolo, and Michael Strube. "Exploiting semantic role labeling, WordNet and Wikipedia for coreference resolution." 
Proceedings of the main conference on Human Language Technology Conference of the North American Chapter of the Association of 
Computational Linguistics. Association for Computational Linguistics, 2006. 
 
Poon, Hoifung, and Pedro Domingos. "Unsupervised semantic parsing.” Proceedings of the 2009 Conference on Empirical Methods in Natural 
Language Processing: Volume 1-Volume 1. Association for Computational Linguistics, 2009. 



References 

Poon, Hoifung, and Pedro Domingos. "Unsupervised ontology induction from text." In Proceedings of the 48th annual meeting of the 
Association for Computational Linguistics, pp. 296-305. Association for Computational Linguistics, 2010. 
 
Poon, Hoifung. "Grounded Unsupervised Semantic Parsing." ACL (1). 2013. 
 
Rahman, Altaf, and Vincent Ng. "Coreference resolution with world knowledge."Proceedings of the 49th Annual Meeting of the Association for 
Computational Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011. 
 
Ramanathan, Vignesh, Armand Joulin, Percy Liang, and Li Fei-Fei. "Linking people in videos with “their” names using coreference resolution." 
Computer Vision–ECCV 2014. Springer International Publishing, 2014. 95-110. 
 
Ratnaparkhi, Adwait. "A maximum entropy model for part-of-speech tagging."Proceedings of the conference on empirical methods in natural 
language processing. Vol. 1. 1996. 
 
Resnik, Philip. "Probabilistic tree-adjoining grammar as a framework for statistical natural language processing." Proceedings of the 14th 
conference on Computational linguistics-Volume 2. Association for Computational Linguistics, 1992. 
 
Sagae, Kenji, and Alon Lavie. "A best-first probabilistic shift-reduce parser."Proceedings of the COLING/ACL on Main conference poster 
sessions. Association for Computational Linguistics, 2006. 
 
Sahlgren, Magnus. "The Word-Space Model: Using distributional analysis to represent syntagmatic and paradigmatic relations between words 
in high-dimensional vector spaces." (2006). 
 
Sarkar, Anoop. "Applying co-training methods to statistical parsing."Proceedings of the second meeting of the North American Chapter of the 
Association for Computational Linguistics on Language technologies. Association for Computational Linguistics, 2001. 
 
Schabes, Yves, and Richard C. Waters. "Tree insertion grammar: cubic-time, parsable formalism that lexicalizes context-free grammar without 
changing the trees produced." Computational Linguistics 21.4 (1995): 479-513. 
 
Schilder, Frank, and Ravikumar Kondadadi. "FastSum: fast and accurate query-based multi-document summarization." In Proceedings of the 
46th Annual Meeting of the Association for Computational Linguistics on Human Language Technologies: Short Papers, pp. 205-208. 
Association for Computational Linguistics, 2008. 
 



References 

Shen, Dou, Jian-Tao Sun, Hua Li, Qiang Yang, and Zheng Chen. "Document Summarization Using Conditional Random Fields." In IJCAI, vol. 
7, pp. 2862-2867. 2007. 
 
Snow, Rion, Daniel Jurafsky, and Andrew Y. Ng. "Semantic taxonomy induction from heterogenous evidence." In Proceedings of the 21st 
International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics, pp. 
801-808. Association for Computational Linguistics, 2006. 
 
Snyder, Benjamin, and Regina Barzilay. "Multiple Aspect Ranking Using the Good Grief Algorithm." In HLT-NAACL, pp. 300-307. 2007. 
 
Socher, Richard, Eric H. Huang, Jeffrey Pennin, Christopher D. Manning, and Andrew Y. Ng. "Dynamic pooling and unfolding recursive 
autoencoders for paraphrase detection." Advances in Neural Information Processing Systems. 2011. 
 
Socher, Richard, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christopher D. Manning. "Semi-supervised recursive autoencoders for 
predicting sentiment distributions." Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for 
Computational Linguistics, 2011. 
 
Socher, Richard, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. "Semantic compositionality through recursive matrix-vector spaces." 
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language 
Learning. Association for Computational Linguistics, 2012. 
 
Socher, Richard, John Bauer, Christopher D. Manning, and Andrew Y. Ng. "Parsing with compositional vector grammars." In Proceedings of the 
ACL conference. 2013. 
 
Socher, Richard, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts. "Recursive deep 
models for semantic compositionality over a sentiment treebank." Proceedings of the Conference on Empirical Methods in Natural Language 
Processing (EMNLP). 2013. 
 
