COMP 455, Models of Languages and Computation, Spring 2011 Generating a Theorem that is True but Unprovable NOT REQUIRED

Suppose L is a sound system of logic. Suppose L is powerful enough to prove all true statements of the form "Turing machine M halts on input x." (This can be done just by simulating the Turing machine until it halts.) Let T_j be the Turing machine which, on input i, halts if the statement " T_i fails to halt on input i" is provable in L, and loops otherwise.

Theorem The statement " T_j fails to halt on input j" is true but not provable in L.

Proof Suppose T_j halts on input j. By definition of T_j , this means that in L one can prove that T_j does not halt on input j. Because L is sound, this means that T_j does not halt on input j. Thus there is a contradiction. Therefore T_j does not halt on input j. By definition of T_j , this means that in L it is not provable that T_j does not halt on input j. End of proof

This result can also be formalized in the *encode* notation as follows:

Suppose L is a sound system of logic. Suppose L is powerful enough to prove all true statements of the form "Turing machine M halts on input x." (This can be done just by simulating the Turing machine until it halts.) Let T be the Turing machine which, on input encode(M), halts if the statement "M fails to halt on input encode(M)" is provable in L, and loops otherwise.

Theorem The statement "T fails to halt on input encode(T)" is true but not provable in L.

Proof Suppose T halts on input encode(T). By definition of T, this means that in L one can prove that T does not halt on input encode(T). Because L is sound, this means that T does not halt on input encode(T). Thus there is a contradiction. Therefore T does not halt on input encode(T). By definition of T, this means that in L it is not provable that T does not halt on input encode(T). By definition of T, this means that in L it is not provable that T does not halt on input encode(T).

Letting X_L be the statement "T fails to halt on input encode(T)" where T is defined as above from L, then for any sound system L of logic that can simulate Turing computations, X_L is true but not provable in L. Thus humans have the ability to get "outside" of any fixed logical system L and generate the statement X_L that is true but not provable in L. This seems to indicate that humans do not reason within any fixed logical system.