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Abstract

The detection and classification of domestic
abuse stories shared online has ever-increasing
importance in today’s social activism sphere.
With massive numbers of stories shared, au-
tomatic detection can aggregate stories from
around the internet and help push forward
the fight against domestic abuse from a social
campaign to social change. We develop CNN,
LSTM-RNN, and CNN-LSTM neural models
to detect domestic abuse stories in the Reddit
Domestic Abuse dataset. We achieved 95.8%
accuracy in classifying posts as containing
abuse stories versus not containing abuse sto-
ries, outperforming the current state-of-the-art.
More importantly, we next present sentiment-
only classification feasibility as well as inter-
pretable and explainable analysis of the neural
model’s predictions using activation clustering
techniques to automatically discover linguistic
features.

1 Introduction

Within the past year, the #MeToo' hashtag has
gained popularity on Facebook, Reddit, Twitter
and other social media platforms. This social
campaign centers around sharing personal sto-
ries about sexual harassment, including domes-
tic and workplace abuse. Many other hashtags
have come and gone, including #YesAllWomen,
#WhylStayed, and #ItsNotOkay. However, with
each past instance of social outrage, relatively lit-
tle real-world action was taken towards gender eq-
uity and ending gender-based abuse.”

The power of natural language processing could
serve as one of the missing links between online
activism and real change. Deep learning tech-
niques allow us to aggregate, analyze, and summa-
rize vast amounts of data found on social media,

1https://metoomvmt.org

https://www.cnn.com/2017/10/30/
health/metoo-legacy/index.html

subreddit label entries
abuse-interrupted abuse 1653
domestic-violence abuse 749
survivors-of-abuse abuse 512
casual-conversation | non-abuse 7286
advice | non-abuse 5913
anxiety | non-abuse 4183
anger | non-abuse 837

Table 1: Reddit dataset statistics describing the num-
ber of submissions and label collected per subreddit.

becoming a useful tool for spreading awareness.
The automatic detection, classification, and inter-
pretation of personal abuse stories can help activist
groups educate the public and advocate for social
change in a timely fashion.

In relation to this task, we improve the clas-
sification performance of abuse stories via effec-
tive CNN, LSTM-RNN, and CNN-LSTM models.
Next, we employ activation clustering techniques
to explain the features discovered by our neural
models. This interpretability technique for auto-
matic feature discovery helps explain the specific
language properties that classify certain stories as
abuse stories. Further, we demonstrate the limited
feasibility of abuse story classification when rely-
ing only on sentiment scores.

2 Related Work

Schrading et al. (2015) assembled the Reddit Do-
mestic Abuse dataset, discussed further in Section
3. As one of the first works to address the classifi-
cation of domestic abuse stories, they used multi-
ple traditional classifiers e.g., Linear SVM, logis-
tic regression, Naive Bayes, Random Forest, etc.
Their highest accuracy of 92.0% was achieved us-
ing a Linear SVM (C=1) with N-gram features.

3 Dataset

Reddit is a social media platform that contains a
substantially large range of forums called subred-



RNN INPUT LAYER
CNN WORD VECTOR INPUT

OUTPUT

a
college
student
struggling

with P (Abuse -)
domestic
violence

P (Abuse +)

HIDDEN LAYERS

CONVOLUTION MAX POOLING

Figure 1: Our CNN-LSTM hybrid neural network.

dits in which users post comments pertaining to a
specific topic. These posts are moderated by com-
munity volunteers who enforce standard English,
respectful behavior, and on-topic discussion. Red-
dit also allows for lengthy posts. Therefore, Red-
dit data is ideal for initial ventures into this task.
The Reddit Domestic Abuse dataset (Schrad-
ing et al., 2015) is publicly available,®> and
contains submissions labeled “abuse” from
“abuse-interrupted”, “domestic-violence”, and
“survivors-of-abuse” subreddits. To balance the
negative sentiment of “abuse” stores, submissions
from “anger” and “anxiety” subreddits are
included as “non-abuse”. Submissions from the
“advice” subreddit are included as “non-abuse”
to ensure that classifiers are not just finding
help-seeking behavior. The subreddit “casual-
conversation” is included as “non-abuse” as well.
The dataset contains 1336 total cases of “abuse”
and 17020 total cases of “non-abuse” (Table 1).

4 Models

CNN: For each input, an embedding and a con-
volutional layer is applied, followed by a max-
pooling layer (Collobert et al., 2011). No pre-
trained word embeddings were used. Filter sizes
of [3, 4, 5] with 128 filters per filter size were
used. The convolution features are then passed to
a softmax layer, which outputs probabilities over
two classes.

LSTM-RNN: We also adopted an LSTM-
RNN (Hochreiter and Schmidhuber, 1997) model
with 128 hidden units. The embedding layer was
followed by two LSTM hidden layers. The final
state is fed to a fully-connected layer and then a
softmax layer, which gives the final output proba-
bilities.

CNN-LSTM: We also present a combined CNN-
LSTM architecture with complementary strengths
of CNNs and LSTM-RNNs (similar to the C-

*http://nicschrading.com/data/

Model | Accuracy
Schrading et al. (2015) 92.0%
2D-CNN 92.6%
LSTM-RNN 94.5%
CNN-LSTM 95.8%

Table 2: Accuracy results on abuse story detection.