Socher, Richard, Q. Le, C. Manning, and A. Ng. "Grounded Compositional Semantics for Finding and Describing Images with Sentences." 
Transactions of the Association for Computational Linguistics, 2014. 
 
Soon, Wee Meng, Hwee Tou Ng, and Daniel Chung Yong Lim. "A machine learning approach to coreference resolution of noun phrases." 
Computational linguistics 27.4 (2001): 521-544. 
 
Steedman, Mark. "Surface structure and interpretation." (1996). 



References 

Steedman, Mark. The syntactic process. Vol. 35. Cambridge: MIT press, 2000. 
 
Steedman, Mark, Miles Osborne, Anoop Sarkar, Stephen Clark, Rebecca Hwa, Julia Hockenmaier, Paul Ruhlen, Steven Baker, and Jeremiah 
Crim. "Bootstrapping statistical parsers from small datasets."Proceedings of the tenth conference on European chapter of the Association for 
Computational Linguistics-Volume 1. Association for Computational Linguistics, 2003. 
 
Stoyanov, Veselin, Claire Cardie, Nathan Gilbert, Ellen Riloff, David Buttler, and David Hysom. "Coreference resolution with reconcile." 
Proceedings of the ACL 2010 Conference Short Papers. Association for Computational Linguistics, 2010. 
 
Sutskever, Ilya, Oriol Vinyals, and Quoc VV Le. "Sequence to sequence learning with neural networks." Advances in Neural Information 
Processing Systems. 2014. 
 
Teufel, Simone, and Marc Moens. "Summarizing scientific articles: experiments with relevance and rhetorical status." Computational linguistics 
28, no. 4 (2002): 409-445. 
 
Thomas, Matt, Bo Pang, and Lillian Lee. "Get out the vote: Determining support or opposition from Congressional floor-debate transcripts." In 
Proceedings of the 2006 conference on empirical methods in natural language processing, pp. 327-335. Association for Computational 
Linguistics, 2006. 
 
Tong, Richard M. "An operational system for detecting and tracking opinions in on-line discussion." In Working Notes of the ACM SIGIR 2001 
Workshop on Operational Text Classification, vol. 1, p. 6. 2001. 
 
Toutanova, Kristina, Dan Klein, Christopher D. Manning, and Yoram Singer. "Feature-rich part-of-speech tagging with a cyclic dependency 
network." Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human 
Language Technology-Volume 1. Association for Computational Linguistics, 2003. 
 
Toutanova, Kristina, and Christopher D. Manning. "Enriching the knowledge sources used in a maximum entropy part-of-speech tagger." 
Proceedings of the 2000 Joint SIGDAT conference on Empirical methods in natural language processing and very large corpora: held in 
conjunction with the 38th Annual Meeting of the Association for Computational Linguistics-Volume 13. Association for Computational 
Linguistics, 2000. 
 
Turian, Joseph, Lev Ratinov, and Yoshua Bengio. "Word representations: a simple and general method for semi-supervised learning." 
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2010. 



References 

Turney, Peter D. "Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews." In Proceedings of the 
40th annual meeting on association for computational linguistics, pp. 417-424. Association for Computational Linguistics, 2002. 
 
Turney, Peter D., and Patrick Pantel. "From frequency to meaning: Vector space models of semantics." Journal of artificial intelligence research 
37.1 (2010): 141-188. 
 
Vaswani, Ashish, Yinggong Zhao, Victoria Fossum, and David Chiang. "Decoding with Large-Scale Neural Language Models Improves 
Translation." InEMNLP, pp. 1387-1392. 2013. 
 
Venugopalan, Subhashini, Huijuan Xu, Jeff Donahue, Marcus Rohrbach, Raymond Mooney, and Kate Saenko. "Translating Videos to Natural 
Language Using Deep Recurrent Neural Networks." arXiv preprint arXiv:1412.4729 (2014). 
 
Vinyals, Oriol, Alexander Toshev, Samy Bengio, and Dumitru Erhan. "Show and tell: A neural image caption generator." arXiv preprint arXiv:
1411.4555 (2014). 
 
Vinyals, Oriol, Lukasz Kaiser, Terry Koo, Slav Petrov, Ilya Sutskever, and Geoffrey Hinton. "Grammar as a Foreign Language." arXiv preprint 
arXiv:1412.7449 (2014). 
 
Vogel, Stephan, Hermann Ney, and Christoph Tillmann. "HMM-based word alignment in statistical translation." In Proceedings of the 16th 
conference on Computational linguistics-Volume 2, pp. 836-841. Association for Computational Linguistics, 1996. 
 
