COMP 455
Models of Languages and Computation
Spring 2012
How does a Push-Down Automaton Work?

Suppose $((p, a, \beta),(q, \gamma))$ is a transition of a pda. The purpose of this handout is to describe how such a transition can fire. This depends on whether $a, \beta$, and $\gamma$ are empty or not, making eight cases in all. Note that if $\beta$ is not empty, then it can be written as $a_{1} a_{2} \ldots a_{m}$ for some $m \geq 1$, and if $\gamma$ is not empty, then it can be written as $b_{1} b_{2} \ldots b_{n}$ for some $n \geq 1$, where the $a_{i}$ and $b_{j}$ are symbols from the stack alphabet. Each case is described as follows.

The transition $\left(\left(p, a, a_{1} a_{2} \ldots a_{m}\right),\left(q, b_{1} b_{2} \ldots b_{n}\right)\right)$, where $a$ is not empty and $m, n \geq 1$, can fire if $p$ is the current state and $a$ is the input symbol being read and $a_{1} a_{2} \ldots a_{m}$ are the symbols on top of the stack. If this transition fires, then the state becomes $q$, the read head moves to the next symbol of the input, $a_{1} a_{2} \ldots a_{m}$ are removed from the top of the stack, and $b_{1} b_{2} \ldots b_{n}$ are put on the top of the stack.

The transition $\left(\left(p, e, a_{1} a_{2} \ldots a_{m}\right),\left(q, b_{1} b_{2} \ldots b_{n}\right)\right)$, where $m, n \geq 1$, can fire if $p$ is the current state and $a_{1} a_{2} \ldots a_{m}$ are the symbols on top of the stack. If this transition fires, then the state becomes $q$, the read head does not move to the next symbol of the input, $a_{1} a_{2} \ldots a_{m}$ are removed from the top of the stack, and $b_{1} b_{2} \ldots b_{n}$ are put on the top of the stack.

The transition $\left((p, a, e),\left(q, b_{1} b_{2} \ldots b_{n}\right)\right)$, where $a$ is not empty and $n \geq 1$, can fire if $p$ is the current state and $a$ is the input symbol being read. If this transition fires, then the state becomes $q$, the read head moves to the next symbol of the input, and $b_{1} b_{2} \ldots b_{n}$ are put on the top of the stack.

The transition $\left((p, e, e),\left(q, b_{1} b_{2} \ldots b_{n}\right)\right)$, where $n \geq 1$, can always fire if $p$ is the current state. If this transition fires, then the state becomes $q$, the read head does not move to the next symbol of the input, and $b_{1} b_{2} \ldots b_{n}$ are put on the top of the stack.

The transition $\left(\left(p, a, a_{1} a_{2} \ldots a_{m}\right),(q, e)\right)$, where $a$ is not empty and $m \geq 1$, can fire if $p$ is the current state and $a$ is the input symbol being read and $a_{1} a_{2} \ldots a_{m}$ are the symbols on top of the stack. If this transition fires, then the state becomes $q$, the read head moves to the next symbol of the input, and $a_{1} a_{2} \ldots a_{m}$ are removed from the top of the stack.

The transition $\left(\left(p, e, a_{1} a_{2} \ldots a_{m}\right),(q, e)\right)$, where $m \geq 1$, can fire if $p$ is the current state and $a_{1} a_{2} \ldots a_{m}$ are the symbols on top of the stack. If this transition fires, then the state becomes $q$, the read head does not move to the next symbol of the input, and $a_{1} a_{2} \ldots a_{m}$ are removed from the top of the stack.

The transition $((p, a, e),(q, e))$, where $a$ is not empty, can fire if $p$ is the current state and $a$ is the input symbol being read. If this transition fires, then the state becomes $q$ and the read head moves to the next symbol of the input.

The transition $((p, e, e),(q, e))$, can always fire if $p$ is the current state. If this transition fires, then the state becomes $q$ and the read head does not move to the next symbol of the input.