LSTM by Zhou et al. (2015)). Our RNN was laid
on top of our CNN model.* Please see Figure 1
for more details.

5 Results

Table 2 shows classification accuracy of related
works as well as our CNN, LSTM-RNN, and
CNN-LSTM models. Our best-performing CNN-
LSTM model sets the new state-of-the-art standard
with an accuracy of 95.8%.°

6 Analysis

6.1 Sentiment-Based Classification

Overall sentiment of each submission was calcu-
lated by VADER (Gilbert, 2014). More negative
posts receive more negative scores and more posi-
tive posts receive more positive scores. To ensure
that classifier predictions are capturing linguistic
characteristics of the stories and are not solely re-
lying on sentiment, we calculated the average sen-
timent score and standard deviation of each sub-
reddit in the dataset. As shown in Fig. 2, all of the
abuse-positive subreddits had negative mean senti-
ment scores. However, both the “anger” and ‘““anx-
iety” subreddits (that were part of the non-abuse
dataset) had average negative sentiment scores as
well. Furthermore, the overall sentiment of each
subreddit had large standard deviations. Because
of this, no subreddit had a statistically signifi-
cant difference in sentiment from any other sub-
reddit. Overall, this demonstrates that sentiment
alone cannot be used to effectively classify stories
as abuse-positive or abuse-negative.

6.2 Activation Clustering

We present activation clustering analysis (follow-
ing Girshick et al. (2014) and Aubakirova and

‘A vocabulary size of 10,000 and an Adam-
Optimizer (Kingma and Ba, 2015) with learning rate of
le-4 was used for all models.

SCNN, LSTM-RNN, and CNN-LSTM models showed
statistically significant difference from each other, calculated
using standard deviations, two sample t-tests, and the boot-
strap test (Noreen, 1989; Efron and Tibshirani, 1994) where p
< 0.04. CNN-LSTM and Schrading et al. (2015) showed sta-
tistically significant difference calculated based on their re-
ported standard deviations of accuracy.
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Figure 2: Mean VADER sentiment scores for posts
within each subreddit. Error bars display the standard
deviation of sentiment score.

Bansal (2016)) as a strategy to better understand
the classification decision and feature discovery
of the best-performing neural model. Activation
clustering (Girshick et al., 2014) treats the activa-
tion values of n neurons per input as coordinates in
a n-dimensional space. K-means clustering is then
performed on them to group together inputs that
maximally activate similar neurons. Each cluster
can have a different pattern or trait in common.
One of the abuse-labeled clusters involves ask-
ing questions: “how long after your abuse oc-
curred did you have sex again?”, “what to do
when you're falling behind: the other side of
‘fear of missing out’.”, “want to reduce mental
illness? address trauma.”. In contrast, we also
found a non-abuse cluster which was also a col-
lection of question-based posts, but containing
very different types of questions (e.g., about ca-
sual conversation topics, anxiety coping, holidays,
family, etc.): “What’s your favorite Christmas
song?”, “What are your favorite coping skills?”,
and “How would your family and friends react
to your reddit profile?”. This difference demon-
strates that the model is not only identifying gram-
matical patterns such as questions, but also learn-
ing some useful distinguishing linguistic charac-
teristics and content of the abuse versus non-abuse
stories. Moreover, the aggregation of these abuse-
positive questions allows for a greater understand-
ing of the needs of domestic abuse survivors. For
example, the fields of psychology and therapy can
potentially gain a more data-intensive and holis-
tic view of what victims of domestic abuse have
questions about and where to find answers.

6.2.1 Automatic Cluster Pattern Analysis

We also perform automatic pattern discovery in-
side different activation clusters, building on the

manual analysis performed by Aubakirova and
Bansal (2016). The most common words in
each cluster were tallied. For example, an
abuse-labeled cluster about questions has “and”,
“have”, “what”, “they”, “help”, “is”, “domes-
tic”, “children”, “violence”, and “beaten” in the
top ten most common words. However, a non-
abuse cluster about questions has “do”, “what”,
“your”, “and”, “I”, “it”, “would”, “have”,
“to”, and “of” as its top ten most used words.
This shows that abuse-heavy posts contain more
specific help and violence related words, whereas
the non-abuse posts are very diverse and of several
generic, casual topics. Because the top ten words
in the abuse versus non-abuse clusters are differ-
ent, we can also use these patterns to help classify
future text rapidly. New phrases that exhibit sim-
ilar common words to an already distinct cluster
will more likely fall into that cluster of abuse or
non-abuse.

7 Conclusion

This work applied three neural models—CNN,
LSTM-RNN, and CNN-LSTM—to an important
classification task in today’s world of online so-
cial activism. We contributed a new state-of-the-
art accuracy in this task and also presented inter-
pretability techniques to understand neural feature
discovery. Furthermore, we compared the senti-
ment scores of each subreddit and found that sen-
timent alone could not be used to classify stories
as abuse-positive or abuse-negative.

This task can be used in the future as an aggre-
gation tool to allow for the collection and linguis-
tic explanation of meaningful stories from across
the internet and social media platforms. The
courage of the individuals who share personal do-
mestic abuse stories must not be wasted. Instead of
allowing this public outcry to remain imprisoned
on the internet, let us use natural language pro-
cessing to automatically amass and explain their
stories, thus giving insights to helping victims of
domestic abuse and allowing activists to spread
awareness and enact real social change.
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