Wang, Lu, and Claire Cardie. "Focused meeting summarization via unsupervised relation extraction." In Proceedings of the 13th Annual 
Meeting of the Special Interest Group on Discourse and Dialogue, pp. 304-313. Association for Computational Linguistics, 2012. 
 
White, Michael, Tanya Korelsky, Claire Cardie, Vincent Ng, David Pierce, and Kiri Wagstaff. "Multidocument summarization via information 
extraction." InProceedings of the first international conference on Human language technology research, pp. 1-7. Association for Computational 
Linguistics, 2001. 
 
Widdows, Dominic. "Unsupervised methods for developing taxonomies by combining syntactic and statistical information." In Proceedings of 
the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology-Volume 
1, pp. 197-204. Association for Computational Linguistics, 2003. 
 
Wiebe, Janyce, Theresa Wilson, and Claire Cardie. "Annotating expressions of opinions and emotions in language." Language resources and 
evaluation 39, no. 2-3 (2005): 165-210. 



References 

Woodsend, Kristian, and Mirella Lapata. "Automatic generation of story highlights." In Proceedings of the 48th Annual Meeting of the 
Association for Computational Linguistics, pp. 565-574. Association for Computational Linguistics, 2010. 
 
Wong, Yuk Wah, and Raymond J. Mooney. "Learning synchronous grammars for semantic parsing with lambda calculus." Annual Meeting-
Association for computational Linguistics. Vol. 45. No. 1. 2007. 
 
Wu, Dekai. "Stochastic inversion transduction grammars and bilingual parsing of parallel corpora." Computational linguistics 23, no. 3 (1997): 
377-403. 
 
Xi, Chenhai, and Rebecca Hwa. "A backoff model for bootstrapping resources for non-English languages." Proceedings of the conference on 
Human Language Technology and Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2005. 
 
Xu, Chang, Yalong Bai, Jiang Bian, Bin Gao, Gang Wang, Xiaoguang Liu, and Tie-Yan Liu. "RC-NET: A General Framework for Incorporating 
Knowledge into Word Representations." Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge 
Management. ACM, 2014. 
 
Yamada, Hiroyasu, and Yuji Matsumoto. "Statistical dependency analysis with support vector machines." Proceedings of IWPT. Vol. 3. 2003. 
 
Yang, Hui, and Jamie Callan. "A metric-based framework for automatic taxonomy induction." In Proceedings of the Joint Conference of the 47th 
Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP: Volume 1-Volume 1, pp. 
271-279. Association for Computational Linguistics, 2009. 
 
Yao, Xuchen, and Benjamin Van Durme. "Information extraction over structured data: Question answering with freebase." In Proceedings of 
ACL. 2014. 
 
Yarowsky, David, Grace Ngai, and Richard Wicentowski. "Inducing multilingual text analysis tools via robust projection across aligned corpora." 
Proceedings of the first international conference on Human language technology research. Association for Computational Linguistics, 2001. 
 
Yessenalina, Ainur, and Claire Cardie. "Compositional matrix-space models for sentiment analysis." Proceedings of the Conference on 
Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2011. 
 
Yih, Wen-tau, Joshua Goodman, Lucy Vanderwende, and Hisami Suzuki. "Multi-Document Summarization by Maximizing Informative Content-
Words." InIJCAI, vol. 2007, p. 20th. 2007. 



References 

Younger, Daniel H. "Recognition and parsing of context-free languages in time n^3." Information and control 10.2 (1967): 189-208. 
 
Yu, Mo and Dredze, Mark. “Improving lexical embeddings with semantic knowledge.” Proceedings of the 52nd Annual Meeting of the 
Association for Computational Linguistics, 2014. 
 
Zajic, David M., Bonnie Dorr, Jimmy Lin, and Richard Schwartz. "Sentence compression as a component of a multi-document summarization 
system." InProceedings of the 2006 Document Understanding Workshop, New York. 2006. 
 
Zanzotto, Fabio Massimo, Ioannis Korkontzelos, Francesca Fallucchi, and Suresh Manandhar. "Estimating linear models for compositional 
distributional semantics." Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational 
Linguistics, 2010. 
 
Zettlemoyer, Luke S., and Michael Collins. "Online learning of relaxed CCG grammars for parsing to logical form." In Proceedings of the 2007 
Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL-2007. 
2007. 
 



Thank you! 

http://ttic.uchicago.edu/~mbansal/ 


